|
|
@@ -27,15 +27,27 @@ const esp_efuse_range_addr_t range_read_addr_blocks[] = {
|
|
|
{EFUSE_BLK3_RDATA0_REG, EFUSE_BLK3_RDATA7_REG} // range address of EFUSE_BLK3
|
|
|
};
|
|
|
|
|
|
-/*Range addresses to write blocks*/
|
|
|
+static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
|
|
|
+
|
|
|
+/*Range addresses to write blocks (it is not real regs, it is a buffer) */
|
|
|
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
|
|
|
- {EFUSE_BLK0_WDATA0_REG, EFUSE_BLK0_WDATA6_REG}, // range address of EFUSE_BLK0
|
|
|
- {EFUSE_BLK1_WDATA0_REG, EFUSE_BLK1_WDATA7_REG}, // range address of EFUSE_BLK1
|
|
|
- {EFUSE_BLK2_WDATA0_REG, EFUSE_BLK2_WDATA7_REG}, // range address of EFUSE_BLK2
|
|
|
- {EFUSE_BLK3_WDATA0_REG, EFUSE_BLK3_WDATA7_REG} // range address of EFUSE_BLK3
|
|
|
+ {(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][6]},
|
|
|
+ {(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][7]},
|
|
|
+ {(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
|
|
|
+ {(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
|
|
|
};
|
|
|
|
|
|
#ifndef CONFIG_EFUSE_VIRTUAL
|
|
|
+/* Addresses to write blocks*/
|
|
|
+const uint32_t start_write_addr[] = {
|
|
|
+ EFUSE_BLK0_WDATA0_REG,
|
|
|
+ EFUSE_BLK1_WDATA0_REG,
|
|
|
+ EFUSE_BLK2_WDATA0_REG,
|
|
|
+ EFUSE_BLK3_WDATA0_REG,
|
|
|
+};
|
|
|
+
|
|
|
+static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len);
|
|
|
+
|
|
|
// Update Efuse timing configuration
|
|
|
static esp_err_t esp_efuse_set_timing(void)
|
|
|
{
|
|
|
@@ -52,27 +64,12 @@ void esp_efuse_utility_clear_program_registers(void)
|
|
|
}
|
|
|
|
|
|
// Burn values written to the efuse write registers
|
|
|
-void esp_efuse_utility_burn_chip(void)
|
|
|
+esp_err_t esp_efuse_utility_burn_chip(void)
|
|
|
{
|
|
|
+ esp_err_t error = ESP_OK;
|
|
|
#ifdef CONFIG_EFUSE_VIRTUAL
|
|
|
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
|
|
|
- for (int num_block = EFUSE_BLK0; num_block < EFUSE_BLK_MAX; num_block++) {
|
|
|
- esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
|
|
|
- if (scheme == EFUSE_CODING_SCHEME_3_4) {
|
|
|
- uint8_t buf[COUNT_EFUSE_REG_PER_BLOCK * 4] = { 0 };
|
|
|
- int i = 0;
|
|
|
- for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) {
|
|
|
- *((uint32_t*)buf + i) = REG_READ(addr_wr_block);
|
|
|
- }
|
|
|
- int j = 0;
|
|
|
- uint32_t out_buf[COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
|
|
|
- for (int k = 0; k < 4; ++k, ++j) {
|
|
|
- memcpy((uint8_t*)out_buf + j * 6, &buf[k * 8], 6);
|
|
|
- }
|
|
|
- for (int k = 0; k < COUNT_EFUSE_REG_PER_BLOCK; ++k) {
|
|
|
- REG_WRITE(range_write_addr_blocks[num_block].start + k * 4, out_buf[k]);
|
|
|
- }
|
|
|
- }
|
|
|
+ for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
|
|
int subblock = 0;
|
|
|
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
|
|
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
|
|
|
@@ -81,12 +78,87 @@ void esp_efuse_utility_burn_chip(void)
|
|
|
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
|
|
|
esp_efuse_utility_write_efuses_to_flash();
|
|
|
#endif
|
|
|
-#else
|
|
|
- esp_efuse_set_timing();
|
|
|
- // Permanently update values written to the efuse write registers
|
|
|
- efuse_hal_program(0);
|
|
|
+#else // CONFIG_EFUSE_VIRTUAL
|
|
|
+ if (esp_efuse_set_timing() != ESP_OK) {
|
|
|
+ ESP_LOGE(TAG, "Efuse fields are not burnt");
|
|
|
+ } else {
|
|
|
+ // Permanently update values written to the efuse write registers
|
|
|
+ // It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
|
|
|
+ for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
|
|
+ esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
|
|
|
+ bool need_burn_block = false;
|
|
|
+ for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
|
|
+ if (REG_READ(addr_wr_block) != 0) {
|
|
|
+ need_burn_block = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (!need_burn_block) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ if (error) {
|
|
|
+ // It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
|
|
|
+ // in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
|
|
|
+ ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ efuse_hal_clear_program_registers();
|
|
|
+ unsigned w_data_len;
|
|
|
+ unsigned r_data_len;
|
|
|
+ if (scheme == EFUSE_CODING_SCHEME_3_4) {
|
|
|
+ esp_efuse_utility_apply_34_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES);
|
|
|
+ r_data_len = ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES;
|
|
|
+ w_data_len = 32;
|
|
|
+ } else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
|
|
|
+ apply_repeat_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], 16);
|
|
|
+ r_data_len = ESP_EFUSE_LEN_OF_REPEAT_BLOCK_IN_BYTES;
|
|
|
+ w_data_len = 32;
|
|
|
+ } else {
|
|
|
+ r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
|
|
|
+ w_data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
|
|
|
+ memcpy((void *)start_write_addr[num_block], (void *)range_write_addr_blocks[num_block].start, w_data_len);
|
|
|
+ }
|
|
|
+
|
|
|
+ uint32_t backup_write_data[8];
|
|
|
+ memcpy(backup_write_data, (void *)start_write_addr[num_block], w_data_len);
|
|
|
+ int repeat_burn_op = 1;
|
|
|
+ bool correct_written_data;
|
|
|
+ bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
|
|
|
+ if (coding_error_before) {
|
|
|
+ ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
|
|
|
+ }
|
|
|
+ bool coding_error_occurred;
|
|
|
+
|
|
|
+ do {
|
|
|
+ ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
|
|
|
+ efuse_hal_program(0); // BURN a block
|
|
|
+
|
|
|
+ bool coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
|
|
|
+ coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
|
|
|
+ if (coding_error_occurred) {
|
|
|
+ ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
|
|
|
+ }
|
|
|
+
|
|
|
+ correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
|
|
|
+ if (!correct_written_data || coding_error_occurred) {
|
|
|
+ ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
|
|
|
+ memcpy((void *)start_write_addr[num_block], (void *)backup_write_data, w_data_len);
|
|
|
+ }
|
|
|
+
|
|
|
+ } while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
|
|
|
+
|
|
|
+ if (coding_error_occurred) {
|
|
|
+ ESP_LOGW(TAG, "Coding error was not fixed");
|
|
|
+ }
|
|
|
+ if (!correct_written_data) {
|
|
|
+ ESP_LOGE(TAG, "Written data are incorrect");
|
|
|
+ error = ESP_FAIL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
#endif // CONFIG_EFUSE_VIRTUAL
|
|
|
esp_efuse_utility_reset();
|
|
|
+ return error;
|
|
|
}
|
|
|
|
|
|
esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
|
|
|
@@ -118,19 +190,15 @@ esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t
|
|
|
return ESP_OK;
|
|
|
}
|
|
|
|
|
|
-static bool read_w_data_and_check_fill(esp_efuse_block_t num_block, uint32_t *buf_w_data)
|
|
|
+#ifndef CONFIG_EFUSE_VIRTUAL
|
|
|
+
|
|
|
+static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
|
|
|
{
|
|
|
- bool blk_is_filled = false;
|
|
|
- int i = 0;
|
|
|
- for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) {
|
|
|
- buf_w_data[i] = REG_READ(addr_wr_block);
|
|
|
- if (buf_w_data[i] != 0) {
|
|
|
- REG_WRITE(addr_wr_block, 0);
|
|
|
- blk_is_filled = true;
|
|
|
- }
|
|
|
+ for (unsigned i = 0; i < 2; i++) {
|
|
|
+ memcpy(&out_words[i * 4], (uint32_t *)in_bytes, in_bytes_len);
|
|
|
}
|
|
|
- return blk_is_filled;
|
|
|
}
|
|
|
+#endif // CONFIG_EFUSE_VIRTUAL
|
|
|
|
|
|
static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
|
|
|
{
|
|
|
@@ -140,27 +208,30 @@ static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
|
|
|
-// This function reads EFUSE_BLKx_WDATAx_REG registers, applies coding scheme and writes encoded values back to EFUSE_BLKx_WDATAx_REG.
|
|
|
+// This function just checkes that given data for blocks will not rise a coding issue during the burn operation.
|
|
|
+// Encoded data will be set during the burn operation.
|
|
|
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
|
|
|
{
|
|
|
- uint8_t buf_w_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
|
|
|
uint8_t buf_r_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
|
|
|
- uint32_t reg[COUNT_EFUSE_REG_PER_BLOCK];
|
|
|
// start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
|
|
|
for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
|
|
|
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
|
|
|
- // check and apply a new coding scheme.
|
|
|
if (scheme != EFUSE_CODING_SCHEME_NONE) {
|
|
|
- memset(buf_w_data, 0, sizeof(buf_w_data));
|
|
|
- memset((uint8_t*)reg, 0, sizeof(reg));
|
|
|
- if (read_w_data_and_check_fill(num_block, (uint32_t*)buf_w_data) == true) {
|
|
|
+ bool is_write_data = false;
|
|
|
+ for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
|
|
+ if (REG_READ(addr_wr_block)) {
|
|
|
+ is_write_data = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (is_write_data) {
|
|
|
read_r_data(num_block, (uint32_t*)buf_r_data);
|
|
|
+ uint8_t* buf_w_data = (uint8_t*)range_write_addr_blocks[num_block].start;
|
|
|
if (scheme == EFUSE_CODING_SCHEME_3_4) {
|
|
|
if (*((uint32_t*)buf_w_data + 6) != 0 || *((uint32_t*)buf_w_data + 7) != 0) {
|
|
|
return ESP_ERR_CODING;
|
|
|
}
|
|
|
- for (int i = 0; i < 24; ++i) {
|
|
|
+ for (int i = 0; i < ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES; ++i) {
|
|
|
if (buf_w_data[i] != 0) {
|
|
|
int st_offset_buf = (i / 6) * 6;
|
|
|
// check that place is free.
|
|
|
@@ -170,32 +241,14 @@ esp_err_t esp_efuse_utility_apply_new_coding_scheme()
|
|
|
return ESP_ERR_CODING;
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
- esp_err_t err = esp_efuse_utility_apply_34_encoding(&buf_w_data[st_offset_buf], reg, 6);
|
|
|
- if (err != ESP_OK) {
|
|
|
- return err;
|
|
|
- }
|
|
|
-
|
|
|
- int num_reg = (st_offset_buf / 6) * 2;
|
|
|
- for (int r = 0; r < 2; r++) {
|
|
|
- REG_WRITE(range_write_addr_blocks[num_block].start + (num_reg + r) * 4, reg[r]);
|
|
|
- }
|
|
|
- i = st_offset_buf + 5;
|
|
|
}
|
|
|
}
|
|
|
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
|
|
|
- uint32_t* buf_32 = (uint32_t*)buf_w_data;
|
|
|
for (int i = 4; i < 8; ++i) {
|
|
|
- if (*(buf_32 + i) != 0) {
|
|
|
+ if (*((uint32_t*)buf_w_data + i) != 0) {
|
|
|
return ESP_ERR_CODING;
|
|
|
}
|
|
|
}
|
|
|
- for (int i = 0; i < 4; ++i) {
|
|
|
- if (buf_32[i] != 0) {
|
|
|
- REG_WRITE(range_write_addr_blocks[num_block].start + i * 4, buf_32[i]);
|
|
|
- REG_WRITE(range_write_addr_blocks[num_block].start + (i + 4) * 4, buf_32[i]);
|
|
|
- }
|
|
|
- }
|
|
|
}
|
|
|
}
|
|
|
}
|