|
|
@@ -43,28 +43,35 @@ const char* UART_TAG = "UART";
|
|
|
#define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
|
|
|
|
|
|
typedef struct {
|
|
|
- uart_port_t uart_num;
|
|
|
- SemaphoreHandle_t tx_fifo_sem;
|
|
|
- SemaphoreHandle_t tx_mutex;
|
|
|
- SemaphoreHandle_t tx_buffer_mutex;
|
|
|
- SemaphoreHandle_t tx_done_sem;
|
|
|
- SemaphoreHandle_t tx_brk_sem;
|
|
|
- SemaphoreHandle_t rx_mux;
|
|
|
- QueueHandle_t xQueueUart;
|
|
|
- int queue_size;
|
|
|
- int intr_num;
|
|
|
- int rx_buf_size;
|
|
|
- ringbuf_type_t rx_buf_type;
|
|
|
- RingbufHandle_t rx_ring_buf;
|
|
|
- int tx_buf_size;
|
|
|
- RingbufHandle_t tx_ring_buf;
|
|
|
- bool buffer_full_flg;
|
|
|
- bool tx_waiting;
|
|
|
- int cur_remain;
|
|
|
- uint8_t* rd_ptr;
|
|
|
- uint8_t* head_ptr;
|
|
|
- uint8_t data_buf[UART_FIFO_LEN];
|
|
|
- uint8_t data_len;
|
|
|
+ uart_port_t uart_num; /*!< UART port number*/
|
|
|
+ int queue_size; /*!< UART event queue size*/
|
|
|
+ QueueHandle_t xQueueUart; /*!< UART queue handler*/
|
|
|
+ int intr_num; /*!< UART interrupt number*/
|
|
|
+ //rx parameters
|
|
|
+ SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
|
|
|
+ int rx_buf_size; /*!< RX ring buffer size */
|
|
|
+ RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
|
|
|
+ bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
|
|
|
+ int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
|
|
|
+ uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
|
|
|
+ uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
|
|
|
+ uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
|
|
|
+ uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
|
|
|
+ //tx parameters
|
|
|
+ SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
|
|
|
+ SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
|
|
|
+ SemaphoreHandle_t tx_buffer_mux; /*!< UART TX buffer semaphore*/
|
|
|
+ SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
|
|
|
+ SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
|
|
|
+ int tx_buf_size; /*!< TX ring buffer size */
|
|
|
+ RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
|
|
|
+ bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
|
|
|
+ uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
|
|
|
+ uart_event_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
|
|
|
+ uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
|
|
|
+ uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
|
|
|
+ uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
|
|
|
+ uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
|
|
|
} uart_obj_t;
|
|
|
|
|
|
static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
|
|
|
@@ -438,16 +445,8 @@ static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
|
|
|
uint32_t uart_intr_status = UART[uart_num]->int_st.val;
|
|
|
int rx_fifo_len = 0;
|
|
|
uart_event_t uart_event;
|
|
|
-
|
|
|
- static uint8_t * tx_ptr;
|
|
|
- static uart_event_t* tx_head;
|
|
|
- static int tx_len_tot = 0;
|
|
|
- static int brk_flg = 0;
|
|
|
- static int tx_brk_len = 0;
|
|
|
- static int wait_brk = 0;
|
|
|
-
|
|
|
-
|
|
|
portBASE_TYPE HPTaskAwoken = 0;
|
|
|
+
|
|
|
while(uart_intr_status != 0x0) {
|
|
|
buf_idx = 0;
|
|
|
uart_event.type = UART_EVENT_MAX;
|
|
|
@@ -456,85 +455,92 @@ static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
|
|
|
uart_reg->int_ena.txfifo_empty = 0;
|
|
|
uart_reg->int_clr.txfifo_empty = 1;
|
|
|
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
- if(wait_brk) {
|
|
|
+ if(p_uart->tx_waiting_brk) {
|
|
|
return;
|
|
|
}
|
|
|
- if(p_uart->tx_waiting == true) {
|
|
|
- p_uart->tx_waiting = false;
|
|
|
+ if(p_uart->tx_waiting_fifo == true) {
|
|
|
+ p_uart->tx_waiting_fifo = false;
|
|
|
xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, NULL);
|
|
|
}
|
|
|
else {
|
|
|
+ //We don't use TX ring buffer, because the size if zero.
|
|
|
+ if(p_uart->tx_buf_size == 0) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
|
|
|
bool en_tx_flg = false;
|
|
|
- if(tx_len_tot == 0) {
|
|
|
- size_t size;
|
|
|
-// ets_printf("dbg1,tot=0,get 1st head\n");
|
|
|
-// xRingbufferPrintInfo(p_uart->tx_ring_buf);
|
|
|
- tx_head = (uart_event_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
|
|
|
-// xRingbufferPrintInfo(p_uart->tx_ring_buf);
|
|
|
- if(tx_head) { //enable empty intr
|
|
|
-// tx_ptr = (uint8_t*)tx_head + sizeof(uart_event_t);
|
|
|
- tx_ptr = NULL;
|
|
|
-// en_tx_flg = true;
|
|
|
- tx_len_tot = tx_head->data.size;
|
|
|
- if(tx_head->type == UART_DATA_BREAK) {
|
|
|
- tx_len_tot = tx_head->data.size;
|
|
|
- brk_flg = 1;
|
|
|
- tx_brk_len = tx_head->data.brk_len;
|
|
|
+ //We need to put a loop here, in case all the buffer items are very short.
|
|
|
+ //That would cause a watch_dog reset because empty interrupt happens so often.
|
|
|
+ //Although this is a loop in ISR, this loop will execute at most 128 turns.
|
|
|
+ while(tx_fifo_rem) {
|
|
|
+ if(p_uart->tx_len_tot == 0) {
|
|
|
+ size_t size;
|
|
|
+ //The first item is the data description
|
|
|
+ //Get the first item to get the data information
|
|
|
+ p_uart->tx_head = (uart_event_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
|
|
|
+ if(p_uart->tx_head) {
|
|
|
+ p_uart->tx_ptr = NULL;
|
|
|
+ p_uart->tx_len_tot = p_uart->tx_head->data.size;
|
|
|
+ if(p_uart->tx_head->type == UART_DATA_BREAK) {
|
|
|
+ p_uart->tx_len_tot = p_uart->tx_head->data.size;
|
|
|
+ p_uart->tx_brk_flg = 1;
|
|
|
+ p_uart->tx_brk_len = p_uart->tx_head->data.brk_len;
|
|
|
+ }
|
|
|
+ //We have saved the data description from the 1st item, return buffer.
|
|
|
+ vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ //Can not get data from ring buffer, return;
|
|
|
+ return;
|
|
|
}
|
|
|
-// ets_printf("ret1,tot: %d\n", tx_len_tot);
|
|
|
- vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, tx_head, &HPTaskAwoken);
|
|
|
-// xRingbufferPrintInfo(p_uart->tx_ring_buf);
|
|
|
-// xRingbufferPrintInfo(p_uart->tx_ring_buf);
|
|
|
- }
|
|
|
- else {
|
|
|
- return;
|
|
|
- }
|
|
|
- }
|
|
|
- if(tx_ptr == NULL) {
|
|
|
- size_t size;
|
|
|
-// ets_printf("dbg2, tx ptr null, get 2nd tx ptr\n");
|
|
|
-// xRingbufferPrintInfo(p_uart->tx_ring_buf);
|
|
|
- tx_ptr = (uint8_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
|
|
|
-
|
|
|
-// xRingbufferPrintInfo(p_uart->tx_ring_buf);
|
|
|
- if(tx_ptr) {
|
|
|
- tx_head = (void*) tx_ptr;
|
|
|
-// ets_printf("get size: %d ; h size: %d\n", size, tx_len_tot);
|
|
|
- en_tx_flg = true;
|
|
|
- } else {
|
|
|
- return;
|
|
|
}
|
|
|
- }
|
|
|
-// else
|
|
|
- if(tx_len_tot > 0 && tx_ptr) { //tx
|
|
|
- int send_len = tx_len_tot > tx_fifo_rem ? tx_fifo_rem : tx_len_tot;
|
|
|
- for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
|
|
|
- WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(tx_ptr++) & 0xff);
|
|
|
+ if(p_uart->tx_ptr == NULL) {
|
|
|
+ size_t size;
|
|
|
+ //2nd item is the data we need to send through UART
|
|
|
+ //Get 2nd item from ring buffer
|
|
|
+ p_uart->tx_ptr = (uint8_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
|
|
|
+ if(p_uart->tx_ptr) {
|
|
|
+ //Update the TX item head, we will need this to return item to buffer.
|
|
|
+ p_uart->tx_head = (void*) p_uart->tx_ptr;
|
|
|
+ en_tx_flg = true;
|
|
|
+ } else {
|
|
|
+ //Can not get data from ring buffer, return;
|
|
|
+ return;
|
|
|
+ }
|
|
|
}
|
|
|
- tx_len_tot -= send_len;
|
|
|
-// ets_printf("tot: %d\n", tx_len_tot);
|
|
|
- if(tx_len_tot == 0) {
|
|
|
- if(brk_flg == 1) {
|
|
|
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
- uart_reg->int_ena.tx_brk_done = 0;
|
|
|
- uart_reg->idle_conf.tx_brk_num = tx_brk_len;
|
|
|
- uart_reg->conf0.txd_brk = 1;
|
|
|
- uart_reg->int_clr.tx_brk_done = 1;
|
|
|
- uart_reg->int_ena.tx_brk_done = 1;
|
|
|
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
- wait_brk = 1;
|
|
|
+ if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr) {
|
|
|
+ //To fill the TX FIFO.
|
|
|
+ int send_len = p_uart->tx_len_tot > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_tot;
|
|
|
+ for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
|
|
|
+ WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
|
|
|
+ }
|
|
|
+ p_uart->tx_len_tot -= send_len;
|
|
|
+ tx_fifo_rem -= send_len;
|
|
|
+ if(p_uart->tx_len_tot == 0) {
|
|
|
+ //Sending item done, now we need to send break if there is a record.
|
|
|
+ //Return item to ring buffer.
|
|
|
+ vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
|
|
|
+ p_uart->tx_head = NULL;
|
|
|
+ p_uart->tx_ptr = NULL;
|
|
|
+ //Set TX break signal after FIFO is empty
|
|
|
+ if(p_uart->tx_brk_flg == 1) {
|
|
|
+ UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
+ uart_reg->int_ena.tx_brk_done = 0;
|
|
|
+ uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
|
|
|
+ uart_reg->conf0.txd_brk = 1;
|
|
|
+ uart_reg->int_clr.tx_brk_done = 1;
|
|
|
+ uart_reg->int_ena.tx_brk_done = 1;
|
|
|
+ UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
+ p_uart->tx_waiting_brk = 1;
|
|
|
+ return;
|
|
|
+ } else {
|
|
|
+ //enable TX empty interrupt
|
|
|
+ en_tx_flg = true;
|
|
|
+ }
|
|
|
} else {
|
|
|
+ //enable TX empty interrupt
|
|
|
en_tx_flg = true;
|
|
|
}
|
|
|
-// ets_printf("ret2\n");
|
|
|
- vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, tx_head, &HPTaskAwoken);
|
|
|
-// xRingbufferPrintInfo(p_uart->tx_ring_buf);
|
|
|
-// xRingbufferPrintInfo(p_uart->tx_ring_buf);
|
|
|
- tx_head = NULL;
|
|
|
- tx_ptr = NULL;
|
|
|
- } else {
|
|
|
- en_tx_flg = true;
|
|
|
}
|
|
|
}
|
|
|
if(en_tx_flg) {
|
|
|
@@ -546,14 +552,13 @@ static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
|
|
|
}
|
|
|
}
|
|
|
else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
|
|
|
- if(p_uart->buffer_full_flg == false) {
|
|
|
+ if(p_uart->rx_buffer_full_flg == false) {
|
|
|
//Get the buffer from the FIFO
|
|
|
-// ESP_LOGE(UART_TAG, "FULL\n");
|
|
|
rx_fifo_len = uart_reg->status.rxfifo_cnt;
|
|
|
- p_uart->data_len = rx_fifo_len;
|
|
|
- memset(p_uart->data_buf, 0, sizeof(p_uart->data_buf));
|
|
|
+ p_uart->rx_stash_len = rx_fifo_len;
|
|
|
+ //We have to read out all data in RX FIFO to clear the interrupt signal
|
|
|
while(buf_idx < rx_fifo_len) {
|
|
|
- p_uart->data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
|
|
|
+ p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
|
|
|
}
|
|
|
//After Copying the Data From FIFO ,Clear intr_status
|
|
|
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
@@ -562,12 +567,14 @@ static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
|
|
|
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
uart_event.type = UART_DATA;
|
|
|
uart_event.data.size = rx_fifo_len;
|
|
|
- if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->data_buf, p_uart->data_len, &HPTaskAwoken)) {
|
|
|
+ //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
|
|
|
+ //Mainly for applications that uses flow control or small ring buffer.
|
|
|
+ if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
|
|
|
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
uart_reg->int_ena.rxfifo_full = 0;
|
|
|
uart_reg->int_ena.rxfifo_tout = 0;
|
|
|
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
- p_uart->buffer_full_flg = true;
|
|
|
+ p_uart->rx_buffer_full_flg = true;
|
|
|
uart_event.type = UART_BUFFER_FULL;
|
|
|
} else {
|
|
|
uart_event.type = UART_DATA;
|
|
|
@@ -597,19 +604,17 @@ static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
|
|
|
uart_reg->int_clr.frm_err = 1;
|
|
|
uart_event.type = UART_PARITY_ERR;
|
|
|
} else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
|
|
|
-// ESP_LOGE(UART_TAG, "UART TX BRK DONE\n");
|
|
|
- ets_printf("tx brk done\n");
|
|
|
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
uart_reg->conf0.txd_brk = 0;
|
|
|
uart_reg->int_ena.tx_brk_done = 0;
|
|
|
uart_reg->int_clr.tx_brk_done = 1;
|
|
|
- if(brk_flg == 1) {
|
|
|
+ if(p_uart->tx_brk_flg == 1) {
|
|
|
uart_reg->int_ena.txfifo_empty = 1;
|
|
|
}
|
|
|
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
|
|
|
- if(brk_flg == 1) {
|
|
|
- brk_flg = 0;
|
|
|
- wait_brk = 0;
|
|
|
+ if(p_uart->tx_brk_flg == 1) {
|
|
|
+ p_uart->tx_brk_flg = 0;
|
|
|
+ p_uart->tx_waiting_brk = 0;
|
|
|
} else {
|
|
|
xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
|
|
|
}
|
|
|
@@ -644,8 +649,8 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
|
|
|
UART_CHECK((p_uart_obj[uart_num]), "uart driver error");
|
|
|
BaseType_t res;
|
|
|
portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
|
|
|
- //Take tx_mutex
|
|
|
- res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mutex, (portTickType)ticks_to_wait);
|
|
|
+ //Take tx_mux
|
|
|
+ res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
|
|
|
if(res == pdFALSE) {
|
|
|
return ESP_ERR_TIMEOUT;
|
|
|
}
|
|
|
@@ -653,7 +658,7 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
|
|
|
xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
|
|
|
ticks_to_wait = ticks_end - xTaskGetTickCount();
|
|
|
if(UART[uart_num]->status.txfifo_cnt == 0) {
|
|
|
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
|
|
|
+ xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
|
|
|
return ESP_OK;
|
|
|
}
|
|
|
uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
|
|
|
@@ -661,10 +666,10 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
|
|
|
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
|
|
|
if(res == pdFALSE) {
|
|
|
uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
|
|
|
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
|
|
|
+ xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
|
|
|
return ESP_ERR_TIMEOUT;
|
|
|
}
|
|
|
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
|
|
|
+ xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
|
|
|
return ESP_OK;
|
|
|
}
|
|
|
|
|
|
@@ -701,9 +706,9 @@ int uart_tx_chars(uart_port_t uart_num, char* buffer, uint32_t len)
|
|
|
if(len == 0) {
|
|
|
return 0;
|
|
|
}
|
|
|
- xSemaphoreTake(p_uart_obj[uart_num]->tx_mutex, (portTickType)portMAX_DELAY);
|
|
|
+ xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
|
|
|
int tx_len = uart_fill_fifo(uart_num, buffer, len);
|
|
|
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
|
|
|
+ xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
|
|
|
return tx_len;
|
|
|
}
|
|
|
|
|
|
@@ -716,14 +721,14 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
|
|
|
return 0;
|
|
|
}
|
|
|
//lock for uart_tx
|
|
|
- xSemaphoreTake(p_uart_obj[uart_num]->tx_mutex, (portTickType)portMAX_DELAY);
|
|
|
+ xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
|
|
|
size_t original_size = size;
|
|
|
while(size) {
|
|
|
//semaphore for tx_fifo available
|
|
|
if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
|
|
|
size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
|
|
|
if(sent < size) {
|
|
|
- p_uart_obj[uart_num]->tx_waiting = true;
|
|
|
+ p_uart_obj[uart_num]->tx_waiting_fifo = true;
|
|
|
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
|
|
|
}
|
|
|
size -= sent;
|
|
|
@@ -735,49 +740,25 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
|
|
|
xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
|
|
|
}
|
|
|
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
|
|
|
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mutex);
|
|
|
+ xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
|
|
|
return original_size;
|
|
|
}
|
|
|
|
|
|
-//static void uart_tx_task(void* arg)
|
|
|
-//{
|
|
|
-// uart_obj_t* p_uart = (uart_obj_t*) arg;
|
|
|
-// size_t size;
|
|
|
-// uart_event_t evt;
|
|
|
-// for(;;) {
|
|
|
-// char* data = (char*) xRingbufferReceive(p_uart->tx_ring_buf, &size, portMAX_DELAY);
|
|
|
-// if(data == NULL) {
|
|
|
-// continue;
|
|
|
-// }
|
|
|
-// memcpy(&evt, data, sizeof(evt));
|
|
|
-// if(evt.type == UART_DATA) {
|
|
|
-// uart_tx_all(p_uart->uart_num, (const char*) data + sizeof(uart_event_t), evt.data.size, 0, 0);
|
|
|
-// } else if(evt.type == UART_DATA_BREAK) {
|
|
|
-// uart_tx_all(p_uart->uart_num, (const char*) data + sizeof(uart_event_t), evt.data.size, 1, evt.data.brk_len);
|
|
|
-// }
|
|
|
-// vRingbufferReturnItem(p_uart->tx_ring_buf, data);
|
|
|
-// }
|
|
|
-// vTaskDelete(NULL);
|
|
|
-//}
|
|
|
-
|
|
|
int uart_tx_all_chars(uart_port_t uart_num, const char* src, size_t size)
|
|
|
{
|
|
|
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
|
|
|
UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error");
|
|
|
UART_CHECK(src, "buffer null");
|
|
|
+ //Push data to TX ring buffer and return, ISR will send the data.
|
|
|
if(p_uart_obj[uart_num]->tx_buf_size > 0) {
|
|
|
if(xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf) > (size + sizeof(uart_event_t))) {
|
|
|
uart_event_t evt;
|
|
|
- xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mutex, (portTickType)portMAX_DELAY);
|
|
|
+ xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mux, (portTickType)portMAX_DELAY);
|
|
|
evt.type = UART_DATA;
|
|
|
evt.data.size = size;
|
|
|
- ets_printf("-----1st send-----\n");
|
|
|
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_event_t), portMAX_DELAY);
|
|
|
- xRingbufferPrintInfo(p_uart_obj[uart_num]->tx_ring_buf);
|
|
|
- ets_printf("====2nd send====\n");
|
|
|
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) src, size, portMAX_DELAY);
|
|
|
- xRingbufferPrintInfo(p_uart_obj[uart_num]->tx_ring_buf);
|
|
|
- xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mutex);
|
|
|
+ xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mux);
|
|
|
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
|
|
|
return size;
|
|
|
} else {
|
|
|
@@ -785,6 +766,7 @@ int uart_tx_all_chars(uart_port_t uart_num, const char* src, size_t size)
|
|
|
return uart_tx_all(uart_num, src, size, 0, 0);
|
|
|
}
|
|
|
} else {
|
|
|
+ //Send data without TX ring buffer, the task will block until all data have been sent out
|
|
|
return uart_tx_all(uart_num, src, size, 0, 0);
|
|
|
}
|
|
|
}
|
|
|
@@ -796,16 +778,17 @@ int uart_tx_all_chars_with_break(uart_port_t uart_num, const char* src, size_t s
|
|
|
UART_CHECK((size > 0), "uart size error");
|
|
|
UART_CHECK((src), "uart data null");
|
|
|
UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error");
|
|
|
+ //Push data to TX ring buffer and return, ISR will send the data.
|
|
|
if(p_uart_obj[uart_num]->tx_buf_size > 0) {
|
|
|
if(xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf) > (size)) {
|
|
|
uart_event_t evt;
|
|
|
- xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mutex, (portTickType)portMAX_DELAY);
|
|
|
+ xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mux, (portTickType)portMAX_DELAY);
|
|
|
evt.type = UART_DATA_BREAK;
|
|
|
evt.data.size = size;
|
|
|
evt.data.brk_len = brk_len;
|
|
|
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_event_t), portMAX_DELAY);
|
|
|
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) src, size, portMAX_DELAY);
|
|
|
- xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mutex);
|
|
|
+ xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mux);
|
|
|
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
|
|
|
return size;
|
|
|
} else {
|
|
|
@@ -813,6 +796,7 @@ int uart_tx_all_chars_with_break(uart_port_t uart_num, const char* src, size_t s
|
|
|
return uart_tx_all(uart_num, src, size, 1, brk_len);
|
|
|
}
|
|
|
} else {
|
|
|
+ //Send data without TX ring buffer, the task will block until all data have been sent out
|
|
|
return uart_tx_all(uart_num, src, size, 1, brk_len);
|
|
|
}
|
|
|
}
|
|
|
@@ -828,29 +812,29 @@ int uart_read_char(uart_port_t uart_num, TickType_t ticks_to_wait)
|
|
|
if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
|
|
|
return -1;
|
|
|
}
|
|
|
- if(p_uart_obj[uart_num]->cur_remain == 0) {
|
|
|
+ if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
|
|
|
ticks_to_wait = ticks_end - xTaskGetTickCount();
|
|
|
data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
|
|
|
if(data) {
|
|
|
- p_uart_obj[uart_num]->head_ptr = data;
|
|
|
- p_uart_obj[uart_num]->rd_ptr = data;
|
|
|
- p_uart_obj[uart_num]->cur_remain = size;
|
|
|
+ p_uart_obj[uart_num]->rx_head_ptr = data;
|
|
|
+ p_uart_obj[uart_num]->rx_ptr = data;
|
|
|
+ p_uart_obj[uart_num]->rx_cur_remain = size;
|
|
|
} else {
|
|
|
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
|
|
|
return -1;
|
|
|
}
|
|
|
}
|
|
|
- val = *(p_uart_obj[uart_num]->rd_ptr);
|
|
|
- p_uart_obj[uart_num]->rd_ptr++;
|
|
|
- p_uart_obj[uart_num]->cur_remain--;
|
|
|
- if(p_uart_obj[uart_num]->cur_remain == 0) {
|
|
|
- vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->head_ptr);
|
|
|
- p_uart_obj[uart_num]->head_ptr = NULL;
|
|
|
- p_uart_obj[uart_num]->rd_ptr = NULL;
|
|
|
- if(p_uart_obj[uart_num]->buffer_full_flg) {
|
|
|
- BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->data_buf, p_uart_obj[uart_num]->data_len, 1);
|
|
|
+ val = *(p_uart_obj[uart_num]->rx_ptr);
|
|
|
+ p_uart_obj[uart_num]->rx_ptr++;
|
|
|
+ p_uart_obj[uart_num]->rx_cur_remain--;
|
|
|
+ if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
|
|
|
+ vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
|
|
|
+ p_uart_obj[uart_num]->rx_head_ptr = NULL;
|
|
|
+ p_uart_obj[uart_num]->rx_ptr = NULL;
|
|
|
+ if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
|
|
|
+ BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
|
|
|
if(res == pdTRUE) {
|
|
|
- p_uart_obj[uart_num]->buffer_full_flg = false;
|
|
|
+ p_uart_obj[uart_num]->rx_buffer_full_flg = false;
|
|
|
uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
|
|
|
}
|
|
|
}
|
|
|
@@ -872,46 +856,40 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
|
|
|
return -1;
|
|
|
}
|
|
|
while(length) {
|
|
|
- if(p_uart_obj[uart_num]->cur_remain == 0) {
|
|
|
+ if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
|
|
|
data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
|
|
|
if(data) {
|
|
|
- p_uart_obj[uart_num]->head_ptr = data;
|
|
|
- p_uart_obj[uart_num]->rd_ptr = data;
|
|
|
- p_uart_obj[uart_num]->cur_remain = size;
|
|
|
-// ets_printf("dbg0\n");
|
|
|
+ p_uart_obj[uart_num]->rx_head_ptr = data;
|
|
|
+ p_uart_obj[uart_num]->rx_ptr = data;
|
|
|
+ p_uart_obj[uart_num]->rx_cur_remain = size;
|
|
|
} else {
|
|
|
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
|
|
|
-// ets_printf("dbg1\n");
|
|
|
return copy_len;
|
|
|
}
|
|
|
}
|
|
|
- if(p_uart_obj[uart_num]->cur_remain > length) {
|
|
|
+ if(p_uart_obj[uart_num]->rx_cur_remain > length) {
|
|
|
len_tmp = length;
|
|
|
} else {
|
|
|
- len_tmp = p_uart_obj[uart_num]->cur_remain;
|
|
|
+ len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
|
|
|
}
|
|
|
-// ets_printf("dbga\n");
|
|
|
- memcpy(buf + copy_len, p_uart_obj[uart_num]->rd_ptr, len_tmp);
|
|
|
- p_uart_obj[uart_num]->rd_ptr += len_tmp;
|
|
|
- p_uart_obj[uart_num]->cur_remain -= len_tmp;
|
|
|
+ memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
|
|
|
+ p_uart_obj[uart_num]->rx_ptr += len_tmp;
|
|
|
+ p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
|
|
|
copy_len += len_tmp;
|
|
|
length -= len_tmp;
|
|
|
-// ets_printf("dbgb\n");
|
|
|
- if(p_uart_obj[uart_num]->cur_remain == 0) {
|
|
|
- vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->head_ptr);
|
|
|
- p_uart_obj[uart_num]->head_ptr = NULL;
|
|
|
- p_uart_obj[uart_num]->rd_ptr = NULL;
|
|
|
- if(p_uart_obj[uart_num]->buffer_full_flg) {
|
|
|
- BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->data_buf, p_uart_obj[uart_num]->data_len, 1);
|
|
|
-// ets_printf("dbg2\n");
|
|
|
+ if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
|
|
|
+ vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
|
|
|
+ p_uart_obj[uart_num]->rx_head_ptr = NULL;
|
|
|
+ p_uart_obj[uart_num]->rx_ptr = NULL;
|
|
|
+ if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
|
|
|
+ BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
|
|
|
if(res == pdTRUE) {
|
|
|
- p_uart_obj[uart_num]->buffer_full_flg = false;
|
|
|
+ p_uart_obj[uart_num]->rx_buffer_full_flg = false;
|
|
|
uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
-// ets_printf("dbg3\n");
|
|
|
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
|
|
|
return copy_len;
|
|
|
}
|
|
|
@@ -926,11 +904,11 @@ esp_err_t uart_flush(uart_port_t uart_num)
|
|
|
//rx sem protect the ring buffer read related functions
|
|
|
xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
|
|
|
while(true) {
|
|
|
- if(p_uart->head_ptr) {
|
|
|
- vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->head_ptr);
|
|
|
- p_uart->rd_ptr = NULL;
|
|
|
- p_uart->cur_remain = 0;
|
|
|
- p_uart->head_ptr = NULL;
|
|
|
+ if(p_uart->rx_head_ptr) {
|
|
|
+ vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
|
|
|
+ p_uart->rx_ptr = NULL;
|
|
|
+ p_uart->rx_cur_remain = 0;
|
|
|
+ p_uart->rx_head_ptr = NULL;
|
|
|
}
|
|
|
data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
|
|
|
if(data == NULL) {
|
|
|
@@ -938,19 +916,24 @@ esp_err_t uart_flush(uart_port_t uart_num)
|
|
|
}
|
|
|
vRingbufferReturnItem(p_uart->rx_ring_buf, data);
|
|
|
}
|
|
|
- p_uart->rd_ptr = NULL;
|
|
|
- p_uart->cur_remain = 0;
|
|
|
- p_uart->head_ptr = NULL;
|
|
|
+ p_uart->rx_ptr = NULL;
|
|
|
+ p_uart->rx_cur_remain = 0;
|
|
|
+ p_uart->rx_head_ptr = NULL;
|
|
|
xSemaphoreGive(p_uart->rx_mux);
|
|
|
- xSemaphoreTake(p_uart->tx_mutex, (portTickType)portMAX_DELAY);
|
|
|
- do {
|
|
|
- data = (uint8_t*) xRingbufferReceive(p_uart->tx_ring_buf, &size, (portTickType) 0);
|
|
|
- if(data == NULL) {
|
|
|
- break;
|
|
|
- }
|
|
|
- vRingbufferReturnItem(p_uart->rx_ring_buf, data);
|
|
|
- } while(1);
|
|
|
- xSemaphoreGive(p_uart->tx_mutex);
|
|
|
+
|
|
|
+ xSemaphoreTake(p_uart->tx_mux, (portTickType)portMAX_DELAY);
|
|
|
+ if(p_uart->tx_buf_size > 0) {
|
|
|
+ xSemaphoreTake(p_uart->tx_buffer_mux, (portTickType)portMAX_DELAY);
|
|
|
+ do {
|
|
|
+ data = (uint8_t*) xRingbufferReceive(p_uart->tx_ring_buf, &size, (portTickType) 0);
|
|
|
+ if(data == NULL) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ vRingbufferReturnItem(p_uart->rx_ring_buf, data);
|
|
|
+ } while(1);
|
|
|
+ xSemaphoreGive(p_uart->tx_buffer_mux);
|
|
|
+ }
|
|
|
+ xSemaphoreGive(p_uart->tx_mux);
|
|
|
uart_wait_tx_done(uart_num, portMAX_DELAY);
|
|
|
uart_reset_fifo(uart_num);
|
|
|
return ESP_OK;
|
|
|
@@ -1009,7 +992,7 @@ int uart_get_print_port()
|
|
|
return s_uart_print_nport;
|
|
|
}
|
|
|
|
|
|
-esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, int uart_intr_num, void* uart_queue, ringbuf_type_t rx_buf_type)
|
|
|
+esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, int uart_intr_num, void* uart_queue)
|
|
|
{
|
|
|
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error");
|
|
|
UART_CHECK((rx_buffer_size > 0), "uart rx buffer length error\n");
|
|
|
@@ -1025,11 +1008,16 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
|
|
|
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
|
|
|
p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
|
|
|
p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
|
|
|
- p_uart_obj[uart_num]->tx_mutex = xSemaphoreCreateMutex();
|
|
|
- p_uart_obj[uart_num]->tx_buffer_mutex = xSemaphoreCreateMutex();
|
|
|
+ p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
|
|
|
p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
|
|
|
p_uart_obj[uart_num]->intr_num = uart_intr_num;
|
|
|
p_uart_obj[uart_num]->queue_size = queue_size;
|
|
|
+ p_uart_obj[uart_num]->tx_ptr = NULL;
|
|
|
+ p_uart_obj[uart_num]->tx_head = NULL;
|
|
|
+ p_uart_obj[uart_num]->tx_len_tot = 0;
|
|
|
+ p_uart_obj[uart_num]->tx_brk_flg = 0;
|
|
|
+ p_uart_obj[uart_num]->tx_brk_len = 0;
|
|
|
+ p_uart_obj[uart_num]->tx_waiting_brk = 0;
|
|
|
|
|
|
if(uart_queue) {
|
|
|
p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
|
|
|
@@ -1038,19 +1026,20 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
|
|
|
} else {
|
|
|
p_uart_obj[uart_num]->xQueueUart = NULL;
|
|
|
}
|
|
|
- p_uart_obj[uart_num]->buffer_full_flg = false;
|
|
|
- p_uart_obj[uart_num]->tx_waiting = false;
|
|
|
- p_uart_obj[uart_num]->rd_ptr = NULL;
|
|
|
- p_uart_obj[uart_num]->cur_remain = 0;
|
|
|
- p_uart_obj[uart_num]->head_ptr = NULL;
|
|
|
- p_uart_obj[uart_num]->rx_buf_type = rx_buf_type;
|
|
|
- p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, rx_buf_type);
|
|
|
+ p_uart_obj[uart_num]->rx_buffer_full_flg = false;
|
|
|
+ p_uart_obj[uart_num]->tx_waiting_fifo = false;
|
|
|
+ p_uart_obj[uart_num]->rx_ptr = NULL;
|
|
|
+ p_uart_obj[uart_num]->rx_cur_remain = 0;
|
|
|
+ p_uart_obj[uart_num]->rx_head_ptr = NULL;
|
|
|
+ p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
|
|
|
if(tx_buffer_size > 0) {
|
|
|
p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);//RINGBUF_TYPE_BYTEBUF);//RINGBUF_TYPE_NOSPLIT);
|
|
|
p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
|
|
|
+ p_uart_obj[uart_num]->tx_buffer_mux = xSemaphoreCreateMutex();
|
|
|
} else {
|
|
|
p_uart_obj[uart_num]->tx_ring_buf = NULL;
|
|
|
p_uart_obj[uart_num]->tx_buf_size = 0;
|
|
|
+ p_uart_obj[uart_num]->tx_buffer_mux = NULL;
|
|
|
}
|
|
|
} else {
|
|
|
ESP_LOGE(UART_TAG, "UART driver already installed\n");
|
|
|
@@ -1097,13 +1086,13 @@ esp_err_t uart_driver_delete(uart_port_t uart_num)
|
|
|
vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
|
|
|
p_uart_obj[uart_num]->tx_brk_sem = NULL;
|
|
|
}
|
|
|
- if(p_uart_obj[uart_num]->tx_mutex) {
|
|
|
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_mutex);
|
|
|
- p_uart_obj[uart_num]->tx_mutex = NULL;
|
|
|
+ if(p_uart_obj[uart_num]->tx_mux) {
|
|
|
+ vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
|
|
|
+ p_uart_obj[uart_num]->tx_mux = NULL;
|
|
|
}
|
|
|
- if(p_uart_obj[uart_num]->tx_buffer_mutex) {
|
|
|
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_buffer_mutex);
|
|
|
- p_uart_obj[uart_num]->tx_buffer_mutex = NULL;
|
|
|
+ if(p_uart_obj[uart_num]->tx_buffer_mux) {
|
|
|
+ vSemaphoreDelete(p_uart_obj[uart_num]->tx_buffer_mux);
|
|
|
+ p_uart_obj[uart_num]->tx_buffer_mux = NULL;
|
|
|
}
|
|
|
if(p_uart_obj[uart_num]->rx_mux) {
|
|
|
vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
|