Просмотр исходного кода

feat(mmu): support mmu and flash mmap driver on p4

Armando 2 лет назад
Родитель
Сommit
8c8affc812

+ 69 - 35
components/esp_mm/esp_mmu_map.c

@@ -317,9 +317,9 @@ esp_err_t esp_mmu_map_reserve_block_with_caps(size_t size, mmu_mem_caps_t caps,
 
     uint32_t vaddr = 0;
     if (caps & MMU_MEM_CAP_EXEC) {
-        vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_INSTRUCTION);
+        vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_INSTRUCTION, target);
     } else {
-        vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_DATA);
+        vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_DATA, target);
     }
     *out_ptr = (void *)vaddr;
 
@@ -336,7 +336,6 @@ IRAM_ATTR esp_err_t esp_mmu_paddr_find_caps(const esp_paddr_t paddr, mmu_mem_cap
         return ESP_ERR_INVALID_ARG;
     }
 
-
     for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
         region = &s_mmu_ctx.mem_regions[i];
 
@@ -378,26 +377,49 @@ static void IRAM_ATTR NOINLINE_ATTR s_do_cache_invalidate(uint32_t vaddr_start,
 #endif // CONFIG_IDF_TARGET_ESP32
 }
 
-static void IRAM_ATTR NOINLINE_ATTR s_do_mapping(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
+
+#if MMU_LL_MMU_PER_TARGET
+FORCE_INLINE_ATTR uint32_t s_mapping_operation(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
 {
-    /**
-     * Disable Cache, after this function, involved code and data should be placed in internal RAM.
-     *
-     * @note we call this for now, but this will be refactored to move out of `spi_flash`
-     */
-    spi_flash_disable_interrupts_caches_and_other_cpu();
+    uint32_t actual_mapped_len = 0;
+    uint32_t mmu_id = 0;
+    if (target == MMU_TARGET_FLASH0) {
+        mmu_id = MMU_LL_FLASH_MMU_ID;
+    } else {
+        mmu_id = MMU_LL_PSRAM_MMU_ID;
+    }
+    mmu_hal_map_region(mmu_id, target, vaddr_start, paddr_start, size, &actual_mapped_len);
 
+    return actual_mapped_len;
+}
+#else
+FORCE_INLINE_ATTR uint32_t s_mapping_operation(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
+{
     uint32_t actual_mapped_len = 0;
+
     mmu_hal_map_region(0, target, vaddr_start, paddr_start, size, &actual_mapped_len);
 #if (SOC_MMU_PERIPH_NUM == 2)
 #if !CONFIG_FREERTOS_UNICORE
-#ifndef CONFIG_IDF_TARGET_ESP32P4 // for spi flash mmap, we always use flash mmu
-    //TODO: IDF-7509
     mmu_hal_map_region(1, target, vaddr_start, paddr_start, size, &actual_mapped_len);
-#endif
 #endif //  #if !CONFIG_FREERTOS_UNICORE
 #endif //  #if (SOC_MMU_PERIPH_NUM == 2)
 
+    return actual_mapped_len;
+}
+#endif
+
+
+static void IRAM_ATTR NOINLINE_ATTR s_do_mapping(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
+{
+    /**
+     * Disable Cache, after this function, involved code and data should be placed in internal RAM.
+     *
+     * @note we call this for now, but this will be refactored to move out of `spi_flash`
+     */
+    spi_flash_disable_interrupts_caches_and_other_cpu();
+
+    uint32_t actual_mapped_len = s_mapping_operation(target, vaddr_start, paddr_start, size);
+
     cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
     cache_ll_l1_enable_bus(0, bus_mask);
 #if !CONFIG_FREERTOS_UNICORE
@@ -532,22 +554,16 @@ esp_err_t esp_mmu_map(esp_paddr_t paddr_start, size_t size, mmu_target_t target,
     new_block->laddr_end = new_block->laddr_start + aligned_size;
     new_block->size = aligned_size;
     new_block->caps = caps;
-#if CONFIG_IDF_TARGET_ESP32P4
-    //TODO: IDF-7509
-    new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_FLASH);
-    new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_FLASH);
-#else
-    if (caps & MMU_MEM_CAP_EXEC) {
-        new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_INSTRUCTION);
-        new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_INSTRUCTION);
-    } else {
-        new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_DATA);
-        new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_DATA);
-    }
-#endif
     new_block->paddr_start = paddr_start;
     new_block->paddr_end = paddr_start + aligned_size;
     new_block->target = target;
+    if (caps & MMU_MEM_CAP_EXEC) {
+        new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_INSTRUCTION, target);
+        new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_INSTRUCTION, target);
+    } else {
+        new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_DATA, target);
+        new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_DATA, target);
+    }
 
     //do mapping
     s_do_mapping(target, new_block->vaddr_start, paddr_start, aligned_size);
@@ -567,6 +583,32 @@ err:
 }
 
 
+#if MMU_LL_MMU_PER_TARGET
+FORCE_INLINE_ATTR void s_unmapping_operation(uint32_t vaddr_start, uint32_t size)
+{
+    uint32_t mmu_id = 0;
+    mmu_target_t target = mmu_ll_vaddr_to_target(vaddr_start);
+
+    if (target == MMU_TARGET_FLASH0) {
+        mmu_id = MMU_LL_FLASH_MMU_ID;
+    } else {
+        mmu_id = MMU_LL_PSRAM_MMU_ID;
+    }
+    mmu_hal_unmap_region(mmu_id, vaddr_start, size);
+}
+#else
+FORCE_INLINE_ATTR void s_unmapping_operation(uint32_t vaddr_start, uint32_t size)
+{
+    mmu_hal_unmap_region(0, vaddr_start, size);
+#if (SOC_MMU_PERIPH_NUM == 2)
+#if !CONFIG_FREERTOS_UNICORE
+    mmu_hal_unmap_region(1, vaddr_start, size);
+#endif //  #if !CONFIG_FREERTOS_UNICORE
+#endif //  #if (SOC_MMU_PERIPH_NUM == 2)
+}
+#endif
+
+
 static void IRAM_ATTR NOINLINE_ATTR s_do_unmapping(uint32_t vaddr_start, uint32_t size)
 {
     /**
@@ -576,15 +618,7 @@ static void IRAM_ATTR NOINLINE_ATTR s_do_unmapping(uint32_t vaddr_start, uint32_
      */
     spi_flash_disable_interrupts_caches_and_other_cpu();
 
-    mmu_hal_unmap_region(0, vaddr_start, size);
-#if (SOC_MMU_PERIPH_NUM == 2)
-#if !CONFIG_FREERTOS_UNICORE
-#ifndef CONFIG_IDF_TARGET_ESP32P4 // for flash mmap, we always use flash mmu
-    //TODO: IDF-7509
-    mmu_hal_unmap_region(1, vaddr_start, size);
-#endif
-#endif //  #if !CONFIG_FREERTOS_UNICORE
-#endif //  #if (SOC_MMU_PERIPH_NUM == 2)
+    s_unmapping_operation(vaddr_start, size);
 
     //enable Cache, after this function, internal RAM access is no longer mandatory
     spi_flash_enable_interrupts_caches_and_other_cpu();

+ 4 - 4
components/esp_mm/port/esp32p4/ext_mem_layout.c

@@ -18,17 +18,17 @@ const mmu_mem_region_t g_mmu_mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM] = {
     [0] = {
         .start = SOC_MMU_FLASH_LINEAR_ADDRESS_LOW,
         .end = SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH,
-        .size = SOC_MMU_FLASH_LINEAR_ADDRESS_SIZE,
+        .size = BUS_SIZE(SOC_MMU_FLASH_LINEAR),
         .bus_id = CACHE_BUS_IBUS0 | CACHE_BUS_DBUS0,
         .targets = MMU_TARGET_FLASH0,
-        .caps = MMU_MEM_CAP_FLASH | MMU_MEM_CAP_EXEC | MMU_MEM_CAP_READ | MMU_MEM_CAP_32BIT | MMU_MEM_CAP_8BIT,
+        .caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT | MMU_MEM_CAP_8BIT,
     },
     [1] = {
         .start = SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW,
         .end = SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH,
-        .size = SOC_MMU_PSRAM_LINEAR_ADDRESS_SIZE,
+        .size = BUS_SIZE(SOC_MMU_PSRAM_LINEAR),
         .bus_id = CACHE_BUS_IBUS1 | CACHE_BUS_DBUS1,
         .targets = MMU_TARGET_PSRAM0,
-        .caps = MMU_MEM_CAP_PSRAM | MMU_MEM_CAP_EXEC | MMU_MEM_CAP_READ | MMU_MEM_CAP_32BIT | MMU_MEM_CAP_8BIT,
+        .caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT | MMU_MEM_CAP_8BIT,
     },
 };

+ 8 - 4
components/esp_mm/test_apps/mmap_hw/main/test_mmap_hw.c

@@ -55,7 +55,6 @@ typedef struct test_block_info_ {
 } test_block_info_t;
 
 static LIST_HEAD(test_block_list_head_, test_block_info_) test_block_head;
-static DRAM_ATTR uint8_t sector_buf[TEST_BLOCK_SIZE];
 
 
 static void s_fill_random_data(uint8_t *buffer, size_t size, int random_seed)
@@ -66,7 +65,7 @@ static void s_fill_random_data(uint8_t *buffer, size_t size, int random_seed)
     }
 }
 
-static bool s_test_mmap_data_by_random(uint8_t *mblock_ptr, size_t size, int random_seed)
+static bool s_test_mmap_data_by_random(uint8_t *mblock_ptr, size_t size, int random_seed, uint8_t *flash_ref_buf)
 {
     srand(random_seed);
     uint8_t *test_ptr = mblock_ptr;
@@ -77,7 +76,7 @@ static bool s_test_mmap_data_by_random(uint8_t *mblock_ptr, size_t size, int ran
             printf("i: %d\n", i);
             printf("test_data: %d\n", test_data);
             printf("test_ptr[%d]: %d\n", i, test_ptr[i]);
-            printf("sector_buf[%d]: %d\n", i, sector_buf[i]);
+            printf("flash_ref_buf[%d]: %d\n", i, flash_ref_buf[i]);
             ESP_EARLY_LOGE(TAG, "FAIL!!!!!!");
             return false;
         }
@@ -87,6 +86,9 @@ static bool s_test_mmap_data_by_random(uint8_t *mblock_ptr, size_t size, int ran
 
 TEST_CASE("test all readable vaddr can map to flash", "[mmu]")
 {
+    uint8_t *sector_buf = heap_caps_calloc(1, TEST_BLOCK_SIZE, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
+    TEST_ASSERT(sector_buf);
+
     //Get the partition used for SPI1 erase operation
     const esp_partition_t *part = s_get_partition();
     ESP_LOGI(TAG, "found partition '%s' at offset 0x%"PRIx32" with size 0x%"PRIx32, part->label, part->address, part->size);
@@ -113,7 +115,7 @@ TEST_CASE("test all readable vaddr can map to flash", "[mmu]")
         ret = esp_mmu_map(part->address, TEST_BLOCK_SIZE, MMU_TARGET_FLASH0, MMU_MEM_CAP_READ, 0, &ptr);
         if (ret == ESP_OK) {
             ESP_LOGI(TAG, "ptr is %p", ptr);
-            bool success = s_test_mmap_data_by_random((uint8_t *)ptr, sizeof(sector_buf), test_seed);
+            bool success = s_test_mmap_data_by_random((uint8_t *)ptr, sizeof(sector_buf), test_seed, sector_buf);
             TEST_ASSERT(success);
         } else if (ret == ESP_ERR_NOT_FOUND) {
             free(block_info);
@@ -138,6 +140,8 @@ TEST_CASE("test all readable vaddr can map to flash", "[mmu]")
         block_to_free = LIST_NEXT(block_to_free, entries);
         free(temp);
     }
+
+    free(sector_buf);
 }
 
 

+ 1 - 0
components/esp_mm/test_apps/mmap_hw/sdkconfig.defaults

@@ -5,3 +5,4 @@ CONFIG_PARTITION_TABLE_CUSTOM_FILENAME="partitions.csv"
 CONFIG_PARTITION_TABLE_FILENAME="partitions.csv"
 
 CONFIG_COMPILER_DUMP_RTL_FILES=y
+CONFIG_HAL_ASSERTION_SILENT=y

+ 3 - 1
components/hal/esp32/include/hal/mmu_ll.h

@@ -38,11 +38,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
  *
  * @param laddr       linear address
  * @param vaddr_type  virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
+ * @param target      virtual address aimed physical memory target, not used
  *
  * @return virtual address
  */
-static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
+static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
 {
+    (void)target;
     uint32_t vaddr_base = 0;
     if (vaddr_type == MMU_VADDR_DATA) {
         vaddr_base = SOC_MMU_DBUS_VADDR_BASE;

+ 9 - 2
components/hal/esp32c2/include/hal/mmu_ll.h

@@ -36,11 +36,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
  *
  * @param laddr       linear address
  * @param vaddr_type  virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
+ * @param target      virtual address aimed physical memory target, not used
  *
  * @return virtual address
  */
-static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
+static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
 {
+    (void)target;
     uint32_t vaddr_base = 0;
     if (vaddr_type == MMU_VADDR_DATA) {
         vaddr_base = SOC_MMU_DBUS_VADDR_BASE;
@@ -371,7 +373,12 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
             HAL_ASSERT(shift_code);
     }
     uint32_t laddr = entry_id << shift_code;
-    return mmu_ll_laddr_to_vaddr(laddr, type);
+
+    /**
+     * For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
+     * Here we just pass MMU_TARGET_FLASH0 to get vaddr
+     */
+    return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
 }
 
 #ifdef __cplusplus

+ 8 - 2
components/hal/esp32c3/include/hal/mmu_ll.h

@@ -36,11 +36,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
  *
  * @param laddr       linear address
  * @param vaddr_type  virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
+ * @param target      virtual address aimed physical memory target, not used
  *
  * @return virtual address
  */
-static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
+static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
 {
+    (void)target;
     uint32_t vaddr_base = 0;
     if (vaddr_type == MMU_VADDR_DATA) {
         vaddr_base = SOC_MMU_DBUS_VADDR_BASE;
@@ -309,7 +311,11 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
     (void)mmu_id;
     uint32_t laddr = entry_id << 16;
 
-    return mmu_ll_laddr_to_vaddr(laddr, type);
+    /**
+     * For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
+     * Here we just pass MMU_TARGET_FLASH0 to get vaddr
+     */
+    return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
 }
 
 #ifdef __cplusplus

+ 10 - 2
components/hal/esp32c6/include/hal/mmu_ll.h

@@ -36,11 +36,14 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
  *
  * @param laddr       linear address
  * @param vaddr_type  virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
+ * @param target      virtual address aimed physical memory target, not used
  *
  * @return virtual address
  */
-static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
+static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
 {
+    (void)target;
+    (void)vaddr_type;
     //On ESP32C6, I/D share the same vaddr range
     return SOC_MMU_IBUS_VADDR_BASE | laddr;
 }
@@ -391,7 +394,12 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
             HAL_ASSERT(shift_code);
     }
     uint32_t laddr = entry_id << shift_code;
-    return mmu_ll_laddr_to_vaddr(laddr, type);
+
+    /**
+     * For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
+     * Here we just pass MMU_TARGET_FLASH0 to get vaddr
+     */
+    return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
 }
 
 #ifdef __cplusplus

+ 10 - 2
components/hal/esp32h2/include/hal/mmu_ll.h

@@ -37,11 +37,14 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
  *
  * @param laddr       linear address
  * @param vaddr_type  virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
+ * @param target      virtual address aimed physical memory target, not used
  *
  * @return virtual address
  */
-static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
+static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
 {
+    (void)target;
+    (void)vaddr_type;
     //On ESP32C6, I/D share the same vaddr range
     return SOC_MMU_IBUS_VADDR_BASE | laddr;
 }
@@ -417,7 +420,12 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
             HAL_ASSERT(shift_code);
     }
     uint32_t laddr = entry_id << shift_code;
-    return mmu_ll_laddr_to_vaddr(laddr, type);
+
+    /**
+     * For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
+     * Here we just pass MMU_TARGET_FLASH0 to get vaddr
+     */
+    return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
 }
 
 

+ 2 - 2
components/hal/esp32p4/include/hal/cache_ll.h

@@ -63,10 +63,10 @@ static inline cache_bus_mask_t cache_ll_l1_get_bus(uint32_t cache_id, uint32_t v
     cache_bus_mask_t mask = 0;
 
     uint32_t vaddr_end = vaddr_start + len - 1;
-    if (vaddr_start >= IRAM0_CACHE_ADDRESS_LOW && vaddr_end < SINGLE_BANK_CACHE_ADDRESS_HIGH) {
+    if (vaddr_start >= DRAM_FLASH_ADDRESS_LOW && vaddr_end < DRAM_FLASH_ADDRESS_HIGH) {
         mask |= CACHE_BUS_IBUS0;
         mask |= CACHE_BUS_DBUS0;
-    } else if (vaddr_start >= DUAL_BANK_CACHE_ADDRESS_LOW && vaddr_end < DUAL_BANK_CACHE_ADDRESS_HIGH) {
+    } else if (vaddr_start >= DRAM_PSRAM_ADDRESS_LOW && vaddr_end < DRAM_PSRAM_ADDRESS_HIGH) {
         mask |= CACHE_BUS_IBUS1;
         mask |= CACHE_BUS_DBUS1;
     } else {

+ 146 - 75
components/hal/esp32p4/include/hal/mmu_ll.h

@@ -20,6 +20,12 @@
 extern "C" {
 #endif
 
+///< MMU is per target
+#define MMU_LL_MMU_PER_TARGET    1
+
+#define MMU_LL_FLASH_MMU_ID      0
+#define MMU_LL_PSRAM_MMU_ID      1
+
 /**
  * Convert MMU virtual address to linear address
  *
@@ -29,7 +35,7 @@ extern "C" {
  */
 static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
 {
-    return vaddr & SOC_MMU_LINEAR_FLASH_ADDR_MASK;
+    return vaddr & SOC_MMU_LINEAR_ADDR_MASK;
 }
 
 /**
@@ -37,20 +43,44 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
  *
  * @param laddr       linear address
  * @param vaddr_type  virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
+ * @param target      virtual address aimed physical memory target
  *
  * @return virtual address
  */
-static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
+static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
 {
-    uint32_t raw_laddr = (laddr & ~SOC_MMU_MEM_PHYSICAL_LINEAR_CAP);
+    (void)vaddr_type;
     uint32_t vaddr_base = 0;
-    if (vaddr_type == MMU_VADDR_FLASH) {
+    if (target == MMU_TARGET_FLASH0) {
         vaddr_base = SOC_MMU_FLASH_VADDR_BASE;
     } else {
         vaddr_base = SOC_MMU_PSRAM_VADDR_BASE;
     }
 
-    return vaddr_base | raw_laddr;
+    return vaddr_base | laddr;
+}
+
+/**
+ * Convert MMU virtual address to its target
+ *
+ * @param vaddr    virtual address
+ *
+ * @return target  paddr memory target
+ */
+__attribute__((always_inline))
+static inline mmu_target_t mmu_ll_vaddr_to_target(uint32_t vaddr)
+{
+    mmu_target_t target = MMU_TARGET_FLASH0;
+
+    if (ADDRESS_IN_DRAM_FLASH(vaddr)) {
+        target = MMU_TARGET_FLASH0;
+    } else if (ADDRESS_IN_DRAM_PSRAM(vaddr)) {
+        target = MMU_TARGET_PSRAM0;
+    } else {
+        HAL_ASSERT(false);
+    }
+
+    return target;
 }
 
 __attribute__((always_inline)) static inline bool mmu_ll_cache_encryption_enabled(void)
@@ -83,9 +113,7 @@ static inline mmu_page_size_t mmu_ll_get_page_size(uint32_t mmu_id)
 __attribute__((always_inline))
 static inline void mmu_ll_set_page_size(uint32_t mmu_id, uint32_t size)
 {
-    (void)mmu_id;
-    (void)size;
-    return;
+    HAL_ASSERT(size == MMU_PAGE_64KB);
 }
 
 /**
@@ -105,7 +133,7 @@ static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t
     (void)mmu_id;
     (void)type;
     uint32_t vaddr_end = vaddr_start + len - 1;
-    return (ADDRESS_IN_IRAM0_CACHE(vaddr_start) && ADDRESS_IN_IRAM0_CACHE(vaddr_end)) || (ADDRESS_IN_DRAM0_CACHE(vaddr_start) && ADDRESS_IN_DRAM0_CACHE(vaddr_end));
+    return (ADDRESS_IN_DRAM_FLASH(vaddr_start) && ADDRESS_IN_DRAM_FLASH(vaddr_end)) || (ADDRESS_IN_DRAM_PSRAM(vaddr_start) && ADDRESS_IN_DRAM_PSRAM(vaddr_end));
 }
 
 /**
@@ -120,10 +148,18 @@ static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t
  */
 static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t paddr_start, uint32_t len)
 {
-    (void)mmu_id;
-    return (paddr_start < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM)) &&
-           (len < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM)) &&
-           ((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM));
+    int max_paddr_page_num = 0;
+    if (mmu_id == MMU_LL_FLASH_MMU_ID) {
+        max_paddr_page_num = MMU_FLASH_MAX_PADDR_PAGE_NUM;
+    } else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
+        max_paddr_page_num = MMU_PSRAM_MAX_PADDR_PAGE_NUM;
+    } else {
+        HAL_ASSERT(false);
+    }
+
+    return (paddr_start < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num)) &&
+           (len < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num)) &&
+           ((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num));
 }
 
 /**
@@ -138,7 +174,6 @@ static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t pad
 __attribute__((always_inline))
 static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
 {
-    (void)mmu_id;
     mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
     uint32_t shift_code = 0;
     switch (page_size) {
@@ -173,7 +208,6 @@ static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
 __attribute__((always_inline))
 static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target)
 {
-    (void)mmu_id;
     (void)target;
     mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
     uint32_t shift_code = 0;
@@ -206,30 +240,32 @@ static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_
  */
 __attribute__((always_inline)) static inline void mmu_ll_write_entry(uint32_t mmu_id, uint32_t entry_id, uint32_t mmu_val, mmu_target_t target)
 {
-    (void)mmu_id;
-    (void)target;
-    uint32_t index_reg, content_reg, sensitive, invalid_mask;
-    if (mmu_id == 0) { // flash mmu
+    uint32_t index_reg = 0;
+    uint32_t content_reg = 0;
+    uint32_t sensitive = 0;
+
+    if (mmu_id == MMU_LL_FLASH_MMU_ID) {
         index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
         content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
-        sensitive = MMU_SENSITIVE;
-        invalid_mask = MMU_INVALID_MASK;
-    } else { // psram mmu
+        sensitive = MMU_FLASH_SENSITIVE;
+        mmu_val |= MMU_FLASH_VALID;
+        mmu_val |= MMU_ACCESS_FLASH;
+    } else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
         index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
         content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
-        sensitive = DMMU_SENSITIVE;
-        invalid_mask = DMMU_INVALID_MASK;
-        mmu_val |= MMU_PSRAM_ACCESS_SPIRAM;
-
+        sensitive = MMU_PSRAM_SENSITIVE;
+        mmu_val |= MMU_PSRAM_VALID;
+        mmu_val |= MMU_ACCESS_PSRAM;
+    } else {
+        HAL_ASSERT(false);
     }
-    uint32_t mmu_raw_value;
+
     if (mmu_ll_cache_encryption_enabled()) {
         mmu_val |= sensitive;
     }
-    /* Note: for ESP32-P4, invert invalid bit for compatible with upper-layer software */
-    mmu_raw_value = mmu_val ^ invalid_mask;
+
     REG_WRITE(index_reg, entry_id);
-    REG_WRITE(content_reg, mmu_raw_value);
+    REG_WRITE(content_reg, mmu_val);
 }
 
 /**
@@ -241,29 +277,24 @@ __attribute__((always_inline)) static inline void mmu_ll_write_entry(uint32_t mm
  */
 __attribute__((always_inline)) static inline uint32_t mmu_ll_read_entry(uint32_t mmu_id, uint32_t entry_id)
 {
-    (void)mmu_id;
-    uint32_t mmu_raw_value;
-    uint32_t ret;
-    uint32_t index_reg, content_reg, sensitive, invalid_mask;
-    if (mmu_id == 0) { // flash mmu
+    uint32_t index_reg = 0;
+    uint32_t content_reg = 0;
+    uint32_t mmu_val = 0;
+
+    if (mmu_id == MMU_LL_FLASH_MMU_ID) {
         index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
         content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
-        sensitive = MMU_SENSITIVE;
-        invalid_mask = MMU_INVALID_MASK;
-    } else { // psram mmu
+    } else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
         index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
         content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
-        sensitive = DMMU_SENSITIVE;
-        invalid_mask = DMMU_INVALID_MASK;
+    } else {
+        HAL_ASSERT(false);
     }
+
     REG_WRITE(index_reg, entry_id);
-    mmu_raw_value = REG_READ(content_reg);
-    if (mmu_ll_cache_encryption_enabled()) {
-        mmu_raw_value &= ~sensitive;
-    }
-    /* Note: for ESP32-P4, invert invalid bit for compatible with upper-layer software */
-    ret = mmu_raw_value ^ invalid_mask;
-    return ret;
+    mmu_val = REG_READ(content_reg);
+
+    return mmu_val;
 }
 
 /**
@@ -274,16 +305,24 @@ __attribute__((always_inline)) static inline uint32_t mmu_ll_read_entry(uint32_t
  */
 __attribute__((always_inline)) static inline void mmu_ll_set_entry_invalid(uint32_t mmu_id, uint32_t entry_id)
 {
-    uint32_t index_reg, content_reg;
-    if (mmu_id == 0) { // flash mmu
+    uint32_t index_reg = 0;
+    uint32_t content_reg = 0;
+    uint32_t invalid_mask = 0;
+
+    if (mmu_id == MMU_LL_FLASH_MMU_ID) {
         index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
         content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
-    } else { // psram mmu
+        invalid_mask = MMU_FLASH_INVALID;
+    } else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
         index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
         content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
+        invalid_mask = MMU_PSRAM_INVALID;
+    } else {
+        HAL_ASSERT(false);
     }
+
     REG_WRITE(index_reg, entry_id);
-    REG_WRITE(content_reg, MMU_INVALID);
+    REG_WRITE(content_reg, invalid_mask);
 }
 
 /**
@@ -309,21 +348,32 @@ static inline void mmu_ll_unmap_all(uint32_t mmu_id)
  */
 static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
 {
-    uint32_t mmu_raw_value;
-    uint32_t index_reg, content_reg, invalid_mask;
-    if (mmu_id == 0) { // flash mmu
+    uint32_t mmu_raw_value = 0;
+    uint32_t index_reg = 0;
+    uint32_t content_reg = 0;
+    uint32_t valid_mask = 0;
+
+    if (mmu_id == MMU_LL_FLASH_MMU_ID) {
         index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
         content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
-        invalid_mask = MMU_INVALID_MASK;
-    } else { // psram mmu
+        valid_mask = MMU_FLASH_VALID;
+    } else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
         index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
         content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
-        invalid_mask = DMMU_INVALID_MASK;
+        valid_mask = MMU_PSRAM_VALID;
+    } else {
+        HAL_ASSERT(false);
     }
+
     REG_WRITE(index_reg, entry_id);
     mmu_raw_value = REG_READ(content_reg);
-    /* Note: for ESP32-P4, the invalid-bit of MMU: 0 for invalid, 1 for valid */
-    return (mmu_raw_value & invalid_mask) ? true : false;
+
+    bool is_valid = false;
+    if (mmu_raw_value & valid_mask) {
+        is_valid = true;
+    }
+
+    return is_valid;
 }
 
 /**
@@ -336,10 +386,18 @@ static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
  */
 static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t entry_id)
 {
-    if (mmu_id == 0)
-        return MMU_TARGET_FLASH0;
-    else
-        return MMU_TARGET_PSRAM0;
+    (void)entry_id;
+    mmu_target_t target = MMU_TARGET_FLASH0;
+
+    if (mmu_id == MMU_LL_FLASH_MMU_ID) {
+        target = MMU_TARGET_FLASH0;
+    } else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
+        target = MMU_TARGET_PSRAM0;
+    } else {
+        HAL_ASSERT(false);
+    }
+
+    return target;
 }
 
 /**
@@ -352,7 +410,6 @@ static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t ent
  */
 static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t entry_id)
 {
-    (void)mmu_id;
     HAL_ASSERT(entry_id < MMU_ENTRY_NUM);
 
     mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
@@ -373,13 +430,14 @@ static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t e
         default:
             HAL_ASSERT(shift_code);
     }
-    if (mmu_id == 0) {
+    if (mmu_id == MMU_LL_FLASH_MMU_ID) {
         REG_WRITE(SPI_MEM_C_MMU_ITEM_INDEX_REG, entry_id);
-        return (REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & MMU_VALID_VAL_MASK) << shift_code;
-    } else {
+        return (REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & MMU_FLASH_VALID_VAL_MASK) << shift_code;
+    } else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
         REG_WRITE(SPI_MEM_S_MMU_ITEM_INDEX_REG, entry_id);
-        return (REG_READ(SPI_MEM_S_MMU_ITEM_CONTENT_REG) & MMU_VALID_VAL_MASK) << shift_code;
-
+        return (REG_READ(SPI_MEM_S_MMU_ITEM_CONTENT_REG) & MMU_PSRAM_VALID_VAL_MASK) << shift_code;
+    } else {
+        HAL_ASSERT(false);
     }
 }
 
@@ -396,13 +454,27 @@ static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t e
  */
 static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint32_t mmu_val, mmu_target_t target)
 {
-    //TODO, should check PSRAM as well?
-    (void)mmu_id;
+    uint32_t index_reg = 0;
+    uint32_t content_reg = 0;
+    uint32_t valid_val_mask = 0;
+
+    if (mmu_id == MMU_LL_FLASH_MMU_ID) {
+        index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
+        content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
+        valid_val_mask = MMU_FLASH_VALID_VAL_MASK;
+    } else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
+        index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
+        content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
+        valid_val_mask = MMU_PSRAM_VALID_VAL_MASK;
+    } else {
+        HAL_ASSERT(false);
+    }
+
     for (int i = 0; i < MMU_ENTRY_NUM; i++) {
         if (mmu_ll_check_entry_valid(mmu_id, i)) {
             if (mmu_ll_get_entry_target(mmu_id, i) == target) {
-                REG_WRITE(SPI_MEM_C_MMU_ITEM_INDEX_REG, i);
-                if ((REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & MMU_VALID_VAL_MASK) == mmu_val) {
+                REG_WRITE(index_reg, i);
+                if ((REG_READ(content_reg) & valid_val_mask) == mmu_val) {
                     return i;
                 }
             }
@@ -421,7 +493,6 @@ static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint3
  */
 static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t entry_id, mmu_vaddr_t type)
 {
-    (void)mmu_id;
     mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
     uint32_t shift_code = 0;
 
@@ -442,7 +513,7 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
             HAL_ASSERT(shift_code);
     }
     uint32_t laddr = entry_id << shift_code;
-    return mmu_ll_laddr_to_vaddr(laddr, type);
+    return mmu_ll_laddr_to_vaddr(laddr, type, (mmu_id == MMU_LL_FLASH_MMU_ID) ? MMU_TARGET_FLASH0 : MMU_TARGET_PSRAM0);
 }
 
 #ifdef __cplusplus

+ 3 - 1
components/hal/esp32s2/include/hal/mmu_ll.h

@@ -37,11 +37,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
  *
  * @param laddr       linear address
  * @param vaddr_type  virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
+ * @param target      virtual address aimed physical memory target, not used
  *
  * @return virtual address
  */
-static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
+static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
 {
+    (void)target;
     uint32_t vaddr_base = 0;
     if (vaddr_type == MMU_VADDR_DATA) {
         vaddr_base = SOC_MMU_DBUS_VADDR_BASE;

+ 8 - 2
components/hal/esp32s3/include/hal/mmu_ll.h

@@ -36,11 +36,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
  *
  * @param laddr       linear address
  * @param vaddr_type  virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
+ * @param target      virtual address aimed physical memory target, not used
  *
  * @return virtual address
  */
-static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
+static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
 {
+    (void)target;
     uint32_t vaddr_base = 0;
     if (vaddr_type == MMU_VADDR_DATA) {
         vaddr_base = SOC_MMU_DBUS_VADDR_BASE;
@@ -310,7 +312,11 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
     (void)mmu_id;
     uint32_t laddr = entry_id << 16;
 
-    return mmu_ll_laddr_to_vaddr(laddr, type);
+    /**
+     * For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
+     * Here we just pass MMU_TARGET_FLASH0 to get vaddr
+     */
+    return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
 }
 
 #ifdef __cplusplus

+ 0 - 9
components/hal/include/hal/mmu_types.h

@@ -7,7 +7,6 @@
 #pragma once
 
 #include "esp_bit_defs.h"
-#include "sdkconfig.h"  //To remove, TODO: IDF-7509
 
 #ifdef __cplusplus
 extern "C" {
@@ -19,10 +18,6 @@ typedef enum {
     MMU_MEM_CAP_WRITE = BIT(2),
     MMU_MEM_CAP_32BIT = BIT(3),
     MMU_MEM_CAP_8BIT  = BIT(4),
-#if CONFIG_IDF_TARGET_ESP32P4        //TODO: IDF-7509
-    MMU_MEM_CAP_FLASH = BIT(5),
-    MMU_MEM_CAP_PSRAM = BIT(5),
-#endif
 } mmu_mem_caps_t;
 
 /**
@@ -41,10 +36,6 @@ typedef enum {
 typedef enum {
     MMU_VADDR_DATA        = BIT(0),
     MMU_VADDR_INSTRUCTION = BIT(1),
-#if CONFIG_IDF_TARGET_ESP32P4        //TODO: IDF-7509
-    MMU_VADDR_FLASH       = BIT(2),
-    MMU_VADDR_PSRAM       = BIT(3),
-#endif
 } mmu_vaddr_t;
 
 /**

+ 7 - 24
components/hal/mmu_hal.c

@@ -16,12 +16,11 @@
 
 void mmu_hal_init(void)
 {
-//TODO: IDF-7509
-#if CONFIG_ESP_ROM_RAM_APP_NEEDS_MMU_INIT || CONFIG_IDF_TARGET_ESP32P4
+#if CONFIG_ESP_ROM_RAM_APP_NEEDS_MMU_INIT
     ROM_Boot_Cache_Init();
 #endif
 
-//TODO: IDF-7509
+//TODO: IDF-7516
 #if CONFIG_IDF_TARGET_ESP32P4
     Cache_Invalidate_All(CACHE_MAP_L2_CACHE);
 #endif
@@ -32,10 +31,15 @@ void mmu_hal_init(void)
 
 void mmu_hal_unmap_all(void)
 {
+#if MMU_LL_MMU_PER_TARGET
+    mmu_ll_unmap_all(MMU_LL_FLASH_MMU_ID);
+    mmu_ll_unmap_all(MMU_LL_PSRAM_MMU_ID);
+#else
     mmu_ll_unmap_all(0);
 #if !CONFIG_FREERTOS_UNICORE
     mmu_ll_unmap_all(1);
 #endif
+#endif
 }
 
 uint32_t mmu_hal_pages_to_bytes(uint32_t mmu_id, uint32_t page_num)
@@ -90,11 +94,6 @@ void mmu_hal_map_region(uint32_t mmu_id, mmu_target_t mem_type, uint32_t vaddr,
     uint32_t entry_id = 0;
     uint32_t mmu_val;     //This is the physical address in the format that MMU supported
 
-//TODO: IDF-7509
-#if CONFIG_IDF_TARGET_ESP32P4
-    uint32_t vaddr_orig = vaddr;
-#endif
-
     *out_len = mmu_hal_pages_to_bytes(mmu_id, page_num);
     mmu_val = mmu_ll_format_paddr(mmu_id, paddr, mem_type);
 
@@ -105,22 +104,11 @@ void mmu_hal_map_region(uint32_t mmu_id, mmu_target_t mem_type, uint32_t vaddr,
         mmu_val++;
         page_num--;
     }
-
-//TODO: IDF-7509
-#if CONFIG_IDF_TARGET_ESP32P4
-    Cache_Invalidate_Addr(CACHE_MAP_L1_DCACHE | CACHE_MAP_L2_CACHE, vaddr_orig, len);
-#endif
 }
 
 void mmu_hal_unmap_region(uint32_t mmu_id, uint32_t vaddr, uint32_t len)
 {
     uint32_t page_size_in_bytes = mmu_hal_pages_to_bytes(mmu_id, 1);
-
-//TODO: IDF-7509
-#if CONFIG_IDF_TARGET_ESP32P4
-    uint32_t vaddr_orig = vaddr;
-#endif
-
     HAL_ASSERT(vaddr % page_size_in_bytes == 0);
     HAL_ASSERT(mmu_hal_check_valid_ext_vaddr_region(mmu_id, vaddr, len, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION));
 
@@ -132,11 +120,6 @@ void mmu_hal_unmap_region(uint32_t mmu_id, uint32_t vaddr, uint32_t len)
         vaddr += page_size_in_bytes;
         page_num--;
     }
-
-//TODO: IDF-7509
-#if CONFIG_IDF_TARGET_ESP32P4
-    Cache_Invalidate_Addr(CACHE_MAP_L1_DCACHE | CACHE_MAP_L2_CACHE, vaddr_orig, len);
-#endif
 }
 
 bool mmu_hal_vaddr_to_paddr(uint32_t mmu_id, uint32_t vaddr, uint32_t *out_paddr, mmu_target_t *out_target)

+ 36 - 53
components/soc/esp32p4/include/soc/ext_mem_defs.h

@@ -29,21 +29,16 @@ extern "C" {
 #define DRAM_FLASH_ADDRESS_LOW                   DRAM0_CACHE_ADDRESS_LOW
 #define DRAM_FLASH_ADDRESS_HIGH                  0x44000000
 
-#define SINGLE_BANK_CACHE_ADDRESS_LOW                0x40000000
-#define SINGLE_BANK_CACHE_ADDRESS_HIGH               0x44000000
-#define DUAL_BANK_CACHE_ADDRESS_LOW                  0x48000000
-#define DUAL_BANK_CACHE_ADDRESS_HIGH                 0x4C000000
+#define DRAM_PSRAM_ADDRESS_LOW                   0x48000000
+#define DRAM_PSRAM_ADDRESS_HIGH                  0x4C000000
 
 #define BUS_SIZE(bus_name)                 (bus_name##_ADDRESS_HIGH - bus_name##_ADDRESS_LOW)
 #define ADDRESS_IN_BUS(bus_name, vaddr)    ((vaddr) >= bus_name##_ADDRESS_LOW && (vaddr) < bus_name##_ADDRESS_HIGH)
 
-#define ADDRESS_IN_IRAM0(vaddr)            ADDRESS_IN_BUS(IRAM0, vaddr)
 #define ADDRESS_IN_IRAM0_CACHE(vaddr)      ADDRESS_IN_BUS(IRAM0_CACHE, vaddr)
-#define ADDRESS_IN_DRAM0(vaddr)            ADDRESS_IN_BUS(DRAM0, vaddr)
 #define ADDRESS_IN_DRAM0_CACHE(vaddr)      ADDRESS_IN_BUS(DRAM0_CACHE, vaddr)
-
-#define BUS_IRAM0_CACHE_SIZE              BUS_SIZE(IRAM0_CACHE)
-#define BUS_DRAM0_CACHE_SIZE              BUS_SIZE(DRAM0_CACHE)
+#define ADDRESS_IN_DRAM_FLASH(vaddr)       ADDRESS_IN_BUS(DRAM_FLASH, vaddr)
+#define ADDRESS_IN_DRAM_PSRAM(vaddr)       ADDRESS_IN_BUS(DRAM_PSRAM, vaddr)
 
 //TODO, remove these cache function dependencies
 #define CACHE_IROM_MMU_START            0
@@ -62,91 +57,79 @@ extern "C" {
 #define MMU_BUS_START(i)                0
 #define MMU_BUS_SIZE(i)                 (0x400 * 4)
 
-#define MMU_MSPI_ACCESS_FLASH           0
-#define MMU_MSPI_ACCESS_SPIRAM          BIT(10)
-#define MMU_MSPI_VALID                  BIT(12)
-#define MMU_MSPI_INVALID                0
-#define MMU_MSPI_SENSITIVE              BIT(13)
 
-#define MMU_PSRAM_ACCESS_SPIRAM         BIT(10)
+#define MMU_FLASH_VALID                 BIT(12)
+#define MMU_FLASH_INVALID               0
 #define MMU_PSRAM_VALID                 BIT(11)
-#define MMU_PSRAM_SENSITIVE             BIT(12)
+#define MMU_PSRAM_INVALID               0
 
-#define MMU_ACCESS_FLASH                MMU_MSPI_ACCESS_FLASH
-#define MMU_ACCESS_SPIRAM               MMU_MSPI_ACCESS_SPIRAM
-#define MMU_VALID                       MMU_MSPI_VALID
-#define MMU_SENSITIVE                   MMU_MSPI_SENSITIVE
-#define DMMU_SENSITIVE                  MMU_PSRAM_SENSITIVE
+#define MMU_ACCESS_FLASH                0
+#define MMU_ACCESS_PSRAM                BIT(10)
 
-#define MMU_INVALID_MASK                MMU_MSPI_VALID
-#define MMU_INVALID                     MMU_MSPI_INVALID
+#define MMU_FLASH_SENSITIVE             BIT(13)
+#define MMU_PSRAM_SENSITIVE             BIT(12)
 
-#define DMMU_INVALID_MASK               MMU_PSRAM_VALID
-#define DMMU_INVALID                    0
 
 #define CACHE_MAX_SYNC_NUM 0x400000
 #define CACHE_MAX_LOCK_NUM 0x8000
 
 /**
- * MMU entry valid bit mask for mapping value. For an entry:
- * valid bit + value bits
- * valid bit is BIT(9), so value bits are 0x1ff
+ * MMU entry valid bit mask for mapping value.
+ * - For a Flash MMU entry:
+ *   physical page number is BIT(0)~BIT(10), so value bits are 0x7ff
+ * - For a PSRAM MMU entry:
+ *   physical page number is BIT(0)~BIT(9), so value bits are 0x3ff
  */
-#define MMU_VALID_VAL_MASK 0x3ff
+#define MMU_FLASH_VALID_VAL_MASK 0x7ff
+#define MMU_PSRAM_VALID_VAL_MASK 0x3ff
 /**
  * Max MMU available paddr page num.
  * `MMU_MAX_PADDR_PAGE_NUM * SOC_MMU_PAGE_SIZE` means the max paddr address supported by the MMU. e.g.:
- * 256 * 64KB, means MMU can support 16MB paddr at most
+ * 32768 * 64KB, means MMU can support 2GB paddr at most
  */
-#define MMU_MAX_PADDR_PAGE_NUM    1024
+#define MMU_FLASH_MAX_PADDR_PAGE_NUM    32768
+#define MMU_PSRAM_MAX_PADDR_PAGE_NUM    16384
 //MMU entry num
 #define MMU_ENTRY_NUM   1024
 
 /**
  * This is the mask used for mapping. e.g.:
- * 0x4200_0000 & MMU_VADDR_MASK
+ * 0x4000_0000 & MMU_VADDR_MASK
  */
 #define MMU_VADDR_MASK                  ((SOC_MMU_PAGE_SIZE) * MMU_ENTRY_NUM - 1)
 
 #define SOC_MMU_FLASH_VADDR_BASE                   0x40000000
 #define SOC_MMU_PSRAM_VADDR_BASE                   0x48000000
 
-#define SOC_MMU_FLASH_VADDR_START                  0x40000000
-#define SOC_MMU_FLASH_VADDR_END                    0x44000000
-#define SOC_MMU_PSRAM_VADDR_START                  0x48000000
-#define SOC_MMU_PSRAM_VADDR_END                    0x4C000000
-
 /*------------------------------------------------------------------------------
  * MMU Linear Address
  *----------------------------------------------------------------------------*/
 /**
  * - 64KB MMU page size: the last 0xFFFF, which is the offset
- * - 1024 MMU entries, needs 0x3F to hold it.
+ * - 1024 MMU entries for flash, 1024 MMU entries for psram, needs 0xFFF to hold it.
  *
  * Therefore, 0x3F,FFFF
  */
-#define SOC_MMU_MEM_PHYSICAL_LINEAR_CAP            (SOC_MMU_FLASH_VADDR_BASE ^ SOC_MMU_PSRAM_VADDR_BASE)
-#define SOC_MMU_LINEAR_FLASH_ADDR_MASK             (0xBFFFFFF)
-#define SOC_MMU_LINEAR_PARSM_ADDR_MASK             (0xBFFFFFF | SOC_MMU_MEM_PHYSICAL_LINEAR_CAP)
+#define SOC_MMU_LINEAR_ADDR_MASK              0xFFFFFFF
 
 /**
  * - If high linear address isn't 0, this means MMU can recognize these addresses
  * - If high linear address is 0, this means MMU linear address range is equal or smaller than vaddr range.
  *   Under this condition, we use the max linear space.
  */
-#define SOC_MMU_FLASH_LINEAR_ADDRESS_LOW      (SOC_MMU_FLASH_VADDR_START & SOC_MMU_LINEAR_FLASH_ADDR_MASK)
-#define SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH     (SOC_MMU_LINEAR_FLASH_ADDR_MASK + 1)
-#define SOC_MMU_FLASH_LINEAR_ADDRESS_SIZE     (SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH - SOC_MMU_FLASH_LINEAR_ADDRESS_LOW)
-
-#define SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW      (SOC_MMU_PSRAM_VADDR_START & SOC_MMU_LINEAR_PARSM_ADDR_MASK)
-#define SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH     (SOC_MMU_LINEAR_PARSM_ADDR_MASK + 1)
-#define SOC_MMU_PSRAM_LINEAR_ADDRESS_SIZE     (SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH - SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW)
+#define SOC_MMU_FLASH_LINEAR_ADDRESS_LOW      (DRAM_FLASH_ADDRESS_LOW & SOC_MMU_LINEAR_ADDR_MASK)
+#if ((DRAM_FLASH_ADDRESS_HIGH & SOC_MMU_LINEAR_ADDR_MASK) > 0)
+#define SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH     (DRAM_FLASH_ADDRESS_HIGH & SOC_MMU_LINEAR_ADDR_MASK)
+#else
+#define SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH     (SOC_MMU_LINEAR_ADDR_MASK + 1)
+#endif
 
-/**
- * I/D share the MMU linear address range
- */
-_Static_assert((SOC_MMU_FLASH_LINEAR_ADDRESS_LOW & ~SOC_MMU_MEM_PHYSICAL_LINEAR_CAP) == (SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW & ~SOC_MMU_MEM_PHYSICAL_LINEAR_CAP), \
-                "IRAM0 and DRAM0 raw linear address should be same");
+#define SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW      (DRAM_PSRAM_ADDRESS_LOW & SOC_MMU_LINEAR_ADDR_MASK)
+#if ((DRAM_PSRAM_ADDRESS_HIGH & SOC_MMU_LINEAR_ADDR_MASK) > 0)
+#define SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH     (DRAM_PSRAM_ADDRESS_HIGH & SOC_MMU_LINEAR_ADDR_MASK)
+#else
+#define SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH     (SOC_MMU_LINEAR_ADDR_MASK + 1)
+#endif
 
 
 #ifdef __cplusplus

+ 2 - 7
components/spi_flash/flash_mmap.c

@@ -28,7 +28,7 @@
 #if CONFIG_IDF_TARGET_ESP32
 #include "esp_private/esp_cache_esp32_private.h"
 #elif CONFIG_IDF_TARGET_ESP32P4
-//TODO: IDF-7509
+//TODO: IDF-7516
 #include "esp32p4/rom/cache.h"
 #endif
 
@@ -82,12 +82,7 @@ esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t m
     } else {
         caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
     }
-#if CONFIG_IDF_TARGET_ESP32P4
-    //TODO: IDF-7509
-    ret = esp_mmu_map(src_addr, size, MMU_TARGET_FLASH0, MMU_MEM_CAP_FLASH | caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
-#else
     ret = esp_mmu_map(src_addr, size, MMU_TARGET_FLASH0, caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
-#endif
     if (ret == ESP_OK) {
         vaddr_list[0] = (uint32_t)ptr;
         block->list_num = 1;
@@ -380,7 +375,7 @@ IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
 #else // CONFIG_IDF_TARGET_ESP32
             if (vaddr != NULL) {
 #if CONFIG_IDF_TARGET_ESP32P4
-                //TODO: IDF-7509
+                //TODO: IDF-7516
                 Cache_Invalidate_Addr(CACHE_MAP_L1_DCACHE | CACHE_MAP_L2_CACHE, (uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
 #else
                 cache_hal_invalidate_addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);