Sfoglia il codice sorgente

uart: format driver code by astyle

morris 4 anni fa
parent
commit
89990bcbf5
1 ha cambiato i file con 150 aggiunte e 147 eliminazioni
  1. 150 147
      components/driver/uart.c

+ 150 - 147
components/driver/uart.c

@@ -45,7 +45,7 @@
 #define XOFF (0x13)
 #define XON (0x11)
 
-static const char* UART_TAG = "uart";
+static const char *UART_TAG = "uart";
 #define UART_CHECK(a, str, ret_val) \
     if (!(a)) { \
         ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
@@ -94,7 +94,7 @@ typedef struct {
     int wr;
     int rd;
     int len;
-    int* data;
+    int *data;
 } uart_pat_rb_t;
 
 typedef struct {
@@ -113,8 +113,8 @@ typedef struct {
     RingbufHandle_t rx_ring_buf;        /*!< RX ring buffer handler*/
     bool rx_buffer_full_flg;            /*!< RX ring buffer full flag. */
     int rx_cur_remain;                  /*!< Data number that waiting to be read out in ring buffer item*/
-    uint8_t* rx_ptr;                    /*!< pointer to the current data in ring buffer*/
-    uint8_t* rx_head_ptr;               /*!< pointer to the head of RX item*/
+    uint8_t *rx_ptr;                    /*!< pointer to the current data in ring buffer*/
+    uint8_t *rx_head_ptr;               /*!< pointer to the head of RX item*/
     uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
     uint8_t rx_stash_len;               /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
     uart_pat_rb_t rx_pattern_pos;
@@ -127,8 +127,8 @@ typedef struct {
     int tx_buf_size;                    /*!< TX ring buffer size */
     RingbufHandle_t tx_ring_buf;        /*!< TX ring buffer handler*/
     bool tx_waiting_fifo;               /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
-    uint8_t* tx_ptr;                    /*!< TX data pointer to push to FIFO in TX buffer mode*/
-    uart_tx_data_t* tx_head;            /*!< TX data pointer to head of the current buffer in TX ring buffer*/
+    uint8_t *tx_ptr;                    /*!< TX data pointer to push to FIFO in TX buffer mode*/
+    uart_tx_data_t *tx_head;            /*!< TX data pointer to head of the current buffer in TX ring buffer*/
     uint32_t tx_len_tot;                /*!< Total length of current item in ring buffer*/
     uint32_t tx_len_cur;
     uint8_t tx_brk_flg;                 /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
@@ -190,7 +190,7 @@ esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit
     return ESP_OK;
 }
 
-esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
+esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
     uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
@@ -207,7 +207,7 @@ esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
     return ESP_OK;
 }
 
-esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
+esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
@@ -225,7 +225,7 @@ esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
     return ESP_OK;
 }
 
-esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
+esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
@@ -291,7 +291,7 @@ esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow
     return ESP_OK;
 }
 
-esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
+esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
@@ -343,7 +343,7 @@ static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
 static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
 {
     esp_err_t ret = ESP_OK;
-    uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
+    uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
     int next = p_pos->wr + 1;
     if (next >= p_pos->len) {
         next = 0;
@@ -361,11 +361,11 @@ static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int po
 
 static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
 {
-    if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
+    if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
         return ESP_ERR_INVALID_STATE;
     } else {
         esp_err_t ret = ESP_OK;
-        uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
+        uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
         if (p_pos->rd == p_pos->wr) {
             ret = ESP_FAIL;
         } else {
@@ -380,9 +380,9 @@ static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
 
 static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
 {
-    uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
+    uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
     int rd = p_pos->rd;
-    while(rd != p_pos->wr) {
+    while (rd != p_pos->wr) {
         p_pos->data[rd] -= diff_len;
         int rd_rec = rd;
         rd ++;
@@ -400,7 +400,7 @@ int uart_pattern_pop_pos(uart_port_t uart_num)
 {
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
-    uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
+    uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
     int pos = -1;
     if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
         pos = pat_pos->data[pat_pos->rd];
@@ -414,7 +414,7 @@ int uart_pattern_get_pos(uart_port_t uart_num)
 {
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
-    uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
+    uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
     int pos = -1;
     if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
         pos = pat_pos->data[pat_pos->rd];
@@ -428,12 +428,12 @@ esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
 
-    int* pdata = (int*) malloc(queue_length * sizeof(int));
-    if(pdata == NULL) {
+    int *pdata = (int *) malloc(queue_length * sizeof(int));
+    if (pdata == NULL) {
         return ESP_ERR_NO_MEM;
     }
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
-    int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
+    int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
     p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
     p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
     p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
@@ -507,12 +507,12 @@ esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
 
 esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
 {
-    return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
+    return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
 }
 
 esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
 {
-    return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
+    return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
 }
 
 esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
@@ -532,12 +532,12 @@ esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
     return ESP_OK;
 }
 
-esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags,  uart_isr_handle_t *handle)
+esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags,  uart_isr_handle_t *handle)
 {
     int ret;
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
-    ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
+    ret = esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
     return ret;
 }
@@ -549,8 +549,8 @@ esp_err_t uart_isr_free(uart_port_t uart_num)
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
     UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
-    ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
-    p_uart_obj[uart_num]->intr_handle=NULL;
+    ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
+    p_uart_obj[uart_num]->intr_handle = NULL;
     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
     return ret;
 }
@@ -646,16 +646,16 @@ esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_
     UART_CHECK((intr_conf), "param null", ESP_FAIL);
     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
-    if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
+    if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
         uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
     } else {
         //Disable rx_tout intr
         uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
     }
-    if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
+    if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
         uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
     }
-    if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
+    if (intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
         uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
     }
     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
@@ -663,7 +663,7 @@ esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_
     return ESP_OK;
 }
 
-static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
+static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, uint8_t pat_num)
 {
     int cnt = 0;
     int len = length;
@@ -684,37 +684,37 @@ static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, u
 //internal isr handler for default driver code.
 static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
 {
-    uart_obj_t *p_uart = (uart_obj_t*) param;
+    uart_obj_t *p_uart = (uart_obj_t *) param;
     uint8_t uart_num = p_uart->uart_num;
     int rx_fifo_len = 0;
     uint32_t uart_intr_status = 0;
     uart_event_t uart_event;
     portBASE_TYPE HPTaskAwoken = 0;
     static uint8_t pat_flg = 0;
-    while(1) {
+    while (1) {
         // The `continue statement` may cause the interrupt to loop infinitely
         // we exit the interrupt here
         uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
         //Exit form while loop
-        if(uart_intr_status == 0){
+        if (uart_intr_status == 0) {
             break;
         }
         uart_event.type = UART_EVENT_MAX;
-        if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
+        if (uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
             uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
             UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
-            if(p_uart->tx_waiting_brk) {
+            if (p_uart->tx_waiting_brk) {
                 continue;
             }
             //TX semaphore will only be used when tx_buf_size is zero.
-            if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
+            if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
                 p_uart->tx_waiting_fifo = false;
                 xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
             } else {
                 //We don't use TX ring buffer, because the size is zero.
-                if(p_uart->tx_buf_size == 0) {
+                if (p_uart->tx_buf_size == 0) {
                     continue;
                 }
                 bool en_tx_flg = false;
@@ -722,25 +722,25 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
                 //We need to put a loop here, in case all the buffer items are very short.
                 //That would cause a watch_dog reset because empty interrupt happens so often.
                 //Although this is a loop in ISR, this loop will execute at most 128 turns.
-                while(tx_fifo_rem) {
-                    if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
+                while (tx_fifo_rem) {
+                    if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
                         size_t size;
-                        p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
-                        if(p_uart->tx_head) {
+                        p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
+                        if (p_uart->tx_head) {
                             //The first item is the data description
                             //Get the first item to get the data information
-                            if(p_uart->tx_len_tot == 0) {
+                            if (p_uart->tx_len_tot == 0) {
                                 p_uart->tx_ptr = NULL;
                                 p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
-                                if(p_uart->tx_head->type == UART_DATA_BREAK) {
+                                if (p_uart->tx_head->type == UART_DATA_BREAK) {
                                     p_uart->tx_brk_flg = 1;
                                     p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
                                 }
                                 //We have saved the data description from the 1st item, return buffer.
                                 vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
-                            } else if(p_uart->tx_ptr == NULL) {
+                            } else if (p_uart->tx_ptr == NULL) {
                                 //Update the TX item pointer, we will need this to return item to buffer.
-                                p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
+                                p_uart->tx_ptr = (uint8_t *)p_uart->tx_head;
                                 en_tx_flg = true;
                                 p_uart->tx_len_cur = size;
                             }
@@ -774,7 +774,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
                             p_uart->tx_ptr = NULL;
                             //Sending item done, now we need to send break if there is a record.
                             //Set TX break signal after FIFO is empty
-                            if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
+                            if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
                                 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
                                 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
                                 uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
@@ -800,12 +800,11 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
                     UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
                 }
             }
-        }
-        else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
-                || (uart_intr_status & UART_INTR_RXFIFO_FULL)
-                || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
-                ) {
-            if(pat_flg == 1) {
+        } else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
+                   || (uart_intr_status & UART_INTR_RXFIFO_FULL)
+                   || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
+                  ) {
+            if (pat_flg == 1) {
                 uart_intr_status |= UART_INTR_CMD_CHAR_DET;
                 pat_flg = 0;
             }
@@ -841,7 +840,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
                 p_uart->rx_stash_len = rx_fifo_len;
                 //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
                 //Mainly for applications that uses flow control or small ring buffer.
-                if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
+                if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
                     p_uart->rx_buffer_full_flg = true;
                     UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
                     uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
@@ -853,11 +852,11 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
                             uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
                         } else {
                             uart_pattern_enqueue(uart_num,
-                                    pat_idx <= -1 ?
-                                    //can not find the pattern in buffer,
-                                    p_uart->rx_buffered_len + p_uart->rx_stash_len :
-                                    // find the pattern in buffer
-                                    p_uart->rx_buffered_len + pat_idx);
+                                                 pat_idx <= -1 ?
+                                                 //can not find the pattern in buffer,
+                                                 p_uart->rx_buffered_len + p_uart->rx_stash_len :
+                                                 // find the pattern in buffer
+                                                 p_uart->rx_buffered_len + pat_idx);
                         }
                         UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
                         if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
@@ -871,7 +870,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
                         if (rx_fifo_len < pat_num) {
                             //some of the characters are read out in last interrupt
                             uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
-                        } else if(pat_idx >= 0) {
+                        } else if (pat_idx >= 0) {
                             // find the pattern in stash buffer.
                             uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
                         }
@@ -884,14 +883,14 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
                 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
                 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
                 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
-                if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
+                if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
                     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
                     uart_event.type = UART_PATTERN_DET;
                     uart_event.size = rx_fifo_len;
                     pat_flg = 1;
                 }
             }
-        } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
+        } else if (uart_intr_status & UART_INTR_RXFIFO_OVF) {
             // When fifo overflows, we reset the fifo.
             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
             uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
@@ -903,10 +902,10 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
             UART_EXIT_CRITICAL_ISR(&uart_selectlock);
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
             uart_event.type = UART_FIFO_OVF;
-        } else if(uart_intr_status & UART_INTR_BRK_DET) {
+        } else if (uart_intr_status & UART_INTR_BRK_DET) {
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
             uart_event.type = UART_BREAK;
-        } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
+        } else if (uart_intr_status & UART_INTR_FRAM_ERR) {
             UART_ENTER_CRITICAL_ISR(&uart_selectlock);
             if (p_uart->uart_select_notif_callback) {
                 p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
@@ -914,7 +913,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
             UART_EXIT_CRITICAL_ISR(&uart_selectlock);
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
             uart_event.type = UART_FRAME_ERR;
-        } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
+        } else if (uart_intr_status & UART_INTR_PARITY_ERR) {
             UART_ENTER_CRITICAL_ISR(&uart_selectlock);
             if (p_uart->uart_select_notif_callback) {
                 p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
@@ -922,32 +921,32 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
             UART_EXIT_CRITICAL_ISR(&uart_selectlock);
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
             uart_event.type = UART_PARITY_ERR;
-        } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
+        } else if (uart_intr_status & UART_INTR_TX_BRK_DONE) {
             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
             uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
             uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
-            if(p_uart->tx_brk_flg == 1) {
+            if (p_uart->tx_brk_flg == 1) {
                 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
             }
             UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
-            if(p_uart->tx_brk_flg == 1) {
+            if (p_uart->tx_brk_flg == 1) {
                 p_uart->tx_brk_flg = 0;
                 p_uart->tx_waiting_brk = 0;
             } else {
                 xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
             }
-        } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
+        } else if (uart_intr_status & UART_INTR_TX_BRK_IDLE) {
             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
             uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
             UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
-        } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
+        } else if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
             uart_event.type = UART_PATTERN_DET;
         } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
-                || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
-                || (uart_intr_status & UART_INTR_RS485_CLASH)) {
+                   || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
+                   || (uart_intr_status & UART_INTR_RS485_CLASH)) {
             // RS485 collision or frame error interrupt triggered
             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
             uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
@@ -956,7 +955,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
             UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
             uart_event.type = UART_EVENT_MAX;
-        } else if(uart_intr_status & UART_INTR_TX_DONE) {
+        } else if (uart_intr_status & UART_INTR_TX_DONE) {
             if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
                 // The TX_DONE interrupt is triggered but transmit is active
                 // then postpone interrupt processing for next interrupt
@@ -980,13 +979,13 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
             uart_event.type = UART_EVENT_MAX;
         }
 
-        if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
+        if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
             if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
                 ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
             }
         }
     }
-    if(HPTaskAwoken == pdTRUE) {
+    if (HPTaskAwoken == pdTRUE) {
         portYIELD_FROM_ISR();
     }
 }
@@ -1000,11 +999,11 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
     portTickType ticks_start = xTaskGetTickCount();
     //Take tx_mux
     res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
-    if(res == pdFALSE) {
+    if (res == pdFALSE) {
         return ESP_ERR_TIMEOUT;
     }
     xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
-    if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
+    if (uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
         xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
         return ESP_OK;
     }
@@ -1021,7 +1020,7 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
     }
     //take 2nd tx_done_sem, wait given from ISR
     res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
-    if(res == pdFALSE) {
+    if (res == pdFALSE) {
         UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
         uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
         UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
@@ -1032,12 +1031,12 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
     return ESP_OK;
 }
 
-int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
+int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
     UART_CHECK(buffer, "buffer null", (-1));
-    if(len == 0) {
+    if (len == 0) {
         return 0;
     }
     int tx_len = 0;
@@ -1048,14 +1047,14 @@ int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
         uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
         UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
     }
-    uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
+    uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t *) buffer, len, (uint32_t *)&tx_len);
     xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
     return tx_len;
 }
 
-static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
+static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
 {
-    if(size == 0) {
+    if (size == 0) {
         return 0;
     }
     size_t original_size = size;
@@ -1063,29 +1062,29 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
     //lock for uart_tx
     xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
     p_uart_obj[uart_num]->coll_det_flg = false;
-    if(p_uart_obj[uart_num]->tx_buf_size > 0) {
+    if (p_uart_obj[uart_num]->tx_buf_size > 0) {
         int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
         int offset = 0;
         uart_tx_data_t evt;
         evt.tx_data.size = size;
         evt.tx_data.brk_len = brk_len;
-        if(brk_en) {
+        if (brk_en) {
             evt.type = UART_DATA_BREAK;
         } else {
             evt.type = UART_DATA;
         }
         xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
-        while(size > 0) {
+        while (size > 0) {
             int send_size = size > max_size / 2 ? max_size / 2 : size;
-            xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
+            xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
             size -= send_size;
             offset += send_size;
             uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
         }
     } else {
-        while(size) {
+        while (size) {
             //semaphore for tx_fifo available
-            if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
+            if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
                 uint32_t sent = 0;
                 if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
                     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
@@ -1093,8 +1092,8 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
                     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
                     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
                 }
-                uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
-                if(sent < size) {
+                uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t *)src, size, &sent);
+                if (sent < size) {
                     p_uart_obj[uart_num]->tx_waiting_fifo = true;
                     uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
                 }
@@ -1102,7 +1101,7 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
                 src += sent;
             }
         }
-        if(brk_en) {
+        if (brk_en) {
             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
             UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
             uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
@@ -1116,7 +1115,7 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
     return original_size;
 }
 
-int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
+int uart_write_bytes(uart_port_t uart_num, const char *src, size_t size)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
     UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
@@ -1124,7 +1123,7 @@ int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
     return uart_tx_all(uart_num, src, size, 0, 0);
 }
 
-int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
+int uart_write_bytes_with_break(uart_port_t uart_num, const char *src, size_t size, int brk_len)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
@@ -1136,9 +1135,9 @@ int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t si
 
 static bool uart_check_buf_full(uart_port_t uart_num)
 {
-    if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
+    if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
         BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
-        if(res == pdTRUE) {
+        if (res == pdTRUE) {
             UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
             p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
             p_uart_obj[uart_num]->rx_buffer_full_flg = false;
@@ -1150,22 +1149,22 @@ static bool uart_check_buf_full(uart_port_t uart_num)
     return false;
 }
 
-int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
+int uart_read_bytes(uart_port_t uart_num, uint8_t *buf, uint32_t length, TickType_t ticks_to_wait)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
     UART_CHECK((buf), "uart data null", (-1));
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
-    uint8_t* data = NULL;
+    uint8_t *data = NULL;
     size_t size;
     size_t copy_len = 0;
     int len_tmp;
-    if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
+    if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
         return -1;
     }
-    while(length) {
-        if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
-            data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
-            if(data) {
+    while (length) {
+        if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
+            data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
+            if (data) {
                 p_uart_obj[uart_num]->rx_head_ptr = data;
                 p_uart_obj[uart_num]->rx_ptr = data;
                 p_uart_obj[uart_num]->rx_cur_remain = size;
@@ -1173,7 +1172,7 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
                 //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
                 //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
                 //to solve the possible asynchronous issues.
-                if(uart_check_buf_full(uart_num)) {
+                if (uart_check_buf_full(uart_num)) {
                     //This condition will never be true if `uart_read_bytes`
                     //and `uart_rx_intr_handler_default` are scheduled on the same core.
                     continue;
@@ -1183,7 +1182,7 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
                 }
             }
         }
-        if(p_uart_obj[uart_num]->rx_cur_remain > length) {
+        if (p_uart_obj[uart_num]->rx_cur_remain > length) {
             len_tmp = length;
         } else {
             len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
@@ -1197,7 +1196,7 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
         p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
         copy_len += len_tmp;
         length -= len_tmp;
-        if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
+        if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
             vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
             p_uart_obj[uart_num]->rx_head_ptr = NULL;
             p_uart_obj[uart_num]->rx_ptr = NULL;
@@ -1209,7 +1208,7 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
     return copy_len;
 }
 
-esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
+esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
@@ -1225,15 +1224,15 @@ esp_err_t uart_flush_input(uart_port_t uart_num)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
-    uart_obj_t* p_uart = p_uart_obj[uart_num];
-    uint8_t* data;
+    uart_obj_t *p_uart = p_uart_obj[uart_num];
+    uint8_t *data;
     size_t size;
 
     //rx sem protect the ring buffer read related functions
     xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
     uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
-    while(true) {
-        if(p_uart->rx_head_ptr) {
+    while (true) {
+        if (p_uart->rx_head_ptr) {
             vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
             UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
             p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
@@ -1244,10 +1243,10 @@ esp_err_t uart_flush_input(uart_port_t uart_num)
             p_uart->rx_head_ptr = NULL;
         }
         data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
-        if(data == NULL) {
+        if (data == NULL) {
             bool error = false;
             UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
-            if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
+            if ( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
                 p_uart_obj[uart_num]->rx_buffered_len = 0;
                 error = true;
             }
@@ -1265,9 +1264,9 @@ esp_err_t uart_flush_input(uart_port_t uart_num)
         uart_pattern_queue_update(uart_num, size);
         UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
         vRingbufferReturnItem(p_uart->rx_ring_buf, data);
-        if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
+        if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
             BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
-            if(res == pdTRUE) {
+            if (res == pdTRUE) {
                 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
                 p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
                 p_uart_obj[uart_num]->rx_buffer_full_flg = false;
@@ -1302,9 +1301,9 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
     }
 #endif
 
-    if(p_uart_obj[uart_num] == NULL) {
-        p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
-        if(p_uart_obj[uart_num] == NULL) {
+    if (p_uart_obj[uart_num] == NULL) {
+        p_uart_obj[uart_num] = (uart_obj_t *) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
+        if (p_uart_obj[uart_num] == NULL) {
             ESP_LOGE(UART_TAG, "UART driver malloc error");
             return ESP_FAIL;
         }
@@ -1328,7 +1327,7 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
         p_uart_obj[uart_num]->rx_buffered_len = 0;
         uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
 
-        if(uart_queue) {
+        if (uart_queue) {
             p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
             *uart_queue = p_uart_obj[uart_num]->xQueueUart;
             ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
@@ -1341,7 +1340,7 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
         p_uart_obj[uart_num]->rx_cur_remain = 0;
         p_uart_obj[uart_num]->rx_head_ptr = NULL;
         p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
-        if(tx_buffer_size > 0) {
+        if (tx_buffer_size > 0) {
             p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
             p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
         } else {
@@ -1363,10 +1362,14 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
     uart_module_enable(uart_num);
     uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
-    r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
-    if (r!=ESP_OK) goto err;
-    r=uart_intr_config(uart_num, &uart_intr);
-    if (r!=ESP_OK) goto err;
+    r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
+    if (r != ESP_OK) {
+        goto err;
+    }
+    r = uart_intr_config(uart_num, &uart_intr);
+    if (r != ESP_OK) {
+        goto err;
+    }
     return r;
 
 err:
@@ -1378,7 +1381,7 @@ err:
 esp_err_t uart_driver_delete(uart_port_t uart_num)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
-    if(p_uart_obj[uart_num] == NULL) {
+    if (p_uart_obj[uart_num] == NULL) {
         ESP_LOGI(UART_TAG, "ALREADY NULL");
         return ESP_OK;
     }
@@ -1387,35 +1390,35 @@ esp_err_t uart_driver_delete(uart_port_t uart_num)
     uart_disable_tx_intr(uart_num);
     uart_pattern_link_free(uart_num);
 
-    if(p_uart_obj[uart_num]->tx_fifo_sem) {
+    if (p_uart_obj[uart_num]->tx_fifo_sem) {
         vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
         p_uart_obj[uart_num]->tx_fifo_sem = NULL;
     }
-    if(p_uart_obj[uart_num]->tx_done_sem) {
+    if (p_uart_obj[uart_num]->tx_done_sem) {
         vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
         p_uart_obj[uart_num]->tx_done_sem = NULL;
     }
-    if(p_uart_obj[uart_num]->tx_brk_sem) {
+    if (p_uart_obj[uart_num]->tx_brk_sem) {
         vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
         p_uart_obj[uart_num]->tx_brk_sem = NULL;
     }
-    if(p_uart_obj[uart_num]->tx_mux) {
+    if (p_uart_obj[uart_num]->tx_mux) {
         vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
         p_uart_obj[uart_num]->tx_mux = NULL;
     }
-    if(p_uart_obj[uart_num]->rx_mux) {
+    if (p_uart_obj[uart_num]->rx_mux) {
         vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
         p_uart_obj[uart_num]->rx_mux = NULL;
     }
-    if(p_uart_obj[uart_num]->xQueueUart) {
+    if (p_uart_obj[uart_num]->xQueueUart) {
         vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
         p_uart_obj[uart_num]->xQueueUart = NULL;
     }
-    if(p_uart_obj[uart_num]->rx_ring_buf) {
+    if (p_uart_obj[uart_num]->rx_ring_buf) {
         vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
         p_uart_obj[uart_num]->rx_ring_buf = NULL;
     }
-    if(p_uart_obj[uart_num]->tx_ring_buf) {
+    if (p_uart_obj[uart_num]->tx_ring_buf) {
         vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
         p_uart_obj[uart_num]->tx_ring_buf = NULL;
     }
@@ -1452,19 +1455,19 @@ esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
     if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
             || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
         UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
-                "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
+                   "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
     }
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
     uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
-    if(mode ==  UART_MODE_RS485_COLLISION_DETECT) {
+    if (mode ==  UART_MODE_RS485_COLLISION_DETECT) {
         // This mode allows read while transmitting that allows collision detection
         p_uart_obj[uart_num]->coll_det_flg = false;
         // Enable collision detection interrupts
         uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
-                                        | UART_INTR_RXFIFO_FULL
-                                        | UART_INTR_RS485_CLASH
-                                        | UART_INTR_RS485_FRM_ERR
-                                        | UART_INTR_RS485_PARITY_ERR);
+                               | UART_INTR_RXFIFO_FULL
+                               | UART_INTR_RS485_CLASH
+                               | UART_INTR_RS485_FRM_ERR
+                               | UART_INTR_RS485_PARITY_ERR);
     }
     p_uart_obj[uart_num]->uart_mode = mode;
     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
@@ -1475,7 +1478,7 @@ esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
     UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
-        "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
+               "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
     if (p_uart_obj[uart_num] == NULL) {
         ESP_LOGE(UART_TAG, "call uart_driver_install API first");
         return ESP_ERR_INVALID_STATE;
@@ -1492,7 +1495,7 @@ esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
     UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
-        "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
+               "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
     if (p_uart_obj[uart_num] == NULL) {
         ESP_LOGE(UART_TAG, "call uart_driver_install API first");
         return ESP_ERR_INVALID_STATE;
@@ -1520,14 +1523,14 @@ esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
     return ESP_OK;
 }
 
-esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
+esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
     UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
     UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
-                    || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
-                    "wrong mode", ESP_ERR_INVALID_ARG);
+               || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
+               "wrong mode", ESP_ERR_INVALID_ARG);
     *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
     return ESP_OK;
 }
@@ -1536,15 +1539,15 @@ esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
     UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
-                wakeup_threshold > UART_MIN_WAKEUP_THRESH),
-                "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
+               wakeup_threshold > UART_MIN_WAKEUP_THRESH),
+               "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
     uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
     return ESP_OK;
 }
 
-esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
+esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
     UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
@@ -1555,7 +1558,7 @@ esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_thresh
 esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
 {
     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
-    while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
+    while (!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
     return ESP_OK;
 }