|
|
@@ -0,0 +1,230 @@
|
|
|
+/*
|
|
|
+ * Multi-precision integer library
|
|
|
+ * ESP32 H2 hardware accelerated parts based on mbedTLS implementation
|
|
|
+ *
|
|
|
+ * SPDX-FileCopyrightText: The Mbed TLS Contributors
|
|
|
+ *
|
|
|
+ * SPDX-License-Identifier: Apache-2.0
|
|
|
+ *
|
|
|
+ * SPDX-FileContributor: 2023 Espressif Systems (Shanghai) CO LTD
|
|
|
+ */
|
|
|
+#include <string.h>
|
|
|
+#include <sys/param.h>
|
|
|
+#include "soc/hwcrypto_periph.h"
|
|
|
+#include "esp_private/periph_ctrl.h"
|
|
|
+#include "mbedtls/bignum.h"
|
|
|
+#include "bignum_impl.h"
|
|
|
+#include "soc/pcr_reg.h"
|
|
|
+#include "soc/periph_defs.h"
|
|
|
+#include "soc/system_reg.h"
|
|
|
+#include "esp_crypto_lock.h"
|
|
|
+
|
|
|
+
|
|
|
+size_t esp_mpi_hardware_words(size_t words)
|
|
|
+{
|
|
|
+ return words;
|
|
|
+}
|
|
|
+
|
|
|
+void esp_mpi_enable_hardware_hw_op( void )
|
|
|
+{
|
|
|
+ esp_crypto_mpi_lock_acquire();
|
|
|
+
|
|
|
+ /* Enable RSA hardware */
|
|
|
+ periph_module_enable(PERIPH_RSA_MODULE);
|
|
|
+
|
|
|
+ REG_CLR_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
|
|
+
|
|
|
+ while (REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
|
|
+ }
|
|
|
+ // Note: from enabling RSA clock to here takes about 1.3us
|
|
|
+
|
|
|
+ REG_WRITE(RSA_INT_ENA_REG, 0);
|
|
|
+}
|
|
|
+
|
|
|
+void esp_mpi_disable_hardware_hw_op( void )
|
|
|
+{
|
|
|
+ REG_SET_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
|
|
+
|
|
|
+ /* Disable RSA hardware */
|
|
|
+ periph_module_disable(PERIPH_RSA_MODULE);
|
|
|
+
|
|
|
+ esp_crypto_mpi_lock_release();
|
|
|
+}
|
|
|
+
|
|
|
+void esp_mpi_interrupt_enable( bool enable )
|
|
|
+{
|
|
|
+ REG_WRITE(RSA_INT_ENA_REG, enable);
|
|
|
+}
|
|
|
+
|
|
|
+void esp_mpi_interrupt_clear( void )
|
|
|
+{
|
|
|
+ REG_WRITE(RSA_INT_CLR_REG, 1);
|
|
|
+}
|
|
|
+
|
|
|
+/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
|
|
+
|
|
|
+ If num_words is higher than the number of words in the bignum then
|
|
|
+ these additional words will be zeroed in the memory buffer.
|
|
|
+*/
|
|
|
+static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
|
|
+{
|
|
|
+ uint32_t *pbase = (uint32_t *)mem_base;
|
|
|
+ uint32_t copy_words = MIN(num_words, mpi->MBEDTLS_PRIVATE(n));
|
|
|
+
|
|
|
+ /* Copy MPI data to memory block registers */
|
|
|
+ for (int i = 0; i < copy_words; i++) {
|
|
|
+ pbase[i] = mpi->MBEDTLS_PRIVATE(p)[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Zero any remaining memory block data */
|
|
|
+ for (int i = copy_words; i < num_words; i++) {
|
|
|
+ pbase[i] = 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* Read mbedTLS MPI bignum back from hardware memory block.
|
|
|
+
|
|
|
+ Reads num_words words from block.
|
|
|
+*/
|
|
|
+static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
|
|
+{
|
|
|
+
|
|
|
+ /* Copy data from memory block registers */
|
|
|
+ const size_t REG_WIDTH = sizeof(uint32_t);
|
|
|
+ for (size_t i = 0; i < num_words; i++) {
|
|
|
+ x->MBEDTLS_PRIVATE(p)[i] = REG_READ(mem_base + (i * REG_WIDTH));
|
|
|
+ }
|
|
|
+ /* Zero any remaining limbs in the bignum, if the buffer is bigger
|
|
|
+ than num_words */
|
|
|
+ for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
|
|
|
+ x->MBEDTLS_PRIVATE(p)[i] = 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+/* Begin an RSA operation. op_reg specifies which 'START' register
|
|
|
+ to write to.
|
|
|
+*/
|
|
|
+static inline void start_op(uint32_t op_reg)
|
|
|
+{
|
|
|
+ /* Clear interrupt status */
|
|
|
+ REG_WRITE(RSA_INT_CLR_REG, 1);
|
|
|
+
|
|
|
+ /* Note: above REG_WRITE includes a memw, so we know any writes
|
|
|
+ to the memory blocks are also complete. */
|
|
|
+
|
|
|
+ REG_WRITE(op_reg, 1);
|
|
|
+}
|
|
|
+
|
|
|
+/* Wait for an RSA operation to complete.
|
|
|
+*/
|
|
|
+static inline void wait_op_complete(void)
|
|
|
+{
|
|
|
+ while (REG_READ(RSA_QUERY_IDLE_REG) != 1)
|
|
|
+ { }
|
|
|
+
|
|
|
+ /* clear the interrupt */
|
|
|
+ REG_WRITE(RSA_INT_CLR_REG, 1);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* Read result from last MPI operation */
|
|
|
+void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
|
|
+{
|
|
|
+ wait_op_complete();
|
|
|
+ mem_block_to_mpi(Z, RSA_Z_MEM_REG, z_words);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* Z = (X * Y) mod M
|
|
|
+
|
|
|
+ Not an mbedTLS function
|
|
|
+*/
|
|
|
+void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
|
|
+{
|
|
|
+ REG_WRITE(RSA_MODE_REG, (num_words - 1));
|
|
|
+
|
|
|
+ /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
|
|
+ mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
|
|
|
+ mpi_to_mem_block(RSA_Y_MEM_REG, Y, num_words);
|
|
|
+ mpi_to_mem_block(RSA_M_MEM_REG, M, num_words);
|
|
|
+ mpi_to_mem_block(RSA_Z_MEM_REG, Rinv, num_words);
|
|
|
+ REG_WRITE(RSA_M_PRIME_REG, Mprime);
|
|
|
+
|
|
|
+ start_op(RSA_SET_START_MODMULT_REG);
|
|
|
+}
|
|
|
+
|
|
|
+/* Z = (X ^ Y) mod M
|
|
|
+*/
|
|
|
+void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
|
|
+{
|
|
|
+ size_t y_bits = mbedtls_mpi_bitlen(Y);
|
|
|
+
|
|
|
+ REG_WRITE(RSA_MODE_REG, (num_words - 1));
|
|
|
+
|
|
|
+ /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
|
|
+ mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
|
|
|
+ mpi_to_mem_block(RSA_Y_MEM_REG, Y, num_words);
|
|
|
+ mpi_to_mem_block(RSA_M_MEM_REG, M, num_words);
|
|
|
+ mpi_to_mem_block(RSA_Z_MEM_REG, Rinv, num_words);
|
|
|
+ REG_WRITE(RSA_M_PRIME_REG, Mprime);
|
|
|
+
|
|
|
+ /* Enable acceleration options */
|
|
|
+ REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
|
|
+ REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
|
|
|
+ REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
|
|
|
+
|
|
|
+ /* Execute first stage montgomery multiplication */
|
|
|
+ start_op(RSA_SET_START_MODEXP_REG);
|
|
|
+
|
|
|
+ REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* Z = X * Y */
|
|
|
+void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
|
|
+{
|
|
|
+ /* Copy X (right-extended) & Y (left-extended) to memory block */
|
|
|
+ mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
|
|
|
+ mpi_to_mem_block(RSA_Z_MEM_REG + num_words * 4, Y, num_words);
|
|
|
+ /* NB: as Y is left-exte, we don't zero the bottom words_mult words of Y block.
|
|
|
+ This is OK for now bec zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
|
|
+ */
|
|
|
+ REG_WRITE(RSA_MODE_REG, (num_words * 2 - 1));
|
|
|
+ start_op(RSA_SET_START_MULT_REG);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+/**
|
|
|
+ * @brief Special-case of (X * Y), where we use hardware montgomery mod
|
|
|
+ multiplication to calculate result where either A or B are >2048 bits so
|
|
|
+ can't use the standard multiplication method.
|
|
|
+ *
|
|
|
+ */
|
|
|
+void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
|
|
+{
|
|
|
+ /* M = 2^num_words - 1, so block is entirely FF */
|
|
|
+ for (int i = 0; i < num_words; i++) {
|
|
|
+ REG_WRITE(RSA_M_MEM_REG + i * 4, UINT32_MAX);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Mprime = 1 */
|
|
|
+ REG_WRITE(RSA_M_PRIME_REG, 1);
|
|
|
+ REG_WRITE(RSA_MODE_REG, num_words - 1);
|
|
|
+
|
|
|
+ /* Load X & Y */
|
|
|
+ mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
|
|
|
+ mpi_to_mem_block(RSA_Y_MEM_REG, Y, num_words);
|
|
|
+
|
|
|
+ /* Rinv = 1, write first word */
|
|
|
+ REG_WRITE(RSA_Z_MEM_REG, 1);
|
|
|
+
|
|
|
+ /* Zero out rest of the Rinv words */
|
|
|
+ for (int i = 1; i < num_words; i++) {
|
|
|
+ REG_WRITE(RSA_Z_MEM_REG + i * 4, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ start_op(RSA_SET_START_MODMULT_REG);
|
|
|
+}
|