|
|
@@ -1,6266 +0,0 @@
|
|
|
-/*
|
|
|
- * SPDX-FileCopyrightText: 2020 Amazon.com, Inc. or its affiliates
|
|
|
- *
|
|
|
- * SPDX-License-Identifier: MIT
|
|
|
- *
|
|
|
- * SPDX-FileContributor: 2016-2023 Espressif Systems (Shanghai) CO LTD
|
|
|
- */
|
|
|
-
|
|
|
-/*
|
|
|
- * FreeRTOS Kernel V10.4.3
|
|
|
- * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
|
- *
|
|
|
- * Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
|
- * this software and associated documentation files (the "Software"), to deal in
|
|
|
- * the Software without restriction, including without limitation the rights to
|
|
|
- * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
|
- * the Software, and to permit persons to whom the Software is furnished to do so,
|
|
|
- * subject to the following conditions:
|
|
|
- *
|
|
|
- * The above copyright notice and this permission notice shall be included in all
|
|
|
- * copies or substantial portions of the Software.
|
|
|
- *
|
|
|
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
|
- * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
|
- * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
|
- * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
- *
|
|
|
- * https://www.FreeRTOS.org
|
|
|
- * https://github.com/FreeRTOS
|
|
|
- *
|
|
|
- */
|
|
|
-
|
|
|
-/* Standard includes. */
|
|
|
-#include <stdlib.h>
|
|
|
-#include <string.h>
|
|
|
-
|
|
|
-/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
|
|
- * all the API functions to use the MPU wrappers. That should only be done when
|
|
|
- * task.h is included from an application file. */
|
|
|
-#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
-
|
|
|
-/* FreeRTOS includes. */
|
|
|
-#include "FreeRTOS.h"
|
|
|
-#include "task.h"
|
|
|
-#include "timers.h"
|
|
|
-#include "stack_macros.h"
|
|
|
-/* Include private IDF API additions for critical thread safety macros */
|
|
|
-#include "esp_private/freertos_idf_additions_priv.h"
|
|
|
-
|
|
|
-#ifdef ESP_PLATFORM
|
|
|
- #undef _REENT_INIT_PTR
|
|
|
- #define _REENT_INIT_PTR esp_reent_init
|
|
|
- extern void esp_vApplicationIdleHook( void );
|
|
|
-#endif //ESP_PLATFORM
|
|
|
-
|
|
|
-/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
|
|
|
- * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
|
|
|
- * for the header files above, but not in this file, in order to generate the
|
|
|
- * correct privileged Vs unprivileged linkage and placement. */
|
|
|
-#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
|
|
|
-
|
|
|
-/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
|
|
|
- * functions but without including stdio.h here. */
|
|
|
-#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
|
|
|
-
|
|
|
-/* At the bottom of this file are two optional functions that can be used
|
|
|
- * to generate human readable text from the raw data generated by the
|
|
|
- * uxTaskGetSystemState() function. Note the formatting functions are provided
|
|
|
- * for convenience only, and are NOT considered part of the kernel. */
|
|
|
- #include <stdio.h>
|
|
|
-#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
|
|
|
-
|
|
|
-#if ( configUSE_PREEMPTION == 0 )
|
|
|
-
|
|
|
-/* If the cooperative scheduler is being used then a yield should not be
|
|
|
- * performed just because a higher priority task has been woken. */
|
|
|
- #define taskYIELD_IF_USING_PREEMPTION()
|
|
|
-#else
|
|
|
- #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Values that can be assigned to the ucNotifyState member of the TCB. */
|
|
|
-#define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
|
|
|
-#define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
|
|
|
-#define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
|
|
|
-
|
|
|
-/*
|
|
|
- * The value used to fill the stack of a task when the task is created. This
|
|
|
- * is used purely for checking the high water mark for tasks.
|
|
|
- */
|
|
|
-#define tskSTACK_FILL_BYTE ( 0xa5U )
|
|
|
-
|
|
|
-/* Bits used to record how a task's stack and TCB were allocated. */
|
|
|
-#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
|
|
|
-#define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
|
|
|
-#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
|
|
|
-
|
|
|
-/* If any of the following are set then task stacks are filled with a known
|
|
|
- * value so the high water mark can be determined. If none of the following are
|
|
|
- * set then don't fill the stack so there is no unnecessary dependency on memset. */
|
|
|
-#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
|
|
|
- #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1
|
|
|
-#else
|
|
|
- #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Macros used by vListTask to indicate which state a task is in.
|
|
|
- */
|
|
|
-#define tskRUNNING_CHAR ( 'X' )
|
|
|
-#define tskBLOCKED_CHAR ( 'B' )
|
|
|
-#define tskREADY_CHAR ( 'R' )
|
|
|
-#define tskDELETED_CHAR ( 'D' )
|
|
|
-#define tskSUSPENDED_CHAR ( 'S' )
|
|
|
-
|
|
|
-/*
|
|
|
- * Some kernel aware debuggers require the data the debugger needs access to to
|
|
|
- * be global, rather than file scope.
|
|
|
- */
|
|
|
-#ifdef portREMOVE_STATIC_QUALIFIER
|
|
|
- #define static
|
|
|
-#endif
|
|
|
-
|
|
|
-/* The name allocated to the Idle task. This can be overridden by defining
|
|
|
- * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
|
|
|
-#ifndef configIDLE_TASK_NAME
|
|
|
- #define configIDLE_TASK_NAME "IDLE"
|
|
|
-#endif
|
|
|
-
|
|
|
-#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
|
|
|
-
|
|
|
-/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
|
|
|
- * performed in a generic way that is not optimised to any particular
|
|
|
- * microcontroller architecture. */
|
|
|
-
|
|
|
-/* uxTopReadyPriority holds the priority of the highest priority ready
|
|
|
- * state task. */
|
|
|
- #define taskRECORD_READY_PRIORITY( uxPriority ) \
|
|
|
- { \
|
|
|
- if( ( uxPriority ) > uxTopReadyPriority ) \
|
|
|
- { \
|
|
|
- uxTopReadyPriority = ( uxPriority ); \
|
|
|
- } \
|
|
|
- } /* taskRECORD_READY_PRIORITY */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- #define taskSELECT_HIGHEST_PRIORITY_TASK() taskSelectHighestPriorityTaskSMP()
|
|
|
- #else /* configNUM_CORES > 1 */
|
|
|
- #define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
|
|
- { \
|
|
|
- UBaseType_t uxTopPriority = uxTopReadyPriority; \
|
|
|
- \
|
|
|
- /* Find the highest priority queue that contains ready tasks. */ \
|
|
|
- while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
|
|
|
- { \
|
|
|
- configASSERT( uxTopPriority ); \
|
|
|
- --uxTopPriority; \
|
|
|
- } \
|
|
|
- \
|
|
|
- /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
|
|
|
- * the same priority get an equal share of the processor time. */ \
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[ 0 ], &( pxReadyTasksLists[ uxTopPriority ] ) ); \
|
|
|
- uxTopReadyPriority = uxTopPriority; \
|
|
|
- } /* taskSELECT_HIGHEST_PRIORITY_TASK */
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
|
|
|
- * they are only required when a port optimised method of task selection is
|
|
|
- * being used. */
|
|
|
- #define taskRESET_READY_PRIORITY( uxPriority )
|
|
|
- #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
-
|
|
|
-#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
-
|
|
|
-/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
|
|
|
- * performed in a way that is tailored to the particular microcontroller
|
|
|
- * architecture being used. */
|
|
|
-
|
|
|
-/* A port optimised version is provided. Call the port defined macros. */
|
|
|
- #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
- #define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
|
|
- { \
|
|
|
- UBaseType_t uxTopPriority; \
|
|
|
- \
|
|
|
- /* Find the highest priority list that contains ready tasks. */ \
|
|
|
- portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
|
|
|
- configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[ 0 ], &( pxReadyTasksLists[ uxTopPriority ] ) ); \
|
|
|
- } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* A port optimised version is provided, call it only if the TCB being reset
|
|
|
- * is being referenced from a ready list. If it is referenced from a delayed
|
|
|
- * or suspended list then it won't be in a ready list. */
|
|
|
- #define taskRESET_READY_PRIORITY( uxPriority ) \
|
|
|
- { \
|
|
|
- if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
|
|
|
- { \
|
|
|
- portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
|
|
|
- } \
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
|
|
|
- * count overflows. */
|
|
|
-#define taskSWITCH_DELAYED_LISTS() \
|
|
|
- { \
|
|
|
- List_t * pxTemp; \
|
|
|
- \
|
|
|
- /* The delayed tasks list should be empty when the lists are switched. */ \
|
|
|
- configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
|
|
|
- \
|
|
|
- pxTemp = pxDelayedTaskList; \
|
|
|
- pxDelayedTaskList = pxOverflowDelayedTaskList; \
|
|
|
- pxOverflowDelayedTaskList = pxTemp; \
|
|
|
- xNumOfOverflows++; \
|
|
|
- prvResetNextTaskUnblockTime(); \
|
|
|
- }
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/*
|
|
|
- * Place the task represented by pxTCB into the appropriate ready list for
|
|
|
- * the task. It is inserted at the end of the list.
|
|
|
- */
|
|
|
-#define prvAddTaskToReadyList( pxTCB ) \
|
|
|
- traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
|
|
|
- taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
|
|
|
- vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
|
|
|
- tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configNUM_CORES > 1 )
|
|
|
- #define prvCheckForYield( pxTCB, xCurCoreID, xYieldEqualPriority ) ( prvCheckForYieldUsingPrioritySMP( ( pxTCB )->uxPriority, ( pxTCB )->xCoreID, xCurCoreID, xYieldEqualPriority ) == pdTRUE )
|
|
|
- #define prvCheckForYieldUsingPriority( uxTaskPriority, xTaskCoreID, xCurCoreID, xYieldEqualPriority ) ( prvCheckForYieldUsingPrioritySMP( uxTaskPriority, xTaskCoreID, xCurCoreID, xYieldEqualPriority ) == pdTRUE )
|
|
|
-#else
|
|
|
- #define prvCheckForYield( pxTargetTCB, xCurCoreID, xYieldEqualPriority ) ( ( ( pxTargetTCB )->uxPriority + ( ( xYieldEqualPriority == pdTRUE ) ? 1 : 0 ) ) > pxCurrentTCB[ 0 ]->uxPriority )
|
|
|
- #define prvCheckForYieldUsingPriority( uxTaskPriority, xTaskCoreID, xCurCoreID, xYieldEqualPriority ) ( ( uxTaskPriority + ( ( xYieldEqualPriority == pdTRUE ) ? 1 : 0 ) ) >= pxCurrentTCB[ 0 ]->uxPriority )
|
|
|
-#endif /* configNUM_CORES > 1 */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/*
|
|
|
- * Check if a particular task (using its xCoreID) can run on a designated core.
|
|
|
- * On single core, this macro always evaluates to true.
|
|
|
- */
|
|
|
-#if ( configNUM_CORES > 1 )
|
|
|
- #define taskCAN_RUN_ON_CORE( xCore, xCoreID ) ( ( ( ( xCoreID ) == xCore ) || ( ( xCoreID ) == tskNO_AFFINITY ) ) ? pdTRUE : pdFALSE )
|
|
|
-#else
|
|
|
- #define taskCAN_RUN_ON_CORE( xCore, xCoreID ) ( pdTRUE )
|
|
|
-#endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
-/* Check if a task is a currently running task. */
|
|
|
-#if ( configNUM_CORES > 1 )
|
|
|
- #define taskIS_CURRENTLY_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB[ 0 ] ) || ( ( pxTCB ) == pxCurrentTCB[ 1 ] ) )
|
|
|
- #define taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCoreID ) ( ( pxTCB ) == pxCurrentTCB[ ( xCoreID ) ] )
|
|
|
-#else
|
|
|
- #define taskIS_CURRENTLY_RUNNING( pxTCB ) ( ( pxTCB ) == pxCurrentTCB[ 0 ] )
|
|
|
- #define taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCoreID ) taskIS_CURRENTLY_RUNNING( ( pxTCB ) )
|
|
|
-#endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
-/*
|
|
|
- * Check if a task can be scheduled on a core.
|
|
|
- * On a dual-core system:
|
|
|
- * - If a task is pinned, check the scheduler suspension state on the task's pinned core. The task can be scheduled
|
|
|
- * if the scheduler is not suspended on the pinned core.
|
|
|
- * - If a task is unpinned, check the scheduler suspension state on both cores. The task can be scheduled if the
|
|
|
- * scheduler is not suspended on either of the cores.
|
|
|
- * On a single-core system:
|
|
|
- * - Check the scheduler suspension state on core 0. The task can be scheduled if the scheduler is not suspended.
|
|
|
- */
|
|
|
-#if ( configNUM_CORES > 1 )
|
|
|
- #define taskCAN_BE_SCHEDULED( pxTCB ) \
|
|
|
- ( ( ( pxTCB->xCoreID != tskNO_AFFINITY ) ) ? ( uxSchedulerSuspended[ pxTCB->xCoreID ] == ( UBaseType_t ) 0U ) : \
|
|
|
- ( ( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) 0U ) || ( uxSchedulerSuspended[ 1 ] == ( UBaseType_t ) 0U ) ) )
|
|
|
-#else
|
|
|
- #define taskCAN_BE_SCHEDULED( pxTCB ) ( ( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) 0U ) )
|
|
|
-#endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
-/*
|
|
|
- * Several functions take a TaskHandle_t parameter that can optionally be NULL,
|
|
|
- * where NULL is used to indicate that the handle of the currently executing
|
|
|
- * task should be used in place of the parameter. This macro simply checks to
|
|
|
- * see if the parameter is NULL and returns a pointer to the appropriate TCB.
|
|
|
- */
|
|
|
-#if configNUM_CORES > 1
|
|
|
-/* In SMP, we need to disable interrupts if getting the current task handle outside a critical section. Calling xTaskGetCurrentTaskHandle() ensures this. */
|
|
|
- #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? xTaskGetCurrentTaskHandle() : ( ( TaskHandle_t ) pxHandle ) )
|
|
|
-#else
|
|
|
- #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TaskHandle_t ) pxCurrentTCB[ 0 ] : ( ( TaskHandle_t ) pxHandle ) )
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * There are various blocking tasks.c API that call configASSERT() to check if
|
|
|
- * the API is being called while the scheduler is suspended. However, these
|
|
|
- * asserts are done outside a critical section or interrupt disabled block.
|
|
|
- * Directly checking uxSchedulerSuspended[ xPortGetCoreID() ] outside a critical
|
|
|
- * section can lead to false positives in SMP. Thus for SMP, we call
|
|
|
- * xTaskGetSchedulerState() instead.
|
|
|
- *
|
|
|
- * Take the following example of an unpinned Task A in SMP calling
|
|
|
- * uxSchedulerSuspended[ xPortGetCoreID() ]:
|
|
|
- * - Task A calls xPortGetCoreID() which is 0
|
|
|
- * - Task A gets preempted by Task B, Task A switches to core 1
|
|
|
- * - Task B on core 0 calls vTaskSuspendAll()
|
|
|
- * - Task A checks uxSchedulerSuspended[ 0 ] leading to a false positive
|
|
|
- */
|
|
|
-#if ( configNUM_CORES > 1 )
|
|
|
- #define taskIS_SCHEDULER_SUSPENDED() ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED )
|
|
|
-#else
|
|
|
- #define taskIS_SCHEDULER_SUSPENDED() ( ( uxSchedulerSuspended[ 0 ] != ( UBaseType_t ) 0U ) )
|
|
|
-#endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
-/* The item value of the event list item is normally used to hold the priority
|
|
|
- * of the task to which it belongs (coded to allow it to be held in reverse
|
|
|
- * priority order). However, it is occasionally borrowed for other purposes. It
|
|
|
- * is important its value is not updated due to a task priority change while it is
|
|
|
- * being used for another purpose. The following bit definition is used to inform
|
|
|
- * the scheduler that the value should not be changed - in which case it is the
|
|
|
- * responsibility of whichever module is using the value to ensure it gets set back
|
|
|
- * to its original value when it is released. */
|
|
|
-#if ( configUSE_16_BIT_TICKS == 1 )
|
|
|
- #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
|
|
|
-#else
|
|
|
- #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Task control block. A task control block (TCB) is allocated for each task,
|
|
|
- * and stores task state information, including a pointer to the task's context
|
|
|
- * (the task's run time environment, including register values)
|
|
|
- */
|
|
|
-typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
|
|
|
-{
|
|
|
- volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
|
|
|
-
|
|
|
- #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
- xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
|
|
|
- #endif
|
|
|
-
|
|
|
- ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
|
|
|
- ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
|
|
|
- UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
|
|
|
- StackType_t * pxStack; /*< Points to the start of the stack. */
|
|
|
- char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
- BaseType_t xCoreID; /*< Core this task is pinned to */
|
|
|
-
|
|
|
- #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
|
|
|
- StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
- UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
- UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
|
|
|
- UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
|
|
|
- UBaseType_t uxMutexesHeld;
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
- TaskHookFunction_t pxTaskTag;
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
|
|
|
- void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
-
|
|
|
- /* Allocate a Newlib reent structure that is specific to this task.
|
|
|
- * Note Newlib support has been included by popular demand, but is not
|
|
|
- * used by the FreeRTOS maintainers themselves. FreeRTOS is not
|
|
|
- * responsible for resulting newlib operation. User must be familiar with
|
|
|
- * newlib and must provide system-wide implementations of the necessary
|
|
|
- * stubs. Be warned that (at the time of writing) the current newlib design
|
|
|
- * implements a system-wide malloc() that must be provided with locks.
|
|
|
- *
|
|
|
- * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
- * for additional information. */
|
|
|
- struct _reent xNewLib_reent;
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
- volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
|
|
|
- volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
|
|
|
- #endif
|
|
|
-
|
|
|
- /* See the comments in FreeRTOS.h with the definition of
|
|
|
- * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
|
|
|
- #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
|
|
|
- uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
- uint8_t ucDelayAborted;
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
- int iTaskErrno;
|
|
|
- #endif
|
|
|
-} tskTCB;
|
|
|
-
|
|
|
-/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
|
|
|
- * below to enable the use of older kernel aware debuggers. */
|
|
|
-typedef tskTCB TCB_t;
|
|
|
-
|
|
|
-/*lint -save -e956 A manual analysis and inspection has been used to determine
|
|
|
- * which static variables must be declared volatile. */
|
|
|
-PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB[ configNUM_CORES ] = { NULL };
|
|
|
-
|
|
|
-/* Lists for ready and blocked tasks. --------------------
|
|
|
- * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
|
|
|
- * doing so breaks some kernel aware debuggers and debuggers that rely on removing
|
|
|
- * the static qualifier. */
|
|
|
-PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
|
|
|
-PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
|
|
|
-PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
|
|
|
-PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
|
|
|
-PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
|
|
|
-PRIVILEGED_DATA static List_t xPendingReadyList[ configNUM_CORES ]; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
|
|
|
-
|
|
|
-/* Spinlock required for SMP critical sections. This lock protects all of the
|
|
|
- * kernel's data structures such as various tasks lists, flags, and tick counts. */
|
|
|
-PRIVILEGED_DATA static portMUX_TYPE xKernelLock = portMUX_INITIALIZER_UNLOCKED;
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
-
|
|
|
- PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
|
|
|
- PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Global POSIX errno. Its value is changed upon context switching to match
|
|
|
- * the errno of the currently running task. */
|
|
|
-#if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
- int FreeRTOS_errno = 0;
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Other file private variables. --------------------------------*/
|
|
|
-PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
|
|
|
-PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
|
|
|
-PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
|
|
|
-PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
|
|
|
-PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
|
|
|
-PRIVILEGED_DATA static volatile BaseType_t xYieldPending[ configNUM_CORES ] = { pdFALSE };
|
|
|
-PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
|
|
|
-PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
|
|
|
-PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
|
|
|
-PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle[ configNUM_CORES ] = { NULL }; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
|
|
|
-
|
|
|
-/* Context switches are held pending while the scheduler is suspended. Also,
|
|
|
- * interrupts must not manipulate the xStateListItem of a TCB, or any of the
|
|
|
- * lists the xStateListItem can be referenced from, if the scheduler is suspended.
|
|
|
- * If an interrupt needs to unblock a task while the scheduler is suspended then it
|
|
|
- * moves the task's event list item into the xPendingReadyList, ready for the
|
|
|
- * kernel to move the task from the pending ready list into the real ready list
|
|
|
- * when the scheduler is unsuspended. The pending ready list itself can only be
|
|
|
- * accessed from a critical section. */
|
|
|
-PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended[ configNUM_CORES ] = { ( UBaseType_t ) 0U };
|
|
|
-
|
|
|
-#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
-
|
|
|
-/* Do not move these variables to function scope as doing so prevents the
|
|
|
- * code working with debuggers that need to remove the static qualifier. */
|
|
|
- PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime[ configNUM_CORES ] = { 0U }; /*< Holds the value of a timer/counter the last time a task was switched in. */
|
|
|
- PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/* per-CPU flags indicating that we are doing context switch, it is used by apptrace and sysview modules */
|
|
|
-/* in order to avoid calls of vPortYield from traceTASK_SWITCHED_IN/OUT when waiting */
|
|
|
-/* for locks to be free or for host to read full trace buffer */
|
|
|
-PRIVILEGED_DATA static volatile BaseType_t xSwitchingContext[ configNUM_CORES ] = { pdFALSE };
|
|
|
-
|
|
|
-/*lint -restore */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* File private functions. --------------------------------*/
|
|
|
-
|
|
|
-/*
|
|
|
- * Creates the idle tasks during scheduler start.
|
|
|
- */
|
|
|
-static BaseType_t prvCreateIdleTasks( void );
|
|
|
-
|
|
|
-/**
|
|
|
- * Utility task that simply returns pdTRUE if the task referenced by xTask is
|
|
|
- * currently in the Suspended state, or pdFALSE if the task referenced by xTask
|
|
|
- * is in any other state.
|
|
|
- */
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskSuspend */
|
|
|
-
|
|
|
-/*
|
|
|
- * Utility to ready all the lists used by the scheduler. This is called
|
|
|
- * automatically upon the creation of the first task.
|
|
|
- */
|
|
|
-static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * The idle task, which as all tasks is implemented as a never ending loop.
|
|
|
- * The idle task is automatically created and added to the ready lists upon
|
|
|
- * creation of the first user task.
|
|
|
- *
|
|
|
- * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
|
|
|
- * language extensions. The equivalent prototype for this function is:
|
|
|
- *
|
|
|
- * void prvIdleTask( void *pvParameters );
|
|
|
- *
|
|
|
- */
|
|
|
-static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * Utility to free all memory allocated by the scheduler to hold a TCB,
|
|
|
- * including the stack pointed to by the TCB.
|
|
|
- *
|
|
|
- * This does not free memory allocated by the task itself (i.e. memory
|
|
|
- * allocated by calls to pvPortMalloc from within the tasks application code).
|
|
|
- */
|
|
|
-#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
-
|
|
|
- static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Used only by the idle task. This checks to see if anything has been placed
|
|
|
- * in the list of tasks waiting to be deleted. If so the task is cleaned up
|
|
|
- * and its TCB deleted.
|
|
|
- */
|
|
|
-static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * The currently executing task is entering the Blocked state. Add the task to
|
|
|
- * either the current or the overflow delayed task list.
|
|
|
- */
|
|
|
-static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
|
|
|
- const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * Fills an TaskStatus_t structure with information on each task that is
|
|
|
- * referenced from the pxList list (which may be a ready list, a delayed list,
|
|
|
- * a suspended list, etc.).
|
|
|
- *
|
|
|
- * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
|
|
|
- * NORMAL APPLICATION CODE.
|
|
|
- */
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
|
|
|
- List_t * pxList,
|
|
|
- eTaskState eState ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Searches pxList for a task with name pcNameToQuery - returning a handle to
|
|
|
- * the task if it is found, or NULL if the task is not found.
|
|
|
- */
|
|
|
-#if ( INCLUDE_xTaskGetHandle == 1 )
|
|
|
-
|
|
|
- static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
|
|
|
- const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * When a task is created, the stack of the task is filled with a known value.
|
|
|
- * This function determines the 'high water mark' of the task stack by
|
|
|
- * determining how much of the stack remains at the original preset value.
|
|
|
- */
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
|
|
|
-
|
|
|
- static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Return the amount of time, in ticks, that will pass before the kernel will
|
|
|
- * next move a task from the Blocked state to the Running state.
|
|
|
- *
|
|
|
- * This conditional compilation should use inequality to 0, not equality to 1.
|
|
|
- * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
|
|
|
- * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
|
|
|
- * set to a value other than 1.
|
|
|
- */
|
|
|
-#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
-
|
|
|
- static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Set xNextTaskUnblockTime to the time at which the next Blocked state task
|
|
|
- * will exit the Blocked state.
|
|
|
- */
|
|
|
-static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
-
|
|
|
-/*
|
|
|
- * Helper function used to pad task names with spaces when printing out
|
|
|
- * human readable tables of task information.
|
|
|
- */
|
|
|
- static char * prvWriteNameToBuffer( char * pcBuffer,
|
|
|
- const char * pcTaskName ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Called after a Task_t structure has been allocated either statically or
|
|
|
- * dynamically to fill in the structure's members.
|
|
|
- */
|
|
|
-static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
|
|
|
- const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
- const uint32_t ulStackDepth,
|
|
|
- void * const pvParameters,
|
|
|
- UBaseType_t uxPriority,
|
|
|
- TaskHandle_t * const pxCreatedTask,
|
|
|
- TCB_t * pxNewTCB,
|
|
|
- const MemoryRegion_t * const xRegions,
|
|
|
- BaseType_t xCoreID ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-/*
|
|
|
- * Called after a new task has been created and initialised to place the task
|
|
|
- * under the control of the scheduler.
|
|
|
- */
|
|
|
-static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
-/*
|
|
|
- * Check whether a yield (on either core) is required after unblocking (or
|
|
|
- * changing the priority of) a particular task.
|
|
|
- *
|
|
|
- * - This function is the SMP replacement for checking if an unblocked task has
|
|
|
- * a higher (or equal) priority than the current task.
|
|
|
- * - It should be called before calling taskYIELD_IF_USING_PREEMPTION() or
|
|
|
- * before setting xYieldRequired
|
|
|
- * - If it is the other core that requires a yield, this function will
|
|
|
- * internally trigger the other core to yield
|
|
|
- *
|
|
|
- * Note: In some special instances, a yield is triggered if the unblocked task
|
|
|
- * has an equal priority (such as in xTaskResumeAll). Thus the
|
|
|
- * xYieldEqualPriority parameter specifies whether to yield if the current
|
|
|
- * task has equal priority.
|
|
|
- *
|
|
|
- * Scheduling Algorithm:
|
|
|
- * This function will bias towards yielding the current core.
|
|
|
- * - If the unblocked task has a higher (or equal) priority than the current
|
|
|
- * core, the current core is yielded regardless of the current priority of the
|
|
|
- * other core.
|
|
|
- * - A core (current or other) will only yield if their schedulers are not
|
|
|
- * suspended.
|
|
|
- *
|
|
|
- * Todo: This can be optimized (IDF-5772)
|
|
|
- *
|
|
|
- * Entry:
|
|
|
- * - This function must be called in a critical section
|
|
|
- * - A task must just have been unblocked, or its priority raised
|
|
|
- * Exit:
|
|
|
- * - Returns pdTRUE if the current core requires yielding
|
|
|
- * - The other core will be triggered to yield if required
|
|
|
- */
|
|
|
- static BaseType_t prvCheckForYieldUsingPrioritySMP( UBaseType_t uxTaskPriority,
|
|
|
- BaseType_t xTaskCoreID,
|
|
|
- BaseType_t xCurCoreID,
|
|
|
- BaseType_t xYieldEqualPriority ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
-/*
|
|
|
- * freertos_tasks_c_additions_init() should only be called if the user definable
|
|
|
- * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
|
|
|
- * called by the function.
|
|
|
- */
|
|
|
-#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
|
|
|
-
|
|
|
- static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
|
|
|
-
|
|
|
- BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
|
|
|
- TaskHandle_t * pxCreatedTask )
|
|
|
- {
|
|
|
- TCB_t * pxNewTCB;
|
|
|
- BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
|
|
-
|
|
|
- configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
|
|
|
- configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
|
|
|
-
|
|
|
- if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
|
|
|
- {
|
|
|
- /* Allocate space for the TCB. Where the memory comes from depends
|
|
|
- * on the implementation of the port malloc function and whether or
|
|
|
- * not static allocation is being used. */
|
|
|
- pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
|
|
|
-
|
|
|
- /* Store the stack location in the TCB. */
|
|
|
- pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
|
|
|
-
|
|
|
- #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
|
|
|
- {
|
|
|
- /* Tasks can be created statically or dynamically, so note this
|
|
|
- * task was created statically in case the task is later deleted. */
|
|
|
- pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
|
|
|
- }
|
|
|
- #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
-
|
|
|
- prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
|
|
|
- pxTaskDefinition->pcName,
|
|
|
- ( uint32_t ) pxTaskDefinition->usStackDepth,
|
|
|
- pxTaskDefinition->pvParameters,
|
|
|
- pxTaskDefinition->uxPriority,
|
|
|
- pxCreatedTask, pxNewTCB,
|
|
|
- pxTaskDefinition->xRegions,
|
|
|
- tskNO_AFFINITY );
|
|
|
-
|
|
|
- prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
|
|
-
|
|
|
- BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
|
|
|
- TaskHandle_t * pxCreatedTask )
|
|
|
- {
|
|
|
- TCB_t * pxNewTCB;
|
|
|
- BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
|
|
-
|
|
|
- configASSERT( pxTaskDefinition->puxStackBuffer );
|
|
|
-
|
|
|
- if( pxTaskDefinition->puxStackBuffer != NULL )
|
|
|
- {
|
|
|
- /* Allocate space for the TCB. Where the memory comes from depends
|
|
|
- * on the implementation of the port malloc function and whether or
|
|
|
- * not static allocation is being used. */
|
|
|
- pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
|
|
|
-
|
|
|
- if( pxNewTCB != NULL )
|
|
|
- {
|
|
|
- /* Store the stack location in the TCB. */
|
|
|
- pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
|
|
|
-
|
|
|
- #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
|
|
|
- {
|
|
|
- /* Tasks can be created statically or dynamically, so note
|
|
|
- * this task had a statically allocated stack in case it is
|
|
|
- * later deleted. The TCB was allocated dynamically. */
|
|
|
- pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
|
|
|
- }
|
|
|
- #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
|
|
|
-
|
|
|
- prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
|
|
|
- pxTaskDefinition->pcName,
|
|
|
- ( uint32_t ) pxTaskDefinition->usStackDepth,
|
|
|
- pxTaskDefinition->pvParameters,
|
|
|
- pxTaskDefinition->uxPriority,
|
|
|
- pxCreatedTask, pxNewTCB,
|
|
|
- pxTaskDefinition->xRegions,
|
|
|
- tskNO_AFFINITY );
|
|
|
-
|
|
|
- prvAddNewTaskToReadyList( pxNewTCB );
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* portUSING_MPU_WRAPPERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
|
|
|
- const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
- const uint32_t ulStackDepth,
|
|
|
- void * const pvParameters,
|
|
|
- UBaseType_t uxPriority,
|
|
|
- TaskHandle_t * const pxCreatedTask,
|
|
|
- TCB_t * pxNewTCB,
|
|
|
- const MemoryRegion_t * const xRegions,
|
|
|
- BaseType_t xCoreID )
|
|
|
-{
|
|
|
- StackType_t * pxTopOfStack;
|
|
|
- UBaseType_t x;
|
|
|
-
|
|
|
- #if ( configNUM_CORES == 1 )
|
|
|
- {
|
|
|
- xCoreID = 0;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
- /* Should the task be created in privileged mode? */
|
|
|
- BaseType_t xRunPrivileged;
|
|
|
-
|
|
|
- if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
|
|
|
- {
|
|
|
- xRunPrivileged = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xRunPrivileged = pdFALSE;
|
|
|
- }
|
|
|
- uxPriority &= ~portPRIVILEGE_BIT;
|
|
|
- #endif /* portUSING_MPU_WRAPPERS == 1 */
|
|
|
-
|
|
|
- /* Avoid dependency on memset() if it is not required. */
|
|
|
- #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
|
|
|
- {
|
|
|
- /* Fill the stack with a known value to assist debugging. */
|
|
|
- ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
|
|
|
- }
|
|
|
- #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
|
|
|
-
|
|
|
- #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
- {
|
|
|
- /* Zero the uxTaskNumber TCB member to avoid random value from dynamically allocated TCBs */
|
|
|
- pxNewTCB->uxTaskNumber = 0;
|
|
|
- }
|
|
|
- #endif /* ( configUSE_TRACE_FACILITY == 1 ) */
|
|
|
-
|
|
|
- /* Calculate the top of stack address. This depends on whether the stack
|
|
|
- * grows from high memory to low (as per the 80x86) or vice versa.
|
|
|
- * portSTACK_GROWTH is used to make the result positive or negative as required
|
|
|
- * by the port. */
|
|
|
- #if ( portSTACK_GROWTH < 0 )
|
|
|
- {
|
|
|
- pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
|
|
|
- pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */
|
|
|
-
|
|
|
- /* Check the alignment of the calculated top of stack is correct. */
|
|
|
- configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
|
|
-
|
|
|
- #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
|
|
|
- {
|
|
|
- /* Also record the stack's high address, which may assist
|
|
|
- * debugging. */
|
|
|
- pxNewTCB->pxEndOfStack = pxTopOfStack;
|
|
|
- }
|
|
|
- #endif /* configRECORD_STACK_HIGH_ADDRESS */
|
|
|
- }
|
|
|
- #else /* portSTACK_GROWTH */
|
|
|
- {
|
|
|
- pxTopOfStack = pxNewTCB->pxStack;
|
|
|
-
|
|
|
- /* Check the alignment of the stack buffer is correct. */
|
|
|
- configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
|
|
-
|
|
|
- /* The other extreme of the stack space is required if stack checking is
|
|
|
- * performed. */
|
|
|
- pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
|
|
|
- }
|
|
|
- #endif /* portSTACK_GROWTH */
|
|
|
-
|
|
|
- /* Store the task name in the TCB. */
|
|
|
- if( pcName != NULL )
|
|
|
- {
|
|
|
- for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
|
|
- {
|
|
|
- pxNewTCB->pcTaskName[ x ] = pcName[ x ];
|
|
|
-
|
|
|
- /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
|
|
|
- * configMAX_TASK_NAME_LEN characters just in case the memory after the
|
|
|
- * string is not accessible (extremely unlikely). */
|
|
|
- if( pcName[ x ] == ( char ) 0x00 )
|
|
|
- {
|
|
|
- break;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Ensure the name string is terminated in the case that the string length
|
|
|
- * was greater or equal to configMAX_TASK_NAME_LEN. */
|
|
|
- pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The task has not been given a name, so just ensure there is a NULL
|
|
|
- * terminator when it is read out. */
|
|
|
- pxNewTCB->pcTaskName[ 0 ] = 0x00;
|
|
|
- }
|
|
|
-
|
|
|
- /* This is used as an array index so must ensure it's not too large. First
|
|
|
- * remove the privilege bit if one is present. */
|
|
|
- if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
|
|
- {
|
|
|
- uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- pxNewTCB->uxPriority = uxPriority;
|
|
|
- pxNewTCB->xCoreID = xCoreID;
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->uxBasePriority = uxPriority;
|
|
|
- pxNewTCB->uxMutexesHeld = 0;
|
|
|
- }
|
|
|
- #endif /* configUSE_MUTEXES */
|
|
|
-
|
|
|
- vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
|
|
|
- vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
|
|
|
-
|
|
|
- /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
|
|
|
- * back to the containing TCB from a generic item in a list. */
|
|
|
- listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
|
|
|
-
|
|
|
- /* Event lists are always in priority order. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
|
|
|
-
|
|
|
- #if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
|
|
|
- }
|
|
|
- #endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
-
|
|
|
- #if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->pxTaskTag = NULL;
|
|
|
- }
|
|
|
- #endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->ulRunTimeCounter = 0UL;
|
|
|
- }
|
|
|
- #endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
-
|
|
|
- #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
- {
|
|
|
- vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- /* Avoid compiler warning about unreferenced parameter. */
|
|
|
- ( void ) xRegions;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
- {
|
|
|
- for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
|
|
|
- {
|
|
|
- pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL;
|
|
|
- }
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
- {
|
|
|
- memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
|
|
|
- memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
- {
|
|
|
- /* Initialise this task's Newlib reent structure. */
|
|
|
- _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
- {
|
|
|
- pxNewTCB->ucDelayAborted = pdFALSE;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Initialize the TCB stack to look as if the task was already running,
|
|
|
- * but had been interrupted by the scheduler. The return address is set
|
|
|
- * to the start of the task function. Once the stack has been initialised
|
|
|
- * the top of stack variable is updated. */
|
|
|
- #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
- {
|
|
|
- /* If the port has capability to detect stack overflow,
|
|
|
- * pass the stack end address to the stack initialization
|
|
|
- * function as well. */
|
|
|
- #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
|
|
|
- {
|
|
|
- #if ( portSTACK_GROWTH < 0 )
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
|
- }
|
|
|
- #else /* portSTACK_GROWTH */
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
|
- }
|
|
|
- #endif /* portSTACK_GROWTH */
|
|
|
- }
|
|
|
- #else /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
|
|
|
- }
|
|
|
- #endif /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
- }
|
|
|
- #else /* portUSING_MPU_WRAPPERS */
|
|
|
- {
|
|
|
- /* If the port has capability to detect stack overflow,
|
|
|
- * pass the stack end address to the stack initialization
|
|
|
- * function as well. */
|
|
|
- #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
|
|
|
- {
|
|
|
- #if ( portSTACK_GROWTH < 0 )
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
|
|
|
- }
|
|
|
- #else /* portSTACK_GROWTH */
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
|
|
|
- }
|
|
|
- #endif /* portSTACK_GROWTH */
|
|
|
- }
|
|
|
- #else /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
- {
|
|
|
- pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
|
|
|
- }
|
|
|
- #endif /* portHAS_STACK_OVERFLOW_CHECKING */
|
|
|
- }
|
|
|
- #endif /* portUSING_MPU_WRAPPERS */
|
|
|
-
|
|
|
- if( pxCreatedTask != NULL )
|
|
|
- {
|
|
|
- /* Pass the handle out in an anonymous way. The handle can be used to
|
|
|
- * change the created task's priority, delete the created task, etc.*/
|
|
|
- *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
|
|
|
-{
|
|
|
- /* Ensure interrupts don't access the task lists while the lists are being
|
|
|
- * updated. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- uxCurrentNumberOfTasks++;
|
|
|
-
|
|
|
- if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
|
|
|
- {
|
|
|
- /* This is the first task to be created so do the preliminary
|
|
|
- * initialisation required. We will not recover if this call
|
|
|
- * fails, but we will report the failure. */
|
|
|
- prvInitialiseTaskLists();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- if( ( pxCurrentTCB[ 0 ] == NULL ) && ( taskCAN_RUN_ON_CORE( 0, pxNewTCB->xCoreID ) == pdTRUE ) )
|
|
|
- {
|
|
|
- /* On core 0, there are no other tasks, or all the other tasks
|
|
|
- * are in the suspended state - make this the current task. */
|
|
|
- pxCurrentTCB[ 0 ] = pxNewTCB;
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- else if( ( pxCurrentTCB[ 1 ] == NULL ) && ( taskCAN_RUN_ON_CORE( 1, pxNewTCB->xCoreID ) == pdTRUE ) )
|
|
|
- {
|
|
|
- /* On core 1, there are no other tasks, or all the other tasks
|
|
|
- * are in the suspended state - make this the current task. */
|
|
|
- pxCurrentTCB[ 1 ] = pxNewTCB;
|
|
|
- }
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- else
|
|
|
- {
|
|
|
- /* If the scheduler is not already running, make this task the
|
|
|
- * current task if it is the highest priority task to be created
|
|
|
- * so far. */
|
|
|
- if( xSchedulerRunning == pdFALSE )
|
|
|
- {
|
|
|
- if( ( pxCurrentTCB[ 0 ] != NULL ) &&
|
|
|
- ( taskCAN_RUN_ON_CORE( 0, pxNewTCB->xCoreID ) == pdTRUE ) &&
|
|
|
- ( pxCurrentTCB[ 0 ]->uxPriority <= pxNewTCB->uxPriority ) )
|
|
|
- {
|
|
|
- pxCurrentTCB[ 0 ] = pxNewTCB;
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- else if( ( pxCurrentTCB[ 1 ] != NULL ) &&
|
|
|
- ( taskCAN_RUN_ON_CORE( 1, pxNewTCB->xCoreID ) == pdTRUE ) &&
|
|
|
- ( pxCurrentTCB[ 1 ]->uxPriority <= pxNewTCB->uxPriority ) )
|
|
|
- {
|
|
|
- pxCurrentTCB[ 1 ] = pxNewTCB;
|
|
|
- }
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- uxTaskNumber++;
|
|
|
-
|
|
|
- #if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
- {
|
|
|
- /* Add a counter into the TCB for tracing only. */
|
|
|
- pxNewTCB->uxTCBNumber = uxTaskNumber;
|
|
|
- }
|
|
|
- #endif /* configUSE_TRACE_FACILITY */
|
|
|
- traceTASK_CREATE( pxNewTCB );
|
|
|
-
|
|
|
- prvAddTaskToReadyList( pxNewTCB );
|
|
|
-
|
|
|
- portSETUP_TCB( pxNewTCB );
|
|
|
-
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- /* If the created task is of a higher priority than the current task
|
|
|
- * then it should run now. */
|
|
|
- if( prvCheckForYield( pxNewTCB, xPortGetCoreID(), pdTRUE ) )
|
|
|
- {
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- static BaseType_t prvCheckForYieldUsingPrioritySMP( UBaseType_t uxTaskPriority,
|
|
|
- BaseType_t xTaskCoreID,
|
|
|
- BaseType_t xCurCoreID,
|
|
|
- BaseType_t xYieldEqualPriority )
|
|
|
- {
|
|
|
- if( xYieldEqualPriority == pdTRUE )
|
|
|
- {
|
|
|
- /* Increment the task priority to achieve the same affect as if( uxTaskPriority >= pxCurrentTCB->uxPriority ) */
|
|
|
- uxTaskPriority++;
|
|
|
- }
|
|
|
-
|
|
|
- /* Indicate whether the current core needs to yield */
|
|
|
- BaseType_t xYieldRequiredCurrentCore;
|
|
|
-
|
|
|
- /* If the target task can run on the current core, and has a higher priority than the current core, and the core has not suspended scheduling, then yield the current core */
|
|
|
- if( ( ( xTaskCoreID == xCurCoreID ) || ( xTaskCoreID == tskNO_AFFINITY ) ) &&
|
|
|
- ( uxTaskPriority > pxCurrentTCB[ xCurCoreID ]->uxPriority ) &&
|
|
|
- ( uxSchedulerSuspended[ xCurCoreID ] == ( UBaseType_t ) 0U ) )
|
|
|
- {
|
|
|
- /* Return true for the caller to yield the current core */
|
|
|
- xYieldRequiredCurrentCore = pdTRUE;
|
|
|
- }
|
|
|
- /* If the target task can run on the other core, and has a higher priority then the other core, and the other core has not suspended scheduling, then yield the other core */
|
|
|
- else if( ( ( xTaskCoreID == !xCurCoreID ) || ( xTaskCoreID == tskNO_AFFINITY ) ) &&
|
|
|
- ( uxTaskPriority > pxCurrentTCB[ !xCurCoreID ]->uxPriority ) &&
|
|
|
- ( uxSchedulerSuspended[ !xCurCoreID ] == ( UBaseType_t ) 0U ) )
|
|
|
- {
|
|
|
- /* Signal the other core to yield */
|
|
|
- vPortYieldOtherCore( !xCurCoreID );
|
|
|
- xYieldRequiredCurrentCore = pdFALSE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xYieldRequiredCurrentCore = pdFALSE;
|
|
|
- }
|
|
|
-
|
|
|
- return xYieldRequiredCurrentCore;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configNUM_CORES > 1 */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
-
|
|
|
- void vTaskDelete( TaskHandle_t xTaskToDelete )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- BaseType_t xFreeNow;
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- BaseType_t xCurCoreID;
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- xCurCoreID = xPortGetCoreID();
|
|
|
- #else
|
|
|
- xCurCoreID = 0;
|
|
|
- ( void ) xCurCoreID;
|
|
|
- #endif
|
|
|
-
|
|
|
- /* If null is passed in here then it is the calling task that is
|
|
|
- * being deleted. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToDelete );
|
|
|
-
|
|
|
- /* Remove task from the ready/delayed list. */
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Is the task waiting on an event also? */
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Increment the uxTaskNumber also so kernel aware debuggers can
|
|
|
- * detect that the task lists need re-generating. This is done before
|
|
|
- * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
|
|
|
- * not return. */
|
|
|
- uxTaskNumber++;
|
|
|
-
|
|
|
- /* We cannot free the task immediately if it is currently running (on either core) */
|
|
|
- xFreeNow = ( taskIS_CURRENTLY_RUNNING( pxTCB ) ) ? pdFALSE : pdTRUE;
|
|
|
- if( xFreeNow == pdFALSE )
|
|
|
- {
|
|
|
- /* A task is deleting itself. This cannot complete within the
|
|
|
- * task itself, as a context switch to another task is required.
|
|
|
- * Place the task in the termination list. The idle task will
|
|
|
- * check the termination list and free up any memory allocated by
|
|
|
- * the scheduler for the TCB and stack of the deleted task. */
|
|
|
- vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- /* Increment the ucTasksDeleted variable so the idle task knows
|
|
|
- * there is a task that has been deleted and that it should therefore
|
|
|
- * check the xTasksWaitingTermination list. */
|
|
|
- ++uxDeletedTasksWaitingCleanUp;
|
|
|
-
|
|
|
- /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
|
|
|
- * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
|
|
|
- traceTASK_DELETE( pxTCB );
|
|
|
-
|
|
|
- /* The pre-delete hook is primarily for the Windows simulator,
|
|
|
- * in which Windows specific clean up operations are performed,
|
|
|
- * after which it is not possible to yield away from this task -
|
|
|
- * hence xYieldPending is used to latch that a context switch is
|
|
|
- * required. */
|
|
|
- portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending[ xCurCoreID ] );
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, !xCurCoreID ) )
|
|
|
- {
|
|
|
- /* SMP case of deleting a task currently running on a different core. Same issue
|
|
|
- * as a task deleting itself, but we need to send a yield to this task now
|
|
|
- * before we release xKernelLock.
|
|
|
- *
|
|
|
- * Specifically there is a case where the other core may already be spinning on
|
|
|
- * xKernelLock waiting to go into a blocked state. A check is added in
|
|
|
- * prvAddCurrentTaskToDelayedList() to prevent it from removing itself from
|
|
|
- * xTasksWaitingTermination list in this case (instead it will immediately
|
|
|
- * release xKernelLock again and be yielded before the FreeRTOS function
|
|
|
- * returns.) */
|
|
|
- vPortYieldOtherCore( !xCurCoreID );
|
|
|
- }
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- --uxCurrentNumberOfTasks;
|
|
|
- traceTASK_DELETE( pxTCB );
|
|
|
-
|
|
|
- /* Reset the next expected unblock time in case it referred to
|
|
|
- * the task that has just been deleted. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- if( xFreeNow == pdTRUE )
|
|
|
- {
|
|
|
- prvDeleteTCB( pxTCB );
|
|
|
- }
|
|
|
-
|
|
|
- /* Force a reschedule if it is the currently running task that has just
|
|
|
- * been deleted. */
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xPortGetCoreID() ) )
|
|
|
- {
|
|
|
- configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) 0U );
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskDelete */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskDelayUntil == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
|
|
|
- const TickType_t xTimeIncrement )
|
|
|
- {
|
|
|
- TickType_t xTimeToWake;
|
|
|
- BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
|
|
|
-
|
|
|
- configASSERT( pxPreviousWakeTime );
|
|
|
- configASSERT( ( xTimeIncrement > 0U ) );
|
|
|
- configASSERT( !taskIS_SCHEDULER_SUSPENDED() );
|
|
|
-
|
|
|
- prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
|
|
|
- {
|
|
|
- /* Minor optimisation. The tick count cannot change in this
|
|
|
- * block. */
|
|
|
- const TickType_t xConstTickCount = xTickCount;
|
|
|
-
|
|
|
- /* Generate the tick time at which the task wants to wake. */
|
|
|
- xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
|
|
|
-
|
|
|
- if( xConstTickCount < *pxPreviousWakeTime )
|
|
|
- {
|
|
|
- /* The tick count has overflowed since this function was
|
|
|
- * lasted called. In this case the only time we should ever
|
|
|
- * actually delay is if the wake time has also overflowed,
|
|
|
- * and the wake time is greater than the tick time. When this
|
|
|
- * is the case it is as if neither time had overflowed. */
|
|
|
- if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
|
|
|
- {
|
|
|
- xShouldDelay = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The tick time has not overflowed. In this case we will
|
|
|
- * delay if either the wake time has overflowed, and/or the
|
|
|
- * tick time is less than the wake time. */
|
|
|
- if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
|
|
|
- {
|
|
|
- xShouldDelay = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Update the wake time ready for the next call. */
|
|
|
- *pxPreviousWakeTime = xTimeToWake;
|
|
|
-
|
|
|
- if( xShouldDelay != pdFALSE )
|
|
|
- {
|
|
|
- traceTASK_DELAY_UNTIL( xTimeToWake );
|
|
|
-
|
|
|
- /* prvAddCurrentTaskToDelayedList() needs the block time, not
|
|
|
- * the time to wake, so subtract the current tick count. */
|
|
|
- prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- xAlreadyYielded = prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
|
|
|
-
|
|
|
- /* Force a reschedule if xTaskResumeAll has not already done so, we may
|
|
|
- * have put ourselves to sleep. */
|
|
|
- if( xAlreadyYielded == pdFALSE )
|
|
|
- {
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return xShouldDelay;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskDelayUntil */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskDelay == 1 )
|
|
|
-
|
|
|
- void vTaskDelay( const TickType_t xTicksToDelay )
|
|
|
- {
|
|
|
- BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
-
|
|
|
- /* A delay time of zero just forces a reschedule. */
|
|
|
- if( xTicksToDelay > ( TickType_t ) 0U )
|
|
|
- {
|
|
|
- configASSERT( !taskIS_SCHEDULER_SUSPENDED() );
|
|
|
- prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
|
|
|
- {
|
|
|
- traceTASK_DELAY();
|
|
|
-
|
|
|
- /* A task that is removed from the event list while the
|
|
|
- * scheduler is suspended will not get placed in the ready
|
|
|
- * list or removed from the blocked list until the scheduler
|
|
|
- * is resumed.
|
|
|
- *
|
|
|
- * This task cannot be in an event list as it is the currently
|
|
|
- * executing task. */
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
|
|
|
- }
|
|
|
- xAlreadyYielded = prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Force a reschedule if xTaskResumeAll has not already done so, we may
|
|
|
- * have put ourselves to sleep. */
|
|
|
- if( xAlreadyYielded == pdFALSE )
|
|
|
- {
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskDelay */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
|
|
|
-
|
|
|
- eTaskState eTaskGetState( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- eTaskState eReturn;
|
|
|
- List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
|
|
|
- const TCB_t * const pxTCB = xTask;
|
|
|
-
|
|
|
- configASSERT( pxTCB );
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock ); /*Need critical section incase either core context switches in between */
|
|
|
-
|
|
|
- if( taskIS_CURRENTLY_RUNNING( pxTCB ) )
|
|
|
- {
|
|
|
- /* The task calling this function is querying its own state. */
|
|
|
- eReturn = eRunning;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
|
|
|
- pxDelayedList = pxDelayedTaskList;
|
|
|
- pxOverflowedDelayedList = pxOverflowDelayedTaskList;
|
|
|
-
|
|
|
- if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
|
|
|
- {
|
|
|
- /* The task being queried is referenced from one of the Blocked
|
|
|
- * lists. */
|
|
|
- eReturn = eBlocked;
|
|
|
- }
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- else if( pxStateList == &xSuspendedTaskList )
|
|
|
- {
|
|
|
- /* The task being queried is referenced from the suspended
|
|
|
- * list. Is it genuinely suspended or is it blocked
|
|
|
- * indefinitely? */
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
|
|
|
- {
|
|
|
- #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
- {
|
|
|
- BaseType_t x;
|
|
|
-
|
|
|
- /* The task does not appear on the event list item of
|
|
|
- * and of the RTOS objects, but could still be in the
|
|
|
- * blocked state if it is waiting on its notification
|
|
|
- * rather than waiting on an object. If not, is
|
|
|
- * suspended. */
|
|
|
- eReturn = eSuspended;
|
|
|
-
|
|
|
- for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
|
|
|
- {
|
|
|
- if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- eReturn = eBlocked;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
|
|
|
- {
|
|
|
- eReturn = eSuspended;
|
|
|
- }
|
|
|
- #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- eReturn = eBlocked;
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
|
|
|
- {
|
|
|
- /* The task being queried is referenced from the deleted
|
|
|
- * tasks list, or it is not referenced from any lists at
|
|
|
- * all. */
|
|
|
- eReturn = eDeleted;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
|
|
|
- {
|
|
|
- /* If the task is not in any other state, it must be in the
|
|
|
- * Ready (including pending ready) state. */
|
|
|
- eReturn = eReady;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return eReturn;
|
|
|
- } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
|
|
-
|
|
|
-#endif /* INCLUDE_eTaskGetState */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_uxTaskPriorityGet == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t const * pxTCB;
|
|
|
- UBaseType_t uxReturn;
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* If null is passed in here then it is the priority of the task
|
|
|
- * that called uxTaskPriorityGet() that is being queried. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
- uxReturn = pxTCB->uxPriority;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_uxTaskPriorityGet */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_uxTaskPriorityGet == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t const * pxTCB;
|
|
|
- UBaseType_t uxReturn;
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
- * maximum system call (or maximum API call) interrupt priority.
|
|
|
- * Interrupts that are above the maximum system call priority are keep
|
|
|
- * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
- * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
- * is defined in FreeRTOSConfig.h then
|
|
|
- * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
- * been assigned a priority above the configured maximum system call
|
|
|
- * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
- * from interrupts that have been assigned a priority at or (logically)
|
|
|
- * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
- * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
- * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
- * provided on the following link:
|
|
|
- * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- taskENTER_CRITICAL_ISR( &xKernelLock );
|
|
|
- {
|
|
|
- /* If null is passed in here then it is the priority of the calling
|
|
|
- * task that is being queried. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
- uxReturn = pxTCB->uxPriority;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_uxTaskPriorityGet */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskPrioritySet == 1 )
|
|
|
-
|
|
|
- void vTaskPrioritySet( TaskHandle_t xTask,
|
|
|
- UBaseType_t uxNewPriority )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
|
|
|
- BaseType_t xYieldRequired = pdFALSE;
|
|
|
-
|
|
|
- configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
|
|
|
-
|
|
|
- /* Ensure the new priority is valid. */
|
|
|
- if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
|
|
- {
|
|
|
- uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* If null is passed in here then it is the priority of the calling
|
|
|
- * task that is being changed. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
|
|
|
-
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- {
|
|
|
- uxCurrentBasePriority = pxTCB->uxBasePriority;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- uxCurrentBasePriority = pxTCB->uxPriority;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- if( uxCurrentBasePriority != uxNewPriority )
|
|
|
- {
|
|
|
- /* The priority change may have readied a task of higher
|
|
|
- * priority than the calling task. */
|
|
|
- if( uxNewPriority > uxCurrentBasePriority )
|
|
|
- {
|
|
|
- if( !taskIS_CURRENTLY_RUNNING( pxTCB ) )
|
|
|
- {
|
|
|
- /* The priority of a task other than the currently
|
|
|
- * running task is being raised. Is the priority being
|
|
|
- * raised above that of the running task? */
|
|
|
- if( prvCheckForYieldUsingPriority( uxNewPriority, pxTCB->xCoreID, xPortGetCoreID(), pdTRUE ) )
|
|
|
- {
|
|
|
- xYieldRequired = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The priority of the running task is being raised,
|
|
|
- * but the running task must already be the highest
|
|
|
- * priority task able to run so no yield is required. */
|
|
|
- }
|
|
|
- }
|
|
|
- else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, 0 ) )
|
|
|
- {
|
|
|
- /* Setting the priority of the running task down means
|
|
|
- * there may now be another task of higher priority that
|
|
|
- * is ready to execute. */
|
|
|
- xYieldRequired = pdTRUE;
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, 1 ) )
|
|
|
- {
|
|
|
- /* Setting the priority of the running task on the other
|
|
|
- * core down means there may now be another task of
|
|
|
- * higher priority that is ready to execute. */
|
|
|
- vPortYieldOtherCore( 1 );
|
|
|
- }
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- else
|
|
|
- {
|
|
|
- /* Setting the priority of any other task down does not
|
|
|
- * require a yield as the running task must be above the
|
|
|
- * new priority of the task being modified. */
|
|
|
- }
|
|
|
-
|
|
|
- /* Remember the ready list the task might be referenced from
|
|
|
- * before its uxPriority member is changed so the
|
|
|
- * taskRESET_READY_PRIORITY() macro can function correctly. */
|
|
|
- uxPriorityUsedOnEntry = pxTCB->uxPriority;
|
|
|
-
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- {
|
|
|
- /* Only change the priority being used if the task is not
|
|
|
- * currently using an inherited priority. */
|
|
|
- if( pxTCB->uxBasePriority == pxTCB->uxPriority )
|
|
|
- {
|
|
|
- pxTCB->uxPriority = uxNewPriority;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* The base priority gets set whatever. */
|
|
|
- pxTCB->uxBasePriority = uxNewPriority;
|
|
|
- }
|
|
|
- #else /* if ( configUSE_MUTEXES == 1 ) */
|
|
|
- {
|
|
|
- pxTCB->uxPriority = uxNewPriority;
|
|
|
- }
|
|
|
- #endif /* if ( configUSE_MUTEXES == 1 ) */
|
|
|
-
|
|
|
- /* Only reset the event list item value if the value is not
|
|
|
- * being used for anything else. */
|
|
|
- if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
|
- {
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* If the task is in the blocked or suspended list we need do
|
|
|
- * nothing more than change its priority variable. However, if
|
|
|
- * the task is in a ready list it needs to be removed and placed
|
|
|
- * in the list appropriate to its new priority. */
|
|
|
- if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
|
|
|
- {
|
|
|
- /* The task is currently in its ready list - remove before
|
|
|
- * adding it to its new ready list. As we are in a critical
|
|
|
- * section we can do this even if the scheduler is suspended. */
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* It is known that the task is in its ready list so
|
|
|
- * there is no need to check again and the port level
|
|
|
- * reset macro can be called directly. */
|
|
|
- portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- if( xYieldRequired != pdFALSE )
|
|
|
- {
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Remove compiler warning about unused variables when the port
|
|
|
- * optimised task selection is not being used. */
|
|
|
- ( void ) uxPriorityUsedOnEntry;
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskPrioritySet */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- void vTaskSuspend( TaskHandle_t xTaskToSuspend )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* If null is passed in here then it is the running task that is
|
|
|
- * being suspended. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
|
|
|
-
|
|
|
- traceTASK_SUSPEND( pxTCB );
|
|
|
-
|
|
|
- /* Remove task from the ready/delayed list and place in the
|
|
|
- * suspended list. */
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Is the task waiting on an event also? */
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- #if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
- {
|
|
|
- BaseType_t x;
|
|
|
-
|
|
|
- for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
|
|
|
- {
|
|
|
- if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- /* The task was blocked to wait for a notification, but is
|
|
|
- * now suspended, so no notification was received. */
|
|
|
- pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
|
|
|
-
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- /* Reset the next expected unblock time in case it referred to the
|
|
|
- * task that is now in the Suspended state. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xPortGetCoreID() ) )
|
|
|
- {
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- /* The current task has just been suspended. */
|
|
|
- configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) 0U );
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The scheduler is not running, but the task that was pointed
|
|
|
- * to by pxCurrentTCB has just been suspended and pxCurrentTCB
|
|
|
- * must be adjusted to point to a different task. */
|
|
|
- if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
|
|
|
- {
|
|
|
- /* No other tasks are ready, so set pxCurrentTCB back to
|
|
|
- * NULL so when the next task is created pxCurrentTCB will
|
|
|
- * be set to point to it no matter what its relative priority
|
|
|
- * is. */
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ] = NULL;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- vTaskSwitchContext();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, !xPortGetCoreID() ) )
|
|
|
- {
|
|
|
- /* The other core's current task has just been suspended */
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- vPortYieldOtherCore( !xPortGetCoreID() );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The scheduler is not running, but the task that was pointed
|
|
|
- * to by pxCurrentTCB[ otherCore ] has just been suspended.
|
|
|
- * We simply set the pxCurrentTCB[ otherCore ] to NULL for now.
|
|
|
- * Todo: Update vTaskSwitchContext() to be runnable on
|
|
|
- * behalf of the other core. */
|
|
|
- pxCurrentTCB[ !xPortGetCoreID() ] = NULL;
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskSuspend */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
|
|
|
- {
|
|
|
- BaseType_t xReturn = pdFALSE;
|
|
|
- const TCB_t * const pxTCB = xTask;
|
|
|
-
|
|
|
- /* Accesses xPendingReadyList so must be called from a critical
|
|
|
- * section. */
|
|
|
-
|
|
|
- /* It does not make sense to check if the calling task is suspended. */
|
|
|
- configASSERT( xTask );
|
|
|
-
|
|
|
- /* Is the task being resumed actually in the suspended list? */
|
|
|
- if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
|
|
|
- {
|
|
|
- /* Has the task already been resumed from within an ISR? */
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- if( ( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 0 ], &( pxTCB->xEventListItem ) ) == pdFALSE ) &&
|
|
|
- ( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 1 ], &( pxTCB->xEventListItem ) ) == pdFALSE ) )
|
|
|
- #else
|
|
|
- if( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 0 ], &( pxTCB->xEventListItem ) ) == pdFALSE )
|
|
|
- #endif
|
|
|
- {
|
|
|
- /* Is it in the suspended list because it is in the Suspended
|
|
|
- * state, or because is is blocked with no timeout? */
|
|
|
- if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */
|
|
|
- {
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskSuspend */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
-
|
|
|
- void vTaskResume( TaskHandle_t xTaskToResume )
|
|
|
- {
|
|
|
- TCB_t * const pxTCB = xTaskToResume;
|
|
|
-
|
|
|
- /* It does not make sense to resume the calling task. */
|
|
|
- configASSERT( xTaskToResume );
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* The parameter cannot be NULL as it is impossible to resume the
|
|
|
- * currently executing task. */
|
|
|
- if( !taskIS_CURRENTLY_RUNNING( pxTCB ) && ( pxTCB != NULL ) )
|
|
|
- {
|
|
|
- if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
|
|
|
- {
|
|
|
- traceTASK_RESUME( pxTCB );
|
|
|
-
|
|
|
- /* The ready list can be accessed even if the scheduler is
|
|
|
- * suspended because this is inside a critical section. */
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* A higher priority task may have just been resumed. */
|
|
|
- if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdTRUE ) )
|
|
|
- {
|
|
|
- /* This yield may not cause the task just resumed to run,
|
|
|
- * but will leave the lists in the correct state for the
|
|
|
- * next yield. */
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskSuspend */
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
|
|
|
-
|
|
|
- BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
|
|
|
- {
|
|
|
- BaseType_t xYieldRequired = pdFALSE;
|
|
|
- TCB_t * const pxTCB = xTaskToResume;
|
|
|
-
|
|
|
- configASSERT( xTaskToResume );
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
- * maximum system call (or maximum API call) interrupt priority.
|
|
|
- * Interrupts that are above the maximum system call priority are keep
|
|
|
- * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
- * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
- * is defined in FreeRTOSConfig.h then
|
|
|
- * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
- * been assigned a priority above the configured maximum system call
|
|
|
- * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
- * from interrupts that have been assigned a priority at or (logically)
|
|
|
- * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
- * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
- * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
- * provided on the following link:
|
|
|
- * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- taskENTER_CRITICAL_ISR( &xKernelLock );
|
|
|
- {
|
|
|
- if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
|
|
|
- {
|
|
|
- traceTASK_RESUME_FROM_ISR( pxTCB );
|
|
|
-
|
|
|
- /* Check the ready lists can be accessed. */
|
|
|
- if( taskCAN_BE_SCHEDULED( pxTCB ) )
|
|
|
- {
|
|
|
- /* Ready lists can be accessed so move the task from the
|
|
|
- * suspended list to the ready list directly. */
|
|
|
- if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdTRUE ) )
|
|
|
- {
|
|
|
- xYieldRequired = pdTRUE;
|
|
|
-
|
|
|
- /* Mark that a yield is pending in case the user is not
|
|
|
- * using the return value to initiate a context switch
|
|
|
- * from the ISR using portYIELD_FROM_ISR. */
|
|
|
- xYieldPending[ xPortGetCoreID() ] = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The delayed or ready lists cannot be accessed so the task
|
|
|
- * is held in the pending ready list until the scheduler is
|
|
|
- * unsuspended. */
|
|
|
- vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
-
|
|
|
- return xYieldRequired;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static BaseType_t prvCreateIdleTasks( void )
|
|
|
-{
|
|
|
- BaseType_t xReturn = pdPASS;
|
|
|
-
|
|
|
- #if ( configNUM_CORES == 1 )
|
|
|
- {
|
|
|
- /* Add the idle task at the lowest priority. */
|
|
|
- #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
|
|
|
- {
|
|
|
- StaticTask_t * pxIdleTaskTCBBuffer = NULL;
|
|
|
- StackType_t * pxIdleTaskStackBuffer = NULL;
|
|
|
- uint32_t ulIdleTaskStackSize;
|
|
|
-
|
|
|
- /* The Idle task is created using user provided RAM - obtain the
|
|
|
- * address of the RAM then create the idle task. */
|
|
|
- vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
|
|
|
- xIdleTaskHandle[ 0 ] = xTaskCreateStaticPinnedToCore( prvIdleTask,
|
|
|
- configIDLE_TASK_NAME,
|
|
|
- ulIdleTaskStackSize,
|
|
|
- ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
|
|
|
- portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
|
|
|
- pxIdleTaskStackBuffer,
|
|
|
- pxIdleTaskTCBBuffer,
|
|
|
- 0 ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
|
-
|
|
|
- if( xIdleTaskHandle[ 0 ] != NULL )
|
|
|
- {
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
|
|
|
- {
|
|
|
- /* The Idle task is being created using dynamically allocated RAM. */
|
|
|
- xReturn = xTaskCreatePinnedToCore( prvIdleTask,
|
|
|
- configIDLE_TASK_NAME,
|
|
|
- configMINIMAL_STACK_SIZE,
|
|
|
- ( void * ) NULL,
|
|
|
- portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
|
|
|
- &xIdleTaskHandle[ 0 ],
|
|
|
- 0 ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
|
- }
|
|
|
- #endif /* configSUPPORT_STATIC_ALLOCATION */
|
|
|
- }
|
|
|
- #else /* #if ( configNUM_CORES == 1 ) */
|
|
|
- {
|
|
|
- BaseType_t xCoreID;
|
|
|
- char cIdleName[ configMAX_TASK_NAME_LEN ];
|
|
|
-
|
|
|
- /* Add each idle task at the lowest priority. */
|
|
|
- for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUM_CORES; xCoreID++ )
|
|
|
- {
|
|
|
- BaseType_t x;
|
|
|
-
|
|
|
- if( xReturn == pdFAIL )
|
|
|
- {
|
|
|
- /* TODO: IDF-8240 - Memory leaks occur if IDLE task creation fails on some core
|
|
|
- * as we do not free memory for the successfully created IDLE tasks.
|
|
|
- */
|
|
|
- break;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
|
|
- {
|
|
|
- cIdleName[ x ] = configIDLE_TASK_NAME[ x ];
|
|
|
-
|
|
|
- /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
|
|
|
- * configMAX_TASK_NAME_LEN characters just in case the memory after the
|
|
|
- * string is not accessible (extremely unlikely). */
|
|
|
- if( cIdleName[ x ] == ( char ) 0x00 )
|
|
|
- {
|
|
|
- break;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Append the idle task number to the end of the name if there is space. */
|
|
|
- if( x < ( BaseType_t ) configMAX_TASK_NAME_LEN )
|
|
|
- {
|
|
|
- cIdleName[ x ] = ( char ) ( xCoreID + '0' );
|
|
|
- x++;
|
|
|
-
|
|
|
- /* And append a null character if there is space. */
|
|
|
- if( x < ( BaseType_t ) configMAX_TASK_NAME_LEN )
|
|
|
- {
|
|
|
- cIdleName[ x ] = '\0';
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
|
|
|
- {
|
|
|
- StaticTask_t * pxIdleTaskTCBBuffer = NULL;
|
|
|
- StackType_t * pxIdleTaskStackBuffer = NULL;
|
|
|
- uint32_t ulIdleTaskStackSize;
|
|
|
-
|
|
|
- /* The Idle task is created using user provided RAM - obtain the
|
|
|
- * address of the RAM then create the idle task. */
|
|
|
- vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
|
|
|
- xIdleTaskHandle[ xCoreID ] = xTaskCreateStaticPinnedToCore( prvIdleTask,
|
|
|
- cIdleName,
|
|
|
- ulIdleTaskStackSize,
|
|
|
- ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */
|
|
|
- portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
|
|
|
- pxIdleTaskStackBuffer,
|
|
|
- pxIdleTaskTCBBuffer,
|
|
|
- xCoreID ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
|
-
|
|
|
- if( xIdleTaskHandle[ xCoreID ] != NULL )
|
|
|
- {
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
|
|
|
- {
|
|
|
- /* The Idle task is being created using dynamically allocated RAM. */
|
|
|
- xReturn = xTaskCreatePinnedToCore( prvIdleTask,
|
|
|
- cIdleName,
|
|
|
- configMINIMAL_STACK_SIZE,
|
|
|
- ( void * ) NULL,
|
|
|
- portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
|
|
|
- &xIdleTaskHandle[ xCoreID ],
|
|
|
- xCoreID ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
|
|
- }
|
|
|
- #endif /* configSUPPORT_STATIC_ALLOCATION */
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* #if ( configNUM_CORES == 1 ) */
|
|
|
-
|
|
|
- return xReturn;
|
|
|
-}
|
|
|
-
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskStartScheduler( void )
|
|
|
-{
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- /* The code for prvCreateIdleTasks() has been backported from the upstream
|
|
|
- * FreeRTOS-Kernel source. The reference for the same is on the mainline
|
|
|
- * at the commit id# 2f94b181a2f049ec342deba0927bed51f7174ab0.
|
|
|
- */
|
|
|
- xReturn = prvCreateIdleTasks();
|
|
|
-
|
|
|
- #if ( configUSE_TIMERS == 1 )
|
|
|
- {
|
|
|
- if( xReturn == pdPASS )
|
|
|
- {
|
|
|
- xReturn = xTimerCreateTimerTask();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_TIMERS */
|
|
|
-
|
|
|
- if( xReturn == pdPASS )
|
|
|
- {
|
|
|
- /* freertos_tasks_c_additions_init() should only be called if the user
|
|
|
- * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
|
|
|
- * the only macro called by the function. */
|
|
|
- #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
|
|
|
- {
|
|
|
- freertos_tasks_c_additions_init();
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Interrupts are turned off here, to ensure a tick does not occur
|
|
|
- * before or during the call to xPortStartScheduler(). The stacks of
|
|
|
- * the created tasks contain a status word with interrupts switched on
|
|
|
- * so interrupts will automatically get re-enabled when the first task
|
|
|
- * starts to run. */
|
|
|
- portDISABLE_INTERRUPTS();
|
|
|
-
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
- {
|
|
|
- /* Switch Newlib's _impure_ptr variable to point to the _reent
|
|
|
- * structure specific to the task that will run first.
|
|
|
- * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
- * for additional information. */
|
|
|
- /* _impure_ptr = &( pxCurrentTCB[xPortGetCoreID()]->xNewLib_reent ); */
|
|
|
- }
|
|
|
- #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
-
|
|
|
- xNextTaskUnblockTime = portMAX_DELAY;
|
|
|
- xSchedulerRunning = pdTRUE;
|
|
|
- xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
|
|
|
-
|
|
|
- /* If configGENERATE_RUN_TIME_STATS is defined then the following
|
|
|
- * macro must be defined to configure the timer/counter used to generate
|
|
|
- * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS
|
|
|
- * is set to 0 and the following line fails to build then ensure you do not
|
|
|
- * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
|
|
|
- * FreeRTOSConfig.h file. */
|
|
|
- portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
|
|
|
-
|
|
|
- traceTASK_SWITCHED_IN();
|
|
|
-
|
|
|
- /* Setting up the timer tick is hardware specific and thus in the
|
|
|
- * portable interface. */
|
|
|
- if( xPortStartScheduler() != pdFALSE )
|
|
|
- {
|
|
|
- /* Should not reach here as if the scheduler is running the
|
|
|
- * function will not return. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* Should only reach here if a task calls xTaskEndScheduler(). */
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* This line will only be reached if the kernel could not be started,
|
|
|
- * because there was not enough FreeRTOS heap to create the idle task
|
|
|
- * or the timer task. */
|
|
|
- configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
|
|
|
- }
|
|
|
-
|
|
|
- /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
|
|
|
- * meaning xIdleTaskHandle is not used anywhere else. */
|
|
|
- ( void ) xIdleTaskHandle[ 0 ];
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskEndScheduler( void )
|
|
|
-{
|
|
|
- /* Stop the scheduler interrupts and call the portable scheduler end
|
|
|
- * routine so the original ISRs can be restored if necessary. The port
|
|
|
- * layer must ensure interrupts enable bit is left in the correct state. */
|
|
|
- portDISABLE_INTERRUPTS();
|
|
|
- xSchedulerRunning = pdFALSE;
|
|
|
- vPortEndScheduler();
|
|
|
-}
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskSuspendAll( void )
|
|
|
-{
|
|
|
- /* A critical section is not required as the variable is of type
|
|
|
- * BaseType_t. Please read Richard Barry's reply in the following link to a
|
|
|
- * post in the FreeRTOS support forum before reporting this as a bug! -
|
|
|
- * https://goo.gl/wu4acr */
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, although each core has their own uxSchedulerSuspended, we still
|
|
|
- * need enter a critical section when accessing. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif
|
|
|
-
|
|
|
- /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
|
|
|
- * do not otherwise exhibit real time behaviour. */
|
|
|
- portSOFTWARE_BARRIER();
|
|
|
-
|
|
|
- /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment
|
|
|
- * is used to allow calls to vTaskSuspendAll() to nest. */
|
|
|
- ++uxSchedulerSuspended[ xPortGetCoreID() ];
|
|
|
-
|
|
|
- /* Enforces ordering for ports and optimised compilers that may otherwise place
|
|
|
- * the above increment elsewhere. */
|
|
|
- portMEMORY_BARRIER();
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif
|
|
|
-}
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
-
|
|
|
- static TickType_t prvGetExpectedIdleTime( void )
|
|
|
- {
|
|
|
- TickType_t xReturn;
|
|
|
- UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
|
|
|
-
|
|
|
- /* We need a critical section here as we are about to access kernel data structures */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- /* uxHigherPriorityReadyTasks takes care of the case where
|
|
|
- * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
|
|
|
- * task that are in the Ready state, even though the idle task is
|
|
|
- * running. */
|
|
|
- #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
|
|
|
- {
|
|
|
- if( uxTopReadyPriority > tskIDLE_PRIORITY )
|
|
|
- {
|
|
|
- uxHigherPriorityReadyTasks = pdTRUE;
|
|
|
- }
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
|
|
|
-
|
|
|
- /* When port optimised task selection is used the uxTopReadyPriority
|
|
|
- * variable is used as a bit map. If bits other than the least
|
|
|
- * significant bit are set then there are tasks that have a priority
|
|
|
- * above the idle priority that are in the Ready state. This takes
|
|
|
- * care of the case where the co-operative scheduler is in use. */
|
|
|
- if( uxTopReadyPriority > uxLeastSignificantBit )
|
|
|
- {
|
|
|
- uxHigherPriorityReadyTasks = pdTRUE;
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
|
|
|
-
|
|
|
- if( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority > tskIDLE_PRIORITY )
|
|
|
- {
|
|
|
- xReturn = 0;
|
|
|
- }
|
|
|
- else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > configNUM_CORES )
|
|
|
- {
|
|
|
- /* There are other idle priority tasks in the ready state. If
|
|
|
- * time slicing is used then the very next tick interrupt must be
|
|
|
- * processed. */
|
|
|
- xReturn = 0;
|
|
|
- }
|
|
|
- else if( uxHigherPriorityReadyTasks != pdFALSE )
|
|
|
- {
|
|
|
- /* There are tasks in the Ready state that have a priority above the
|
|
|
- * idle priority. This path can only be reached if
|
|
|
- * configUSE_PREEMPTION is 0. */
|
|
|
- xReturn = 0;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = xNextTaskUnblockTime - xTickCount;
|
|
|
- }
|
|
|
-
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TICKLESS_IDLE */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskResumeAll( void )
|
|
|
-{
|
|
|
- TCB_t * pxTCB = NULL;
|
|
|
- BaseType_t xAlreadyYielded = pdFALSE;
|
|
|
-
|
|
|
- /* If uxSchedulerSuspended is zero then this function does not match a
|
|
|
- * previous call to vTaskSuspendAll(). */
|
|
|
- configASSERT( taskIS_SCHEDULER_SUSPENDED() );
|
|
|
-
|
|
|
- /* It is possible that an ISR caused a task to be removed from an event
|
|
|
- * list while the scheduler was suspended. If this was the case then the
|
|
|
- * removed task will have been added to the xPendingReadyList. Once the
|
|
|
- * scheduler has been resumed it is safe to move all the pending ready
|
|
|
- * tasks from this list into their appropriate ready list. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* Minor optimization. Core ID can't change while inside a critical section */
|
|
|
- BaseType_t xCoreID = xPortGetCoreID();
|
|
|
-
|
|
|
- --uxSchedulerSuspended[ xCoreID ];
|
|
|
-
|
|
|
- if( uxSchedulerSuspended[ xCoreID ] == ( UBaseType_t ) 0U )
|
|
|
- {
|
|
|
- if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
|
|
|
- {
|
|
|
- /* Move any readied tasks from the pending list into the
|
|
|
- * appropriate ready list. */
|
|
|
- while( listLIST_IS_EMPTY( &xPendingReadyList[ xCoreID ] ) == pdFALSE )
|
|
|
- {
|
|
|
- pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList[ xCoreID ] ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* If the moved task has a priority higher than the current
|
|
|
- * task then a yield must be performed. */
|
|
|
- if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdTRUE ) )
|
|
|
- {
|
|
|
- xYieldPending[ xCoreID ] = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if( pxTCB != NULL )
|
|
|
- {
|
|
|
- /* A task was unblocked while the scheduler was suspended,
|
|
|
- * which may have prevented the next unblock time from being
|
|
|
- * re-calculated, in which case re-calculate it now. Mainly
|
|
|
- * important for low power tickless implementations, where
|
|
|
- * this can prevent an unnecessary exit from low power
|
|
|
- * state. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
-
|
|
|
- /* If any ticks occurred while the scheduler was suspended then
|
|
|
- * they should be processed now. This ensures the tick count does
|
|
|
- * not slip, and that any delayed tasks are resumed at the correct
|
|
|
- * time. */
|
|
|
-
|
|
|
- /* Core 0 is solely responsible for managing tick count, thus it
|
|
|
- * must be the only core to unwind the pended ticks */
|
|
|
- if( xCoreID == 0 )
|
|
|
- {
|
|
|
- TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
|
|
|
-
|
|
|
- if( xPendedCounts > ( TickType_t ) 0U )
|
|
|
- {
|
|
|
- do
|
|
|
- {
|
|
|
- if( xTaskIncrementTick() != pdFALSE )
|
|
|
- {
|
|
|
- xYieldPending[ xCoreID ] = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- --xPendedCounts;
|
|
|
- } while( xPendedCounts > ( TickType_t ) 0U );
|
|
|
-
|
|
|
- xPendedTicks = 0;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if( xYieldPending[ xCoreID ] != pdFALSE )
|
|
|
- {
|
|
|
- #if ( configUSE_PREEMPTION != 0 )
|
|
|
- {
|
|
|
- xAlreadyYielded = pdTRUE;
|
|
|
- }
|
|
|
- #endif
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return xAlreadyYielded;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-TickType_t xTaskGetTickCount( void )
|
|
|
-{
|
|
|
- TickType_t xTicks;
|
|
|
-
|
|
|
- /* Critical section required if running on a 16 bit processor. */
|
|
|
- portTICK_TYPE_ENTER_CRITICAL();
|
|
|
- {
|
|
|
- xTicks = xTickCount;
|
|
|
- }
|
|
|
- portTICK_TYPE_EXIT_CRITICAL();
|
|
|
-
|
|
|
- return xTicks;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-TickType_t xTaskGetTickCountFromISR( void )
|
|
|
-{
|
|
|
- TickType_t xReturn;
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a maximum
|
|
|
- * system call (or maximum API call) interrupt priority. Interrupts that are
|
|
|
- * above the maximum system call priority are kept permanently enabled, even
|
|
|
- * when the RTOS kernel is in a critical section, but cannot make any calls to
|
|
|
- * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
|
|
- * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has been
|
|
|
- * assigned a priority above the configured maximum system call priority.
|
|
|
- * Only FreeRTOS functions that end in FromISR can be called from interrupts
|
|
|
- * that have been assigned a priority at or (logically) below the maximum
|
|
|
- * system call interrupt priority. FreeRTOS maintains a separate interrupt
|
|
|
- * safe API to ensure interrupt entry is as fast and as simple as possible.
|
|
|
- * More information (albeit Cortex-M specific) is provided on the following
|
|
|
- * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* We need a critical section here as we are about to access kernel data structures */
|
|
|
- taskENTER_CRITICAL_ISR( &xKernelLock );
|
|
|
- #else
|
|
|
- UBaseType_t uxSavedInterruptStatus;
|
|
|
- uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
|
|
|
- #endif
|
|
|
- {
|
|
|
- xReturn = xTickCount;
|
|
|
- }
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
- #else
|
|
|
- portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
|
|
- #endif
|
|
|
-
|
|
|
- return xReturn;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-UBaseType_t uxTaskGetNumberOfTasks( void )
|
|
|
-{
|
|
|
- /* A critical section is not required because the variables are of type
|
|
|
- * BaseType_t. */
|
|
|
- return uxCurrentNumberOfTasks;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
-{
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* If null is passed in here then the name of the calling task is being
|
|
|
- * queried. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
|
|
- configASSERT( pxTCB );
|
|
|
- return &( pxTCB->pcTaskName[ 0 ] );
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskGetHandle == 1 )
|
|
|
-
|
|
|
- static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
|
|
|
- const char pcNameToQuery[] )
|
|
|
- {
|
|
|
- TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
|
|
|
- UBaseType_t x;
|
|
|
- char cNextChar;
|
|
|
- BaseType_t xBreakLoop;
|
|
|
-
|
|
|
- /* This function is called with the scheduler suspended. */
|
|
|
-
|
|
|
- if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
-
|
|
|
- do
|
|
|
- {
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
-
|
|
|
- /* Check each character in the name looking for a match or
|
|
|
- * mismatch. */
|
|
|
- xBreakLoop = pdFALSE;
|
|
|
-
|
|
|
- for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
|
|
- {
|
|
|
- cNextChar = pxNextTCB->pcTaskName[ x ];
|
|
|
-
|
|
|
- if( cNextChar != pcNameToQuery[ x ] )
|
|
|
- {
|
|
|
- /* Characters didn't match. */
|
|
|
- xBreakLoop = pdTRUE;
|
|
|
- }
|
|
|
- else if( cNextChar == ( char ) 0x00 )
|
|
|
- {
|
|
|
- /* Both strings terminated, a match must have been
|
|
|
- * found. */
|
|
|
- pxReturn = pxNextTCB;
|
|
|
- xBreakLoop = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- if( xBreakLoop != pdFALSE )
|
|
|
- {
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if( pxReturn != NULL )
|
|
|
- {
|
|
|
- /* The handle has been found. */
|
|
|
- break;
|
|
|
- }
|
|
|
- } while( pxNextTCB != pxFirstTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return pxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskGetHandle */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskGetHandle == 1 )
|
|
|
-
|
|
|
- TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
|
|
- {
|
|
|
- UBaseType_t uxQueue = configMAX_PRIORITIES;
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
|
|
|
- configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
|
|
|
-
|
|
|
- prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
|
|
|
- {
|
|
|
- /* Search the ready lists. */
|
|
|
- do
|
|
|
- {
|
|
|
- uxQueue--;
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
|
|
|
-
|
|
|
- if( pxTCB != NULL )
|
|
|
- {
|
|
|
- /* Found the handle. */
|
|
|
- break;
|
|
|
- }
|
|
|
- } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
-
|
|
|
- /* Search the delayed lists. */
|
|
|
- if( pxTCB == NULL )
|
|
|
- {
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
|
|
|
- }
|
|
|
-
|
|
|
- if( pxTCB == NULL )
|
|
|
- {
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
|
|
|
- }
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- if( pxTCB == NULL )
|
|
|
- {
|
|
|
- /* Search the suspended list. */
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
|
|
|
- }
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- {
|
|
|
- if( pxTCB == NULL )
|
|
|
- {
|
|
|
- /* Search the deleted list. */
|
|
|
- pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
|
|
|
- }
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
- ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
|
|
|
-
|
|
|
- return pxTCB;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskGetHandle */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
|
|
|
- StackType_t ** ppuxStackBuffer,
|
|
|
- StaticTask_t ** ppxTaskBuffer )
|
|
|
- {
|
|
|
- BaseType_t xReturn;
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- configASSERT( ppuxStackBuffer != NULL );
|
|
|
- configASSERT( ppxTaskBuffer != NULL );
|
|
|
-
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
|
|
|
- {
|
|
|
- if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
|
|
|
- {
|
|
|
- *ppuxStackBuffer = pxTCB->pxStack;
|
|
|
- *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
|
|
|
- {
|
|
|
- *ppuxStackBuffer = pxTCB->pxStack;
|
|
|
- *ppxTaskBuffer = NULL;
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
|
|
|
- {
|
|
|
- *ppuxStackBuffer = pxTCB->pxStack;
|
|
|
- *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configSUPPORT_STATIC_ALLOCATION */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
|
|
|
- const UBaseType_t uxArraySize,
|
|
|
- uint32_t * const pulTotalRunTime )
|
|
|
- {
|
|
|
- UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
|
|
|
-
|
|
|
- prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
|
|
|
- {
|
|
|
- /* Is there a space in the array for each task in the system? */
|
|
|
- if( uxArraySize >= uxCurrentNumberOfTasks )
|
|
|
- {
|
|
|
- /* Fill in an TaskStatus_t structure with information on each
|
|
|
- * task in the Ready state. */
|
|
|
- do
|
|
|
- {
|
|
|
- uxQueue--;
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
|
|
|
- } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
-
|
|
|
- /* Fill in an TaskStatus_t structure with information on each
|
|
|
- * task in the Blocked state. */
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- {
|
|
|
- /* Fill in an TaskStatus_t structure with information on
|
|
|
- * each task that has been deleted but not yet cleaned up. */
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- /* Fill in an TaskStatus_t structure with information on
|
|
|
- * each task in the Suspended state. */
|
|
|
- uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- {
|
|
|
- if( pulTotalRunTime != NULL )
|
|
|
- {
|
|
|
- #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
|
|
- portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
|
|
|
- #else
|
|
|
- *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
|
|
- #endif
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
|
|
|
- {
|
|
|
- if( pulTotalRunTime != NULL )
|
|
|
- {
|
|
|
- *pulTotalRunTime = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
|
|
|
-
|
|
|
- return uxTask;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
|
|
-
|
|
|
- TaskHandle_t xTaskGetIdleTaskHandle( void )
|
|
|
- {
|
|
|
- /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
|
|
|
- * started, then xIdleTaskHandle will be NULL. */
|
|
|
- configASSERT( ( xIdleTaskHandle[ xPortGetCoreID() ] != NULL ) );
|
|
|
- return xIdleTaskHandle[ xPortGetCoreID() ];
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskGetIdleTaskHandle */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-/* This conditional compilation should use inequality to 0, not equality to 1.
|
|
|
- * This is to ensure vTaskStepTick() is available when user defined low power mode
|
|
|
- * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
|
|
|
- * 1. */
|
|
|
-#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
-
|
|
|
- void vTaskStepTick( const TickType_t xTicksToJump )
|
|
|
- {
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* Although this is called with the scheduler suspended. For SMP, we
|
|
|
- * still need to take the kernel lock to access xTickCount. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- /* Correct the tick count value after a period during which the tick
|
|
|
- * was suppressed. Note this does *not* call the tick hook function for
|
|
|
- * each stepped tick. */
|
|
|
- configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
|
|
|
- xTickCount += xTicksToJump;
|
|
|
- traceINCREASE_TICK_COUNT( xTicksToJump );
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TICKLESS_IDLE */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
|
|
|
-{
|
|
|
- BaseType_t xYieldOccurred;
|
|
|
-
|
|
|
- /* Must not be called with the scheduler suspended as the implementation
|
|
|
- * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
|
|
|
- configASSERT( !taskIS_SCHEDULER_SUSPENDED() );
|
|
|
-
|
|
|
- /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
|
|
|
- * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
|
|
|
- vTaskSuspendAll();
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* Although the scheduler is suspended. For SMP, we still need to take
|
|
|
- * the kernel lock to access xPendedTicks. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- xPendedTicks += xTicksToCatchUp;
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- xYieldOccurred = xTaskResumeAll();
|
|
|
-
|
|
|
- return xYieldOccurred;
|
|
|
-}
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB = xTask;
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- configASSERT( pxTCB );
|
|
|
-
|
|
|
- prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
|
|
|
- {
|
|
|
- /* A task can only be prematurely removed from the Blocked state if
|
|
|
- * it is actually in the Blocked state. */
|
|
|
- if( eTaskGetState( xTask ) == eBlocked )
|
|
|
- {
|
|
|
- xReturn = pdPASS;
|
|
|
-
|
|
|
- /* Remove the reference to the task from the blocked list. An
|
|
|
- * interrupt won't touch the xStateListItem because the
|
|
|
- * scheduler is suspended. */
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- /* Is the task waiting on an event also? If so remove it from
|
|
|
- * the event list too. Interrupts can touch the event list item,
|
|
|
- * even though the scheduler is suspended, so a critical section
|
|
|
- * is used. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
-
|
|
|
- /* This lets the task know it was forcibly removed from the
|
|
|
- * blocked state so it should not re-evaluate its block time and
|
|
|
- * then block again. */
|
|
|
- pxTCB->ucDelayAborted = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- /* Place the unblocked task into the appropriate ready list. */
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* A task being unblocked cannot cause an immediate context
|
|
|
- * switch if preemption is turned off. */
|
|
|
- #if ( configUSE_PREEMPTION == 1 )
|
|
|
- {
|
|
|
- /* Preemption is on, but a context switch should only be
|
|
|
- * performed if the unblocked task has a priority that is
|
|
|
- * equal to or higher than the currently executing task. */
|
|
|
- if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) )
|
|
|
- {
|
|
|
- /* Pend the yield to be performed when the scheduler
|
|
|
- * is unsuspended. */
|
|
|
- xYieldPending[ xPortGetCoreID() ] = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_PREEMPTION */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
- }
|
|
|
- ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_xTaskAbortDelay */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskIncrementTick( void )
|
|
|
-{
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Only Core 0 should ever call this function. */
|
|
|
- configASSERT( xPortGetCoreID() == 0 );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- TCB_t * pxTCB;
|
|
|
- TickType_t xItemValue;
|
|
|
- BaseType_t xSwitchRequired = pdFALSE;
|
|
|
-
|
|
|
- /* Called by the portable layer each time a tick interrupt occurs.
|
|
|
- * Increments the tick then checks to see if the new tick value will cause any
|
|
|
- * tasks to be unblocked. */
|
|
|
- traceTASK_INCREMENT_TICK( xTickCount );
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, we need to take the kernel lock here as we are about to
|
|
|
- * access kernel data structures (unlike single core which calls this
|
|
|
- * function with interrupts disabled). */
|
|
|
- taskENTER_CRITICAL_ISR( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- if( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) 0U )
|
|
|
- {
|
|
|
- /* Minor optimisation. The tick count cannot change in this
|
|
|
- * block. */
|
|
|
- const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
|
|
|
-
|
|
|
- /* Increment the RTOS tick, switching the delayed and overflowed
|
|
|
- * delayed lists if it wraps to 0. */
|
|
|
- xTickCount = xConstTickCount;
|
|
|
-
|
|
|
- if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
|
|
|
- {
|
|
|
- taskSWITCH_DELAYED_LISTS();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* See if this tick has made a timeout expire. Tasks are stored in
|
|
|
- * the queue in the order of their wake time - meaning once one task
|
|
|
- * has been found whose block time has not expired there is no need to
|
|
|
- * look any further down the list. */
|
|
|
- if( xConstTickCount >= xNextTaskUnblockTime )
|
|
|
- {
|
|
|
- for( ; ; )
|
|
|
- {
|
|
|
- if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
|
|
- {
|
|
|
- /* The delayed list is empty. Set xNextTaskUnblockTime
|
|
|
- * to the maximum possible value so it is extremely
|
|
|
- * unlikely that the
|
|
|
- * if( xTickCount >= xNextTaskUnblockTime ) test will pass
|
|
|
- * next time through. */
|
|
|
- xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- break;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The delayed list is not empty, get the value of the
|
|
|
- * item at the head of the delayed list. This is the time
|
|
|
- * at which the task at the head of the delayed list must
|
|
|
- * be removed from the Blocked state. */
|
|
|
- pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- if( xConstTickCount < xItemValue )
|
|
|
- {
|
|
|
- /* It is not time to unblock this item yet, but the
|
|
|
- * item value is the time at which the task at the head
|
|
|
- * of the blocked list must be removed from the Blocked
|
|
|
- * state - so record the item value in
|
|
|
- * xNextTaskUnblockTime. */
|
|
|
- xNextTaskUnblockTime = xItemValue;
|
|
|
- break; /*lint !e9011 Code structure here is deedmed easier to understand with multiple breaks. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* It is time to remove the item from the Blocked state. */
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
-
|
|
|
- /* Is the task waiting on an event also? If so remove
|
|
|
- * it from the event list. */
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Place the unblocked task into the appropriate ready
|
|
|
- * list. */
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* A task being unblocked cannot cause an immediate
|
|
|
- * context switch if preemption is turned off. */
|
|
|
- #if ( configUSE_PREEMPTION == 1 )
|
|
|
- {
|
|
|
- /* Preemption is on, but a context switch should
|
|
|
- * only be performed if the unblocked task has a
|
|
|
- * priority that is equal to or higher than the
|
|
|
- * currently executing task.
|
|
|
- *
|
|
|
- * For SMP, since this function is only run on core
|
|
|
- * 0, only need to switch contexts if the unblocked
|
|
|
- * task can run on core 0. */
|
|
|
- if( ( taskCAN_RUN_ON_CORE( 0, pxTCB->xCoreID ) == pdTRUE ) && ( pxTCB->uxPriority >= pxCurrentTCB[ 0 ]->uxPriority ) )
|
|
|
- {
|
|
|
- xSwitchRequired = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_PREEMPTION */
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Tasks of equal priority to the currently running task will share
|
|
|
- * processing time (time slice) if preemption is on, and the application
|
|
|
- * writer has not explicitly turned time slicing off. */
|
|
|
- #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
|
|
|
- {
|
|
|
- if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB[ 0 ]->uxPriority ] ) ) > ( UBaseType_t ) 1 )
|
|
|
- {
|
|
|
- xSwitchRequired = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
|
|
|
-
|
|
|
- #if ( configUSE_TICK_HOOK == 1 )
|
|
|
- TickType_t xPendedTicksTemp = xPendedTicks; /* Non-volatile copy. */
|
|
|
- #endif /* configUSE_TICK_HOOK */
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* Release the previously taken kernel lock as we have finished
|
|
|
- * accessing the kernel data structures. */
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- #if ( configUSE_TICK_HOOK == 1 )
|
|
|
- {
|
|
|
- /* Guard against the tick hook being called when the pended tick
|
|
|
- * count is being unwound (when the scheduler is being unlocked). */
|
|
|
- if( xPendedTicksTemp == ( TickType_t ) 0 )
|
|
|
- {
|
|
|
- vApplicationTickHook();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_TICK_HOOK */
|
|
|
-
|
|
|
- #if ( configUSE_PREEMPTION == 1 )
|
|
|
- {
|
|
|
- if( xYieldPending[ 0 ] != pdFALSE )
|
|
|
- {
|
|
|
- xSwitchRequired = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_PREEMPTION */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- ++xPendedTicks;
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* Release the previously taken kernel lock as we have finished
|
|
|
- * accessing the kernel data structures. */
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- /* The tick hook gets called at regular intervals, even if the
|
|
|
- * scheduler is locked. */
|
|
|
- #if ( configUSE_TICK_HOOK == 1 )
|
|
|
- {
|
|
|
- vApplicationTickHook();
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
-
|
|
|
- return xSwitchRequired;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
-
|
|
|
- void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
|
|
|
- TaskHookFunction_t pxHookFunction )
|
|
|
- {
|
|
|
- TCB_t * xTCB;
|
|
|
-
|
|
|
- /* If xTask is NULL then it is the task hook of the calling task that is
|
|
|
- * getting set. */
|
|
|
- if( xTask == NULL )
|
|
|
- {
|
|
|
- xTCB = ( TCB_t * ) pxCurrentTCB[ xPortGetCoreID() ];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xTCB = xTask;
|
|
|
- }
|
|
|
-
|
|
|
- /* Save the hook function in the TCB. A critical section is required as
|
|
|
- * the value can be accessed from an interrupt. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- xTCB->pxTaskTag = pxHookFunction;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
-
|
|
|
- TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- TaskHookFunction_t xReturn;
|
|
|
-
|
|
|
- /* If xTask is NULL then set the calling task's hook. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- /* Save the hook function in the TCB. A critical section is required as
|
|
|
- * the value can be accessed from an interrupt. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- xReturn = pxTCB->pxTaskTag;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
-
|
|
|
- TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- TaskHookFunction_t xReturn;
|
|
|
- UBaseType_t uxSavedInterruptStatus;
|
|
|
-
|
|
|
- /* If xTask is NULL then set the calling task's hook. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- /* Save the hook function in the TCB. A critical section is required as
|
|
|
- * the value can be accessed from an interrupt. */
|
|
|
- prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
|
|
|
- {
|
|
|
- xReturn = pxTCB->pxTaskTag;
|
|
|
- }
|
|
|
- prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
|
|
|
- void * pvParameter )
|
|
|
- {
|
|
|
- TCB_t * xTCB;
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- /* If xTask is NULL then we are calling our own task hook. */
|
|
|
- if( xTask == NULL )
|
|
|
- {
|
|
|
- xTCB = xTaskGetCurrentTaskHandle();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xTCB = xTask;
|
|
|
- }
|
|
|
-
|
|
|
- if( xTCB->pxTaskTag != NULL )
|
|
|
- {
|
|
|
- xReturn = xTCB->pxTaskTag( pvParameter );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_APPLICATION_TASK_TAG */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configNUM_CORES > 1 )
|
|
|
- static void taskSelectHighestPriorityTaskSMP( void )
|
|
|
- {
|
|
|
- /* This function is called from a critical section. So some optimizations are made */
|
|
|
- BaseType_t uxCurPriority;
|
|
|
- BaseType_t xTaskScheduled = pdFALSE;
|
|
|
- BaseType_t xNewTopPrioritySet = pdFALSE;
|
|
|
- BaseType_t xCoreID = xPortGetCoreID(); /* Optimization: Read once */
|
|
|
-
|
|
|
- /* Search for tasks, starting form the highest ready priority. If nothing is
|
|
|
- * found, we eventually default to the IDLE tasks at priority 0 */
|
|
|
-
|
|
|
- for( uxCurPriority = uxTopReadyPriority; uxCurPriority >= 0 && xTaskScheduled == pdFALSE; uxCurPriority-- )
|
|
|
- {
|
|
|
- /* Check if current priority has one or more ready tasks. Skip if none */
|
|
|
- if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurPriority ] ) ) )
|
|
|
- {
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- /* Save a copy of highest priority that has a ready state task */
|
|
|
- if( xNewTopPrioritySet == pdFALSE )
|
|
|
- {
|
|
|
- xNewTopPrioritySet = pdTRUE;
|
|
|
- uxTopReadyPriority = uxCurPriority;
|
|
|
- }
|
|
|
-
|
|
|
- /* We now search this priority's ready task list for a runnable task.
|
|
|
- * We always start searching from the head of the list, so we reset
|
|
|
- * pxIndex to point to the tail so that we start walking the list from
|
|
|
- * the first item */
|
|
|
- pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd );
|
|
|
-
|
|
|
- /* Get the first item on the list */
|
|
|
- TCB_t * pxTCBCur;
|
|
|
- TCB_t * pxTCBFirst;
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) );
|
|
|
- pxTCBFirst = pxTCBCur;
|
|
|
-
|
|
|
- do
|
|
|
- {
|
|
|
- /* Check if the current task is currently being executed. However, if
|
|
|
- * it's being executed by the current core, we can still schedule it.
|
|
|
- * Todo: Each task can store a xTaskRunState, instead of needing to
|
|
|
- * check each core */
|
|
|
- UBaseType_t ux;
|
|
|
-
|
|
|
- for( ux = 0; ux < ( UBaseType_t ) configNUM_CORES; ux++ )
|
|
|
- {
|
|
|
- if( ux == xCoreID )
|
|
|
- {
|
|
|
- continue;
|
|
|
- }
|
|
|
- else if( pxCurrentTCB[ ux ] == pxTCBCur )
|
|
|
- {
|
|
|
- /* Current task is already being executed. Get the next task */
|
|
|
- goto get_next_task;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Check if the current task has a compatible affinity */
|
|
|
- if( ( pxTCBCur->xCoreID != xCoreID ) && ( pxTCBCur->xCoreID != tskNO_AFFINITY ) )
|
|
|
- {
|
|
|
- goto get_next_task;
|
|
|
- }
|
|
|
-
|
|
|
- /* The current task is runnable. Schedule it */
|
|
|
- pxCurrentTCB[ xCoreID ] = pxTCBCur;
|
|
|
- xTaskScheduled = pdTRUE;
|
|
|
-
|
|
|
- /* Move the current tasks list item to the back of the list in order
|
|
|
- * to implement best effort round robin. To do this, we need to reset
|
|
|
- * the pxIndex to point to the tail again. */
|
|
|
- pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd );
|
|
|
- uxListRemove( &( pxTCBCur->xStateListItem ) );
|
|
|
- vListInsertEnd( &( pxReadyTasksLists[ uxCurPriority ] ), &( pxTCBCur->xStateListItem ) );
|
|
|
- break;
|
|
|
-
|
|
|
-get_next_task:
|
|
|
- /* The current task cannot be scheduled. Get the next task in the list */
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) );
|
|
|
- } while( pxTCBCur != pxTCBFirst ); /* Check to see if we've walked the entire list */
|
|
|
- }
|
|
|
-
|
|
|
- assert( xTaskScheduled == pdTRUE ); /* At this point, a task MUST have been scheduled */
|
|
|
- }
|
|
|
-#endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
-void vTaskSwitchContext( void )
|
|
|
-{
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, we need to take the kernel lock here as we are about to
|
|
|
- * access kernel data structures (unlike single core which calls this
|
|
|
- * function with either interrupts disabled or when the scheduler hasn't
|
|
|
- * started yet). */
|
|
|
- taskENTER_CRITICAL_ISR( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- if( uxSchedulerSuspended[ xPortGetCoreID() ] != ( UBaseType_t ) 0U )
|
|
|
- {
|
|
|
- /* The scheduler is currently suspended - do not allow a context
|
|
|
- * switch. */
|
|
|
- xYieldPending[ xPortGetCoreID() ] = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xYieldPending[ xPortGetCoreID() ] = pdFALSE;
|
|
|
- #ifdef ESP_PLATFORM
|
|
|
- xSwitchingContext[ xPortGetCoreID() ] = pdTRUE;
|
|
|
- #endif // ESP_PLATFORM
|
|
|
- traceTASK_SWITCHED_OUT();
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- {
|
|
|
- #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
|
|
- portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
|
|
|
- #else
|
|
|
- ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Add the amount of time the task has been running to the
|
|
|
- * accumulated time so far. The time the task started running was
|
|
|
- * stored in ulTaskSwitchedInTime. Note that there is no overflow
|
|
|
- * protection here so count values are only valid until the timer
|
|
|
- * overflows. The guard against negative values is to protect
|
|
|
- * against suspect run time stat counter implementations - which
|
|
|
- * are provided by the application, not the kernel. */
|
|
|
- if( ulTotalRunTime > ulTaskSwitchedInTime[ xPortGetCoreID() ] )
|
|
|
- {
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime[ xPortGetCoreID() ] );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- ulTaskSwitchedInTime[ xPortGetCoreID() ] = ulTotalRunTime;
|
|
|
- }
|
|
|
- #endif /* configGENERATE_RUN_TIME_STATS */
|
|
|
-
|
|
|
- /* Check for stack overflow, if configured. */
|
|
|
- #ifdef ESP_PLATFORM
|
|
|
- taskFIRST_CHECK_FOR_STACK_OVERFLOW();
|
|
|
- taskSECOND_CHECK_FOR_STACK_OVERFLOW();
|
|
|
- #else
|
|
|
- taskCHECK_FOR_STACK_OVERFLOW();
|
|
|
-
|
|
|
- /* Before the currently running task is switched out, save its errno. */
|
|
|
- #if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
- {
|
|
|
- pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
|
|
|
- }
|
|
|
- #endif
|
|
|
- #endif // ESP_PLATFORM
|
|
|
-
|
|
|
- /* Select a new task to run using either the generic C or port
|
|
|
- * optimised asm code. */
|
|
|
- taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- traceTASK_SWITCHED_IN();
|
|
|
-
|
|
|
- #ifdef ESP_PLATFORM
|
|
|
- xSwitchingContext[ xPortGetCoreID() ] = pdFALSE;
|
|
|
- #if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
|
|
|
- vPortSetStackWatchpoint( pxCurrentTCB[ xPortGetCoreID() ]->pxStack );
|
|
|
- #endif
|
|
|
- #else
|
|
|
- /* After the new task is switched in, update the global errno. */
|
|
|
- #if ( configUSE_POSIX_ERRNO == 1 )
|
|
|
- {
|
|
|
- FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
- {
|
|
|
- /* Switch Newlib's _impure_ptr variable to point to the _reent
|
|
|
- * structure specific to this task.
|
|
|
- * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
- * for additional information. */
|
|
|
- _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
|
|
|
- }
|
|
|
- #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
- #endif // ESP_PLATFORM
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* Release the previously taken kernel lock as we have finished
|
|
|
- * accessing the kernel data structures. */
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskPlaceOnEventList( List_t * const pxEventList,
|
|
|
- const TickType_t xTicksToWait )
|
|
|
-{
|
|
|
- configASSERT( pxEventList );
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* In SMP, we need to take the kernel lock as we are about to access the
|
|
|
- * task lists. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
|
|
|
- * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
|
|
|
-
|
|
|
- /* Place the event list item of the TCB in the appropriate event list.
|
|
|
- * This is placed in the list in priority order so the highest priority task
|
|
|
- * is the first to be woken by the event. The queue that contains the event
|
|
|
- * list is locked, preventing simultaneous access from interrupts. */
|
|
|
- vListInsert( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
|
|
|
-
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
|
|
|
- const TickType_t xItemValue,
|
|
|
- const TickType_t xTicksToWait )
|
|
|
-{
|
|
|
- configASSERT( pxEventList );
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* In SMP, the event groups haven't suspended the scheduler at this
|
|
|
- * point. We need to take the kernel lock instead as we are about to
|
|
|
- * access the task lists. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #else /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
|
|
- * the event groups implementation. */
|
|
|
- configASSERT( uxSchedulerSuspended[ 0 ] != ( UBaseType_t ) 0U );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- /* Store the item value in the event list item. It is safe to access the
|
|
|
- * event list item here as interrupts won't access the event list item of a
|
|
|
- * task that is not in the Blocked state. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
-
|
|
|
- /* Place the event list item of the TCB at the end of the appropriate event
|
|
|
- * list. It is safe to access the event list here because it is part of an
|
|
|
- * event group implementation - and interrupts don't access event groups
|
|
|
- * directly (instead they access them indirectly by pending function calls to
|
|
|
- * the task level). */
|
|
|
- vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
|
|
|
-
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TIMERS == 1 )
|
|
|
-
|
|
|
- void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
|
|
|
- TickType_t xTicksToWait,
|
|
|
- const BaseType_t xWaitIndefinitely )
|
|
|
- {
|
|
|
- configASSERT( pxEventList );
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* In SMP, we need to take the kernel lock as we are about to access
|
|
|
- * the task lists. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- /* This function should not be called by application code hence the
|
|
|
- * 'Restricted' in its name. It is not part of the public API. It is
|
|
|
- * designed for use by kernel code, and has special calling requirements -
|
|
|
- * it should be called with the scheduler suspended. */
|
|
|
-
|
|
|
-
|
|
|
- /* Place the event list item of the TCB in the appropriate event list.
|
|
|
- * In this case it is assume that this is the only task that is going to
|
|
|
- * be waiting on this event list, so the faster vListInsertEnd() function
|
|
|
- * can be used in place of vListInsert. */
|
|
|
- vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
|
|
|
-
|
|
|
- /* If the task should block indefinitely then set the block time to a
|
|
|
- * value that will be recognised as an indefinite delay inside the
|
|
|
- * prvAddCurrentTaskToDelayedList() function. */
|
|
|
- if( xWaitIndefinitely != pdFALSE )
|
|
|
- {
|
|
|
- xTicksToWait = portMAX_DELAY;
|
|
|
- }
|
|
|
-
|
|
|
- traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TIMERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
|
|
|
-{
|
|
|
- TCB_t * pxUnblockedTCB;
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
|
|
|
- * called from a critical section within an ISR. */
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* In SMP, we need to take the kernel lock (even if the caller is
|
|
|
- * already in a critical section by taking a different lock) as we are
|
|
|
- * about to access the task lists, which are protected by the kernel
|
|
|
- * lock. This function can also be called from an ISR context, so we
|
|
|
- * need to check whether we are in an ISR.*/
|
|
|
- if( portCHECK_IF_IN_ISR() == pdFALSE )
|
|
|
- {
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- taskENTER_CRITICAL_ISR( &xKernelLock );
|
|
|
- }
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- {
|
|
|
- /* The event list is sorted in priority order, so the first in the list can
|
|
|
- * be removed as it is known to be the highest priority. Remove the TCB from
|
|
|
- * the delayed list, and add it to the ready list. */
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Before taking the kernel lock, another task/ISR could have already
|
|
|
- * emptied the pxEventList. So we insert a check here to see if
|
|
|
- * pxEventList is empty before attempting to remove an item from it. */
|
|
|
- if( listLIST_IS_EMPTY( pxEventList ) == pdTRUE )
|
|
|
- {
|
|
|
- /* The pxEventList was emptied before we entered the critical section,
|
|
|
- * Nothing to do except return pdFALSE. */
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
- else
|
|
|
- #else /* configNUM_CORES > 1 */
|
|
|
- /* If an event is for a queue that is locked then this function will never
|
|
|
- * get called - the lock count on the queue will get modified instead. This
|
|
|
- * means exclusive access to the event list is guaranteed here.
|
|
|
- *
|
|
|
- * This function assumes that a check has already been made to ensure that
|
|
|
- * pxEventList is not empty. */
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- {
|
|
|
- BaseType_t xCurCoreID = xPortGetCoreID();
|
|
|
-
|
|
|
- pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- configASSERT( pxUnblockedTCB );
|
|
|
- ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
|
|
|
-
|
|
|
- /* Add the task to the ready list if a core with compatible affinity
|
|
|
- * has NOT suspended its scheduler. This occurs when:
|
|
|
- * - The task is pinned, and the pinned core's scheduler is running
|
|
|
- * - The task is unpinned, and at least one of the core's scheduler is running */
|
|
|
- if( taskCAN_BE_SCHEDULED( pxUnblockedTCB ) )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxUnblockedTCB );
|
|
|
-
|
|
|
- #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
- {
|
|
|
- /* If a task is blocked on a kernel object then xNextTaskUnblockTime
|
|
|
- * might be set to the blocked task's time out time. If the task is
|
|
|
- * unblocked for a reason other than a timeout xNextTaskUnblockTime is
|
|
|
- * normally left unchanged, because it is automatically reset to a new
|
|
|
- * value when the tick count equals xNextTaskUnblockTime. However if
|
|
|
- * tickless idling is used it might be more important to enter sleep mode
|
|
|
- * at the earliest possible time - so reset xNextTaskUnblockTime here to
|
|
|
- * ensure it is updated at the earliest possible time. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* We arrive here due to one of the following possibilities:
|
|
|
- * - The task is pinned to core X and core X has suspended its scheduler
|
|
|
- * - The task is unpinned and both cores have suspend their schedulers
|
|
|
- * Therefore, we add the task to one of the pending lists:
|
|
|
- * - If the task is pinned to core X, add it to core X's pending list
|
|
|
- * - If the task is unpinned, add it to the current core's pending list */
|
|
|
- BaseType_t xPendingListCore;
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- xPendingListCore = ( ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) ? xCurCoreID : pxUnblockedTCB->xCoreID );
|
|
|
- #else
|
|
|
- xPendingListCore = 0;
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- configASSERT( uxSchedulerSuspended[ xPendingListCore ] != ( UBaseType_t ) 0U );
|
|
|
-
|
|
|
- /* The delayed and ready lists cannot be accessed, so hold this task
|
|
|
- * pending until the scheduler is resumed. */
|
|
|
- vListInsertEnd( &( xPendingReadyList[ xPendingListCore ] ), &( pxUnblockedTCB->xEventListItem ) );
|
|
|
- }
|
|
|
-
|
|
|
- if( prvCheckForYield( pxUnblockedTCB, xCurCoreID, pdFALSE ) )
|
|
|
- {
|
|
|
- /* Return true if the task removed from the event list has a higher
|
|
|
- * priority than the calling task. This allows the calling task to know if
|
|
|
- * it should force a context switch now. */
|
|
|
- xReturn = pdTRUE;
|
|
|
-
|
|
|
- /* Mark that a yield is pending in case the user is not using the
|
|
|
- * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
|
|
|
- xYieldPending[ xCurCoreID ] = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- if( portCHECK_IF_IN_ISR() == pdFALSE )
|
|
|
- {
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
- }
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- return xReturn;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
|
|
|
- const TickType_t xItemValue )
|
|
|
-{
|
|
|
- TCB_t * pxUnblockedTCB;
|
|
|
- BaseType_t xCurCoreID = xPortGetCoreID();
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* THIS FUNCTION MUST BE CALLED WITH THE KERNEL LOCK ALREADY TAKEN.
|
|
|
- * It is used by the event flags implementation, thus those functions
|
|
|
- * should call prvTakeKernelLock() before calling this function. */
|
|
|
- #else /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
|
|
- * the event flags implementation. */
|
|
|
- configASSERT( uxSchedulerSuspended[ 0 ] != ( UBaseType_t ) 0U );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- /* Store the new item value in the event list. */
|
|
|
- listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
|
|
-
|
|
|
- /* Remove the event list form the event flag. Interrupts do not access
|
|
|
- * event flags. */
|
|
|
- pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- configASSERT( pxUnblockedTCB );
|
|
|
- ( void ) uxListRemove( pxEventListItem );
|
|
|
-
|
|
|
- #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
- {
|
|
|
- /* If a task is blocked on a kernel object then xNextTaskUnblockTime
|
|
|
- * might be set to the blocked task's time out time. If the task is
|
|
|
- * unblocked for a reason other than a timeout xNextTaskUnblockTime is
|
|
|
- * normally left unchanged, because it is automatically reset to a new
|
|
|
- * value when the tick count equals xNextTaskUnblockTime. However if
|
|
|
- * tickless idling is used it might be more important to enter sleep mode
|
|
|
- * at the earliest possible time - so reset xNextTaskUnblockTime here to
|
|
|
- * ensure it is updated at the earliest possible time. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* Add the task to the ready list if a core with compatible affinity
|
|
|
- * has NOT suspended its scheduler. This occurs when:
|
|
|
- * - The task is pinned, and the pinned core's scheduler is running
|
|
|
- * - The task is unpinned, and at least one of the core's scheduler is
|
|
|
- * running */
|
|
|
- if( !taskCAN_BE_SCHEDULED( pxUnblockedTCB ) )
|
|
|
- {
|
|
|
- /* We arrive here due to one of the following possibilities:
|
|
|
- * - The task is pinned to core X and core X has suspended its scheduler
|
|
|
- * - The task is unpinned and both cores have suspend their schedulers
|
|
|
- * Therefore, we add the task to one of the pending lists:
|
|
|
- * - If the task is pinned to core X, add it to core X's pending list
|
|
|
- * - If the task is unpinned, add it to the current core's pending list */
|
|
|
- BaseType_t xPendingListCore = ( ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) ? xCurCoreID : pxUnblockedTCB->xCoreID );
|
|
|
- configASSERT( uxSchedulerSuspended[ xPendingListCore ] != ( UBaseType_t ) 0U );
|
|
|
-
|
|
|
- /* The delayed and ready lists cannot be accessed, so hold this task
|
|
|
- * pending until the scheduler is resumed. */
|
|
|
- vListInsertEnd( &( xPendingReadyList[ xPendingListCore ] ), &( pxUnblockedTCB->xEventListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- #else /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- /* In single core, the caller of this function has already suspended the
|
|
|
- * scheduler, which means we have exclusive access to the ready list.
|
|
|
- * We add the unblocked task to the ready list directly. */
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- {
|
|
|
- /* Remove the task from the delayed list and add it to the ready list. The
|
|
|
- * scheduler is suspended so interrupts will not be accessing the ready
|
|
|
- * lists. */
|
|
|
- ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxUnblockedTCB );
|
|
|
-
|
|
|
- if( prvCheckForYield( pxUnblockedTCB, xCurCoreID, pdFALSE ) )
|
|
|
- {
|
|
|
- /* The unblocked task has a priority above that of the calling task, so
|
|
|
- * a context switch is required. This function is called with the
|
|
|
- * scheduler suspended so xYieldPending is set so the context switch
|
|
|
- * occurs immediately that the scheduler is resumed (unsuspended). */
|
|
|
- xYieldPending[ xCurCoreID ] = pdTRUE;
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
|
|
|
-{
|
|
|
- configASSERT( pxTimeOut );
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- pxTimeOut->xOverflowCount = xNumOfOverflows;
|
|
|
- pxTimeOut->xTimeOnEntering = xTickCount;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
|
|
|
-{
|
|
|
- /**
|
|
|
- * In case of we are building for SMP, we need to protect the following instructions in order to make them
|
|
|
- * atomic.
|
|
|
- * Indeed, without this, it would be possible to get preempted by the tick hook right after storing the number
|
|
|
- * of overflows with `pxTimeOut->xOverflowCount = xNumOfOverflows`. Then, the tick hook increments the timer,
|
|
|
- * which overflows, and thus resets the xTickCount to 0.
|
|
|
- * Resuming our task would result in an invalid state of the timer where the number of overflow corresponds
|
|
|
- * to the previous value and not the current one.
|
|
|
- *
|
|
|
- * On a single core configuration, this problem doesn't appear as this function is meant to be called from
|
|
|
- * a critical section, disabling the (tick) interrupts.
|
|
|
- */
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- configASSERT( pxTimeOut );
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-
|
|
|
- /* For internal use only as it does not use a critical section. */
|
|
|
- pxTimeOut->xOverflowCount = xNumOfOverflows;
|
|
|
- pxTimeOut->xTimeOnEntering = xTickCount;
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
|
|
|
- TickType_t * const pxTicksToWait )
|
|
|
-{
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- configASSERT( pxTimeOut );
|
|
|
- configASSERT( pxTicksToWait );
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* Minor optimisation. The tick count cannot change in this block. */
|
|
|
- const TickType_t xConstTickCount = xTickCount;
|
|
|
- const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
|
|
|
-
|
|
|
- #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
- if( pxCurrentTCB[ xPortGetCoreID() ]->ucDelayAborted != ( uint8_t ) pdFALSE )
|
|
|
- {
|
|
|
- /* The delay was aborted, which is not the same as a time out,
|
|
|
- * but has the same result. */
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ucDelayAborted = pdFALSE;
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- if( *pxTicksToWait == portMAX_DELAY )
|
|
|
- {
|
|
|
- /* If INCLUDE_vTaskSuspend is set to 1 and the block time
|
|
|
- * specified is the maximum block time then the task should block
|
|
|
- * indefinitely, and therefore never time out. */
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
- else
|
|
|
- #endif
|
|
|
-
|
|
|
- if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
|
|
|
- {
|
|
|
- /* The tick count is greater than the time at which
|
|
|
- * vTaskSetTimeout() was called, but has also overflowed since
|
|
|
- * vTaskSetTimeOut() was called. It must have wrapped all the way
|
|
|
- * around and gone past again. This passed since vTaskSetTimeout()
|
|
|
- * was called. */
|
|
|
- xReturn = pdTRUE;
|
|
|
- *pxTicksToWait = ( TickType_t ) 0;
|
|
|
- }
|
|
|
- else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
|
|
|
- {
|
|
|
- /* Not a genuine timeout. Adjust parameters for time remaining. */
|
|
|
- *pxTicksToWait -= xElapsedTime;
|
|
|
- vTaskInternalSetTimeOutState( pxTimeOut );
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- *pxTicksToWait = ( TickType_t ) 0;
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-void vTaskMissedYield( void )
|
|
|
-{
|
|
|
- xYieldPending[ xPortGetCoreID() ] = pdTRUE;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- UBaseType_t uxReturn;
|
|
|
- TCB_t const * pxTCB;
|
|
|
-
|
|
|
- if( xTask != NULL )
|
|
|
- {
|
|
|
- pxTCB = xTask;
|
|
|
- uxReturn = pxTCB->uxTaskNumber;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- uxReturn = 0U;
|
|
|
- }
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- void vTaskSetTaskNumber( TaskHandle_t xTask,
|
|
|
- const UBaseType_t uxHandle )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- if( xTask != NULL )
|
|
|
- {
|
|
|
- pxTCB = xTask;
|
|
|
- pxTCB->uxTaskNumber = uxHandle;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-
|
|
|
-/*
|
|
|
- * -----------------------------------------------------------
|
|
|
- * The Idle task.
|
|
|
- * ----------------------------------------------------------
|
|
|
- *
|
|
|
- * The portTASK_FUNCTION() macro is used to allow port/compiler specific
|
|
|
- * language extensions. The equivalent prototype for this function is:
|
|
|
- *
|
|
|
- * void prvIdleTask( void *pvParameters );
|
|
|
- *
|
|
|
- */
|
|
|
-static portTASK_FUNCTION( prvIdleTask, pvParameters )
|
|
|
-{
|
|
|
- /* Stop warnings. */
|
|
|
- ( void ) pvParameters;
|
|
|
-
|
|
|
- /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
|
|
|
- * SCHEDULER IS STARTED. **/
|
|
|
-
|
|
|
- /* In case a task that has a secure context deletes itself, in which case
|
|
|
- * the idle task is responsible for deleting the task's secure context, if
|
|
|
- * any. */
|
|
|
- portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
|
|
|
-
|
|
|
- for( ; ; )
|
|
|
- {
|
|
|
- /* See if any tasks have deleted themselves - if so then the idle task
|
|
|
- * is responsible for freeing the deleted task's TCB and stack. */
|
|
|
- prvCheckTasksWaitingTermination();
|
|
|
-
|
|
|
- #if ( configUSE_PREEMPTION == 0 )
|
|
|
- {
|
|
|
- /* If we are not using preemption we keep forcing a task switch to
|
|
|
- * see if any other task has become available. If we are using
|
|
|
- * preemption we don't need to do this as any task becoming available
|
|
|
- * will automatically get the processor anyway. */
|
|
|
- taskYIELD();
|
|
|
- }
|
|
|
- #endif /* configUSE_PREEMPTION */
|
|
|
-
|
|
|
- #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
|
|
|
- {
|
|
|
- /* When using preemption tasks of equal priority will be
|
|
|
- * timesliced. If a task that is sharing the idle priority is ready
|
|
|
- * to run then the idle task should yield before the end of the
|
|
|
- * timeslice.
|
|
|
- *
|
|
|
- * A critical region is not required here as we are just reading from
|
|
|
- * the list, and an occasional incorrect value will not matter. If
|
|
|
- * the ready list at the idle priority contains more than one task
|
|
|
- * then a task other than the idle task is ready to execute. */
|
|
|
- if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
|
|
|
- {
|
|
|
- taskYIELD();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
|
|
|
-
|
|
|
- #if ( configUSE_IDLE_HOOK == 1 )
|
|
|
- {
|
|
|
- extern void vApplicationIdleHook( void );
|
|
|
-
|
|
|
- /* Call the user defined function from within the idle task. This
|
|
|
- * allows the application designer to add background functionality
|
|
|
- * without the overhead of a separate task.
|
|
|
- * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
|
|
|
- * CALL A FUNCTION THAT MIGHT BLOCK. */
|
|
|
- vApplicationIdleHook();
|
|
|
- }
|
|
|
- #endif /* configUSE_IDLE_HOOK */
|
|
|
-
|
|
|
- #ifdef ESP_PLATFORM
|
|
|
- /* Call the esp-idf idle hook system */
|
|
|
- esp_vApplicationIdleHook();
|
|
|
- #endif // ESP_PLATFORM
|
|
|
-
|
|
|
- /* This conditional compilation should use inequality to 0, not equality
|
|
|
- * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
|
|
|
- * user defined low power mode implementations require
|
|
|
- * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
|
|
|
- #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
- {
|
|
|
- TickType_t xExpectedIdleTime;
|
|
|
-
|
|
|
- /* It is not desirable to suspend then resume the scheduler on
|
|
|
- * each iteration of the idle task. Therefore, a preliminary
|
|
|
- * test of the expected idle time is performed without the
|
|
|
- * scheduler suspended. The result here is not necessarily
|
|
|
- * valid. */
|
|
|
- xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
-
|
|
|
- if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
|
|
- {
|
|
|
- prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
|
|
|
- {
|
|
|
- /* Now the scheduler is suspended, the expected idle
|
|
|
- * time can be sampled again, and this time its value can
|
|
|
- * be used. */
|
|
|
- configASSERT( xNextTaskUnblockTime >= xTickCount );
|
|
|
- xExpectedIdleTime = prvGetExpectedIdleTime();
|
|
|
-
|
|
|
- /* Define the following macro to set xExpectedIdleTime to 0
|
|
|
- * if the application does not want
|
|
|
- * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
|
|
|
- configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
|
|
|
-
|
|
|
- if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
|
|
- {
|
|
|
- traceLOW_POWER_IDLE_BEGIN();
|
|
|
- portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
|
|
|
- traceLOW_POWER_IDLE_END();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configUSE_TICKLESS_IDLE */
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
-
|
|
|
- eSleepModeStatus eTaskConfirmSleepModeStatus( void )
|
|
|
- {
|
|
|
- /* The idle task exists in addition to the application tasks. */
|
|
|
- const UBaseType_t uxNonApplicationTasks = 1;
|
|
|
- eSleepModeStatus eReturn = eStandardSleep;
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- if( listCURRENT_LIST_LENGTH( &xPendingReadyList[ xPortGetCoreID() ] ) != 0 )
|
|
|
- {
|
|
|
- /* A task was made ready while the scheduler was suspended. */
|
|
|
- eReturn = eAbortSleep;
|
|
|
- }
|
|
|
- else if( xYieldPending[ xPortGetCoreID() ] != pdFALSE )
|
|
|
- {
|
|
|
- /* A yield was pended while the scheduler was suspended. */
|
|
|
- eReturn = eAbortSleep;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* If all the tasks are in the suspended list (which might mean they
|
|
|
- * have an infinite block time rather than actually being suspended)
|
|
|
- * then it is safe to turn all clocks off and just wait for external
|
|
|
- * interrupts. */
|
|
|
- if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
|
|
|
- {
|
|
|
- eReturn = eNoTasksWaitingTimeout;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return eReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TICKLESS_IDLE */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
-
|
|
|
- void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
|
|
|
- BaseType_t xIndex,
|
|
|
- void * pvValue )
|
|
|
- {
|
|
|
- #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
|
|
|
- {
|
|
|
- /* TLSP Deletion Callbacks are enabled. Call the TLSPDC funciton
|
|
|
- * instead with a NULL callback. */
|
|
|
- vTaskSetThreadLocalStoragePointerAndDelCallback( xTaskToSet, xIndex, pvValue, NULL );
|
|
|
- }
|
|
|
- #else /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 */
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, we need to take the kernel lock here as we
|
|
|
- * another core could also update this task's TLSP at the
|
|
|
- * same time. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
|
|
|
- {
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToSet );
|
|
|
- configASSERT( pxTCB != NULL );
|
|
|
- pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- }
|
|
|
- #endif /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 */
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
|
|
|
-
|
|
|
- void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
|
|
|
- BaseType_t xIndex )
|
|
|
- {
|
|
|
- void * pvReturn = NULL;
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
|
|
|
- /* If TLSP deletion callbacks are enabled, then
|
|
|
- * configNUM_THREAD_LOCAL_STORAGE_POINTERS is doubled in size so
|
|
|
- * that the latter half of the pvThreadLocalStoragePointers stores
|
|
|
- * the deletion callbacks. */
|
|
|
- if( xIndex < ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) )
|
|
|
- #else /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 */
|
|
|
- if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
|
|
|
- #endif /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 */
|
|
|
- {
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
|
|
- pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pvReturn = NULL;
|
|
|
- }
|
|
|
-
|
|
|
- return pvReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
-
|
|
|
- void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
|
|
|
- const MemoryRegion_t * const xRegions )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* If null is passed in here then we are modifying the MPU settings of
|
|
|
- * the calling task. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTaskToModify );
|
|
|
-
|
|
|
- vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* portUSING_MPU_WRAPPERS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvInitialiseTaskLists( void )
|
|
|
-{
|
|
|
- UBaseType_t uxPriority;
|
|
|
-
|
|
|
- for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
|
|
|
- {
|
|
|
- vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
|
|
|
- }
|
|
|
-
|
|
|
- vListInitialise( &xDelayedTaskList1 );
|
|
|
- vListInitialise( &xDelayedTaskList2 );
|
|
|
-
|
|
|
- for( BaseType_t x = 0; x < configNUM_CORES; x++ )
|
|
|
- {
|
|
|
- vListInitialise( &xPendingReadyList[ x ] );
|
|
|
- }
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- {
|
|
|
- vListInitialise( &xTasksWaitingTermination );
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskDelete */
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- vListInitialise( &xSuspendedTaskList );
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskSuspend */
|
|
|
-
|
|
|
- /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
|
|
|
- * using list2. */
|
|
|
- pxDelayedTaskList = &xDelayedTaskList1;
|
|
|
- pxOverflowDelayedTaskList = &xDelayedTaskList2;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-
|
|
|
-static void prvCheckTasksWaitingTermination( void )
|
|
|
-{
|
|
|
- /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskDelete == 1 )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
|
|
|
- * being called too often in the idle task. */
|
|
|
- while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
|
|
|
- {
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- pxTCB = NULL;
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* List may have already been cleared by the other core. Check again */
|
|
|
- if ( listLIST_IS_EMPTY( &xTasksWaitingTermination ) == pdFALSE )
|
|
|
- {
|
|
|
- /* We can't delete a task if it is still running on
|
|
|
- * the other core. Keep walking the list until we
|
|
|
- * find a task we can free, or until we walk the
|
|
|
- * entire list. */
|
|
|
- ListItem_t *xEntry;
|
|
|
- for ( xEntry = listGET_HEAD_ENTRY( &xTasksWaitingTermination ); xEntry != listGET_END_MARKER( &xTasksWaitingTermination ); xEntry = listGET_NEXT( xEntry ) )
|
|
|
- {
|
|
|
- if ( !taskIS_CURRENTLY_RUNNING( ( ( TCB_t * ) listGET_LIST_ITEM_OWNER( xEntry ) ) ) )
|
|
|
- {
|
|
|
- pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( xEntry );
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- --uxCurrentNumberOfTasks;
|
|
|
- --uxDeletedTasksWaitingCleanUp;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- if ( pxTCB != NULL )
|
|
|
- {
|
|
|
- prvDeleteTCB( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* No task found to delete, break out of loop */
|
|
|
- break;
|
|
|
- }
|
|
|
- #else
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- --uxCurrentNumberOfTasks;
|
|
|
- --uxDeletedTasksWaitingCleanUp;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- prvDeleteTCB( pxTCB );
|
|
|
- #endif /* configNUM_CORES > 1 */
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskDelete */
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- void vTaskGetInfo( TaskHandle_t xTask,
|
|
|
- TaskStatus_t * pxTaskStatus,
|
|
|
- BaseType_t xGetFreeStackSpace,
|
|
|
- eTaskState eState )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- /* xTask is NULL then get the state of the calling task. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
|
|
|
- pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
|
|
|
- pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
|
|
|
- pxTaskStatus->pxStackBase = pxTCB->pxStack;
|
|
|
- pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
|
|
|
- #if ( configTASKLIST_INCLUDE_COREID == 1 )
|
|
|
- pxTaskStatus->xCoreID = pxTCB->xCoreID;
|
|
|
- #endif /* configTASKLIST_INCLUDE_COREID */
|
|
|
-
|
|
|
- #if ( configUSE_MUTEXES == 1 )
|
|
|
- {
|
|
|
- pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pxTaskStatus->uxBasePriority = 0;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( configGENERATE_RUN_TIME_STATS == 1 )
|
|
|
- {
|
|
|
- pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pxTaskStatus->ulRunTimeCounter = 0;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Obtaining the task state is a little fiddly, so is only done if the
|
|
|
- * value of eState passed into this function is eInvalid - otherwise the
|
|
|
- * state is just set to whatever is passed in. */
|
|
|
- if( eState != eInvalid )
|
|
|
- {
|
|
|
- if( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] )
|
|
|
- {
|
|
|
- pxTaskStatus->eCurrentState = eRunning;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxTaskStatus->eCurrentState = eState;
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- /* If the task is in the suspended list then there is a
|
|
|
- * chance it is actually just blocked indefinitely - so really
|
|
|
- * it should be reported as being in the Blocked state. */
|
|
|
- if( eState == eSuspended )
|
|
|
- {
|
|
|
- prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
|
|
|
- {
|
|
|
- if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
|
|
- {
|
|
|
- pxTaskStatus->eCurrentState = eBlocked;
|
|
|
- }
|
|
|
- }
|
|
|
- ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskSuspend */
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
|
|
|
- }
|
|
|
-
|
|
|
- /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
|
|
|
- * parameter is provided to allow it to be skipped. */
|
|
|
- if( xGetFreeStackSpace != pdFALSE )
|
|
|
- {
|
|
|
- #if ( portSTACK_GROWTH > 0 )
|
|
|
- {
|
|
|
- pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxTaskStatus->usStackHighWaterMark = 0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TRACE_FACILITY == 1 )
|
|
|
-
|
|
|
- static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
|
|
|
- List_t * pxList,
|
|
|
- eTaskState eState )
|
|
|
- {
|
|
|
- configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
|
|
|
- UBaseType_t uxTask = 0;
|
|
|
-
|
|
|
- if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
-
|
|
|
- /* Populate an TaskStatus_t structure within the
|
|
|
- * pxTaskStatusArray array for each task that is referenced from
|
|
|
- * pxList. See the definition of TaskStatus_t in task.h for the
|
|
|
- * meaning of each TaskStatus_t structure member. */
|
|
|
- do
|
|
|
- {
|
|
|
- listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
|
|
|
- uxTask++;
|
|
|
- } while( pxNextTCB != pxFirstTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- return uxTask;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TRACE_FACILITY */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
|
|
|
-
|
|
|
- static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
|
|
|
- {
|
|
|
- uint32_t ulCount = 0U;
|
|
|
-
|
|
|
- while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
|
|
|
- {
|
|
|
- pucStackByte -= portSTACK_GROWTH;
|
|
|
- ulCount++;
|
|
|
- }
|
|
|
-
|
|
|
- ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
|
|
|
-
|
|
|
- return ( configSTACK_DEPTH_TYPE ) ulCount;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
|
|
|
-
|
|
|
-/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
|
|
|
- * same except for their return type. Using configSTACK_DEPTH_TYPE allows the
|
|
|
- * user to determine the return type. It gets around the problem of the value
|
|
|
- * overflowing on 8-bit types without breaking backward compatibility for
|
|
|
- * applications that expect an 8-bit return type. */
|
|
|
- configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint8_t * pucEndOfStack;
|
|
|
- configSTACK_DEPTH_TYPE uxReturn;
|
|
|
-
|
|
|
- /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
|
|
|
- * the same except for their return type. Using configSTACK_DEPTH_TYPE
|
|
|
- * allows the user to determine the return type. It gets around the
|
|
|
- * problem of the value overflowing on 8-bit types without breaking
|
|
|
- * backward compatibility for applications that expect an 8-bit return
|
|
|
- * type. */
|
|
|
-
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- #if portSTACK_GROWTH < 0
|
|
|
- {
|
|
|
- pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
|
|
|
-
|
|
|
- UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint8_t * pucEndOfStack;
|
|
|
- UBaseType_t uxReturn;
|
|
|
-
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- #if portSTACK_GROWTH < 0
|
|
|
- {
|
|
|
- pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( INCLUDE_vTaskDelete == 1 )
|
|
|
-
|
|
|
- static void prvDeleteTCB( TCB_t * pxTCB )
|
|
|
- {
|
|
|
- /* This call is required specifically for the TriCore port. It must be
|
|
|
- * above the vPortFree() calls. The call is also used by ports/demos that
|
|
|
- * want to allocate and clean RAM statically. */
|
|
|
- portCLEAN_UP_TCB( pxTCB );
|
|
|
-
|
|
|
- /* Free up the memory allocated by the scheduler for the task. It is up
|
|
|
- * to the task to free any memory allocated at the application level.
|
|
|
- * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
|
|
|
- * for additional information. */
|
|
|
- #if ( configUSE_NEWLIB_REENTRANT == 1 )
|
|
|
- {
|
|
|
- _reclaim_reent( &( pxTCB->xNewLib_reent ) );
|
|
|
- }
|
|
|
- #endif /* configUSE_NEWLIB_REENTRANT */
|
|
|
-
|
|
|
- #if ( portUSING_MPU_WRAPPERS == 1 )
|
|
|
- vPortReleaseTaskMPUSettings( &( pxTCB->xMPUSettings ) );
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
|
|
|
- {
|
|
|
- /* The task can only have been allocated dynamically - free both
|
|
|
- * the stack and TCB. */
|
|
|
- vPortFree( pxTCB->pxStack );
|
|
|
- vPortFree( pxTCB );
|
|
|
- }
|
|
|
- #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
|
|
|
- {
|
|
|
- /* The task could have been allocated statically or dynamically, so
|
|
|
- * check what was statically allocated before trying to free the
|
|
|
- * memory. */
|
|
|
- if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
|
|
|
- {
|
|
|
- /* Both the stack and TCB were allocated dynamically, so both
|
|
|
- * must be freed. */
|
|
|
- vPortFree( pxTCB->pxStack );
|
|
|
- vPortFree( pxTCB );
|
|
|
- }
|
|
|
- else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
|
|
|
- {
|
|
|
- /* Only the stack was statically allocated, so the TCB is the
|
|
|
- * only memory that must be freed. */
|
|
|
- vPortFree( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* Neither the stack nor the TCB were allocated dynamically, so
|
|
|
- * nothing needs to be freed. */
|
|
|
- configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* INCLUDE_vTaskDelete */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvResetNextTaskUnblockTime( void )
|
|
|
-{
|
|
|
- TCB_t * pxTCB;
|
|
|
-
|
|
|
- if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
|
|
- {
|
|
|
- /* The new current delayed list is empty. Set xNextTaskUnblockTime to
|
|
|
- * the maximum possible value so it is extremely unlikely that the
|
|
|
- * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
|
|
|
- * there is an item in the delayed list. */
|
|
|
- xNextTaskUnblockTime = portMAX_DELAY;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The new current delayed list is not empty, get the value of
|
|
|
- * the item at the head of the delayed list. This is the time at
|
|
|
- * which the task at the head of the delayed list should be removed
|
|
|
- * from the Blocked state. */
|
|
|
- ( pxTCB ) = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
|
|
|
- xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xStateListItem ) );
|
|
|
- }
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
|
|
|
-
|
|
|
- TaskHandle_t xTaskGetCurrentTaskHandle( void )
|
|
|
- {
|
|
|
- TaskHandle_t xReturn;
|
|
|
- unsigned state;
|
|
|
-
|
|
|
- state = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
- xReturn = pxCurrentTCB[ xPortGetCoreID() ];
|
|
|
- portCLEAR_INTERRUPT_MASK_FROM_ISR( state );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
|
|
-
|
|
|
- BaseType_t xTaskGetSchedulerState( void )
|
|
|
- {
|
|
|
- BaseType_t xReturn;
|
|
|
- unsigned state;
|
|
|
-
|
|
|
- /* Known issue. This should use critical sections. See IDF-5889 */
|
|
|
- state = portSET_INTERRUPT_MASK_FROM_ISR();
|
|
|
-
|
|
|
- if( xSchedulerRunning == pdFALSE )
|
|
|
- {
|
|
|
- xReturn = taskSCHEDULER_NOT_STARTED;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) 0U )
|
|
|
- {
|
|
|
- xReturn = taskSCHEDULER_RUNNING;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = taskSCHEDULER_SUSPENDED;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- portCLEAR_INTERRUPT_MASK_FROM_ISR( state );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_MUTEXES == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
|
|
|
- {
|
|
|
- TCB_t * const pxMutexHolderTCB = pxMutexHolder;
|
|
|
- BaseType_t xReturn = pdFALSE;
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, we need to take the kernel lock here as we are about to
|
|
|
- * access kernel data structures. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- /* If the mutex was given back by an interrupt while the queue was
|
|
|
- * locked then the mutex holder might now be NULL. _RB_ Is this still
|
|
|
- * needed as interrupts can no longer use mutexes? */
|
|
|
- if( pxMutexHolder != NULL )
|
|
|
- {
|
|
|
- /* If the holder of the mutex has a priority below the priority of
|
|
|
- * the task attempting to obtain the mutex then it will temporarily
|
|
|
- * inherit the priority of the task attempting to obtain the mutex. */
|
|
|
- if( pxMutexHolderTCB->uxPriority < pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
|
- {
|
|
|
- /* Adjust the mutex holder state to account for its new
|
|
|
- * priority. Only reset the event list item value if the value is
|
|
|
- * not being used for anything else. */
|
|
|
- if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
|
- {
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* If the task being modified is in the ready state it will need
|
|
|
- * to be moved into a new list. */
|
|
|
- if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
|
|
|
- {
|
|
|
- if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* It is known that the task is in its ready list so
|
|
|
- * there is no need to check again and the port level
|
|
|
- * reset macro can be called directly. */
|
|
|
- portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Inherit the priority before being moved into the new list. */
|
|
|
- pxMutexHolderTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority;
|
|
|
- prvAddTaskToReadyList( pxMutexHolderTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* Just inherit the priority. */
|
|
|
- pxMutexHolderTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority;
|
|
|
- }
|
|
|
-
|
|
|
- traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB[ xPortGetCoreID() ]->uxPriority );
|
|
|
-
|
|
|
- /* Inheritance occurred. */
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
|
|
- {
|
|
|
- /* The base priority of the mutex holder is lower than the
|
|
|
- * priority of the task attempting to take the mutex, but the
|
|
|
- * current priority of the mutex holder is not lower than the
|
|
|
- * priority of the task attempting to take the mutex.
|
|
|
- * Therefore the mutex holder must have already inherited a
|
|
|
- * priority, but inheritance would have occurred if that had
|
|
|
- * not been the case. */
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_MUTEXES */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_MUTEXES == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
|
|
|
- {
|
|
|
- TCB_t * const pxTCB = pxMutexHolder;
|
|
|
- BaseType_t xReturn = pdFALSE;
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, we need to take the kernel lock here as we are about to
|
|
|
- * access kernel data structures. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- if( pxMutexHolder != NULL )
|
|
|
- {
|
|
|
- /* A task can only have an inherited priority if it holds the mutex.
|
|
|
- * If the mutex is held by a task then it cannot be given from an
|
|
|
- * interrupt, and if a mutex is given by the holding task then it must
|
|
|
- * be the running state task. */
|
|
|
- configASSERT( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] );
|
|
|
- configASSERT( pxTCB->uxMutexesHeld );
|
|
|
- ( pxTCB->uxMutexesHeld )--;
|
|
|
-
|
|
|
- /* Has the holder of the mutex inherited the priority of another
|
|
|
- * task? */
|
|
|
- if( pxTCB->uxPriority != pxTCB->uxBasePriority )
|
|
|
- {
|
|
|
- /* Only disinherit if no other mutexes are held. */
|
|
|
- if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* A task can only have an inherited priority if it holds
|
|
|
- * the mutex. If the mutex is held by a task then it cannot be
|
|
|
- * given from an interrupt, and if a mutex is given by the
|
|
|
- * holding task then it must be the running state task. Remove
|
|
|
- * the holding task from the ready list. */
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Disinherit the priority before adding the task into the
|
|
|
- * new ready list. */
|
|
|
- traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
|
|
|
- pxTCB->uxPriority = pxTCB->uxBasePriority;
|
|
|
-
|
|
|
- /* Reset the event list item value. It cannot be in use for
|
|
|
- * any other purpose if this task is running, and it must be
|
|
|
- * running to give back the mutex. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* Return true to indicate that a context switch is required.
|
|
|
- * This is only actually required in the corner case whereby
|
|
|
- * multiple mutexes were held and the mutexes were given back
|
|
|
- * in an order different to that in which they were taken.
|
|
|
- * If a context switch did not occur when the first mutex was
|
|
|
- * returned, even if a task was waiting on it, then a context
|
|
|
- * switch should occur when the last mutex is returned whether
|
|
|
- * a task is waiting on it or not. */
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_MUTEXES */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_MUTEXES == 1 )
|
|
|
-
|
|
|
- void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
|
|
|
- UBaseType_t uxHighestPriorityWaitingTask )
|
|
|
- {
|
|
|
- TCB_t * const pxTCB = pxMutexHolder;
|
|
|
- UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
|
|
|
- const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, we need to take the kernel lock here as we are about to
|
|
|
- * access kernel data structures. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- if( pxMutexHolder != NULL )
|
|
|
- {
|
|
|
- /* If pxMutexHolder is not NULL then the holder must hold at least
|
|
|
- * one mutex. */
|
|
|
- configASSERT( pxTCB->uxMutexesHeld );
|
|
|
-
|
|
|
- /* Determine the priority to which the priority of the task that
|
|
|
- * holds the mutex should be set. This will be the greater of the
|
|
|
- * holding task's base priority and the priority of the highest
|
|
|
- * priority task that is waiting to obtain the mutex. */
|
|
|
- if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
|
|
|
- {
|
|
|
- uxPriorityToUse = uxHighestPriorityWaitingTask;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- uxPriorityToUse = pxTCB->uxBasePriority;
|
|
|
- }
|
|
|
-
|
|
|
- /* Does the priority need to change? */
|
|
|
- if( pxTCB->uxPriority != uxPriorityToUse )
|
|
|
- {
|
|
|
- /* Only disinherit if no other mutexes are held. This is a
|
|
|
- * simplification in the priority inheritance implementation. If
|
|
|
- * the task that holds the mutex is also holding other mutexes then
|
|
|
- * the other mutexes may have caused the priority inheritance. */
|
|
|
- if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
|
|
|
- {
|
|
|
- /* If a task has timed out because it already holds the
|
|
|
- * mutex it was trying to obtain then it cannot of inherited
|
|
|
- * its own priority. */
|
|
|
- configASSERT( pxTCB != pxCurrentTCB[ xPortGetCoreID() ] );
|
|
|
-
|
|
|
- /* Disinherit the priority, remembering the previous
|
|
|
- * priority to facilitate determining the subject task's
|
|
|
- * state. */
|
|
|
- traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
|
|
|
- uxPriorityUsedOnEntry = pxTCB->uxPriority;
|
|
|
- pxTCB->uxPriority = uxPriorityToUse;
|
|
|
-
|
|
|
- /* Only reset the event list item value if the value is not
|
|
|
- * being used for anything else. */
|
|
|
- if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
|
|
- {
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* If the running task is not the task that holds the mutex
|
|
|
- * then the task that holds the mutex could be in either the
|
|
|
- * Ready, Blocked or Suspended states. Only remove the task
|
|
|
- * from its current state list if it is in the Ready state as
|
|
|
- * the task's priority is going to change and there is one
|
|
|
- * Ready list per priority. */
|
|
|
- if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
|
|
|
- {
|
|
|
- if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* It is known that the task is in its ready list so
|
|
|
- * there is no need to check again and the port level
|
|
|
- * reset macro can be called directly. */
|
|
|
- portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_MUTEXES */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
-
|
|
|
- void vTaskEnterCritical( void )
|
|
|
- {
|
|
|
- portDISABLE_INTERRUPTS();
|
|
|
-
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- ( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting )++;
|
|
|
-
|
|
|
- /* This is not the interrupt safe version of the enter critical
|
|
|
- * function so assert() if it is being called from an interrupt
|
|
|
- * context. Only API functions that end in "FromISR" can be used in an
|
|
|
- * interrupt. Only assert if the critical nesting count is 1 to
|
|
|
- * protect against recursive calls if the assert function also uses a
|
|
|
- * critical section. */
|
|
|
- if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting == 1 )
|
|
|
- {
|
|
|
- portASSERT_IF_IN_ISR();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
|
|
-
|
|
|
- void vTaskExitCritical( void )
|
|
|
- {
|
|
|
- if( xSchedulerRunning != pdFALSE )
|
|
|
- {
|
|
|
- if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting > 0U )
|
|
|
- {
|
|
|
- ( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting )--;
|
|
|
-
|
|
|
- if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting == 0U )
|
|
|
- {
|
|
|
- portENABLE_INTERRUPTS();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* portCRITICAL_NESTING_IN_TCB */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
|
|
|
-
|
|
|
- static char * prvWriteNameToBuffer( char * pcBuffer,
|
|
|
- const char * pcTaskName )
|
|
|
- {
|
|
|
- size_t x;
|
|
|
-
|
|
|
- /* Start by copying the entire string. */
|
|
|
- strcpy( pcBuffer, pcTaskName );
|
|
|
-
|
|
|
- /* Pad the end of the string with spaces to ensure columns line up when
|
|
|
- * printed out. */
|
|
|
- for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
|
|
|
- {
|
|
|
- pcBuffer[ x ] = ' ';
|
|
|
- }
|
|
|
-
|
|
|
- /* Terminate. */
|
|
|
- pcBuffer[ x ] = ( char ) 0x00;
|
|
|
-
|
|
|
- /* Return the new end of string. */
|
|
|
- return &( pcBuffer[ x ] );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
|
|
-
|
|
|
- void vTaskList( char * pcWriteBuffer )
|
|
|
- {
|
|
|
- TaskStatus_t * pxTaskStatusArray;
|
|
|
- UBaseType_t uxArraySize, x;
|
|
|
- char cStatus;
|
|
|
-
|
|
|
- /*
|
|
|
- * PLEASE NOTE:
|
|
|
- *
|
|
|
- * This function is provided for convenience only, and is used by many
|
|
|
- * of the demo applications. Do not consider it to be part of the
|
|
|
- * scheduler.
|
|
|
- *
|
|
|
- * vTaskList() calls uxTaskGetSystemState(), then formats part of the
|
|
|
- * uxTaskGetSystemState() output into a human readable table that
|
|
|
- * displays task names, states and stack usage.
|
|
|
- *
|
|
|
- * vTaskList() has a dependency on the sprintf() C library function that
|
|
|
- * might bloat the code size, use a lot of stack, and provide different
|
|
|
- * results on different platforms. An alternative, tiny, third party,
|
|
|
- * and limited functionality implementation of sprintf() is provided in
|
|
|
- * many of the FreeRTOS/Demo sub-directories in a file called
|
|
|
- * printf-stdarg.c (note printf-stdarg.c does not provide a full
|
|
|
- * snprintf() implementation!).
|
|
|
- *
|
|
|
- * It is recommended that production systems call uxTaskGetSystemState()
|
|
|
- * directly to get access to raw stats data, rather than indirectly
|
|
|
- * through a call to vTaskList().
|
|
|
- */
|
|
|
-
|
|
|
-
|
|
|
- /* Make sure the write buffer does not contain a string. */
|
|
|
- *pcWriteBuffer = ( char ) 0x00;
|
|
|
-
|
|
|
- /* Take a snapshot of the number of tasks in case it changes while this
|
|
|
- * function is executing. */
|
|
|
- uxArraySize = uxCurrentNumberOfTasks;
|
|
|
-
|
|
|
- /* Allocate an array index for each task. NOTE! if
|
|
|
- * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
|
|
|
- * equate to NULL. */
|
|
|
- pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
|
|
|
-
|
|
|
- if( pxTaskStatusArray != NULL )
|
|
|
- {
|
|
|
- /* Generate the (binary) data. */
|
|
|
- uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
|
|
|
-
|
|
|
- /* Create a human readable table from the binary data. */
|
|
|
- for( x = 0; x < uxArraySize; x++ )
|
|
|
- {
|
|
|
- switch( pxTaskStatusArray[ x ].eCurrentState )
|
|
|
- {
|
|
|
- case eRunning:
|
|
|
- cStatus = tskRUNNING_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eReady:
|
|
|
- cStatus = tskREADY_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eBlocked:
|
|
|
- cStatus = tskBLOCKED_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSuspended:
|
|
|
- cStatus = tskSUSPENDED_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eDeleted:
|
|
|
- cStatus = tskDELETED_CHAR;
|
|
|
- break;
|
|
|
-
|
|
|
- case eInvalid: /* Fall through. */
|
|
|
- default: /* Should not get here, but it is included
|
|
|
- * to prevent static checking errors. */
|
|
|
- cStatus = ( char ) 0x00;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- /* Write the task name to the string, padding with spaces so it
|
|
|
- * can be printed in tabular form more easily. */
|
|
|
- pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
|
|
|
-
|
|
|
- /* Write the rest of the string. */
|
|
|
- #if configTASKLIST_INCLUDE_COREID
|
|
|
- sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\t%hd\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber, ( int ) pxTaskStatusArray[ x ].xCoreID );
|
|
|
- #else
|
|
|
- sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
|
|
|
- #endif
|
|
|
- pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
|
|
|
- }
|
|
|
-
|
|
|
- /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
|
|
|
- * is 0 then vPortFree() will be #defined to nothing. */
|
|
|
- vPortFree( pxTaskStatusArray );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
|
|
|
-/*----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
|
|
|
-
|
|
|
- void vTaskGetRunTimeStats( char * pcWriteBuffer )
|
|
|
- {
|
|
|
- TaskStatus_t * pxTaskStatusArray;
|
|
|
- UBaseType_t uxArraySize, x;
|
|
|
- uint32_t ulTotalTime, ulStatsAsPercentage;
|
|
|
-
|
|
|
- #if ( configUSE_TRACE_FACILITY != 1 )
|
|
|
- {
|
|
|
- #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /*
|
|
|
- * PLEASE NOTE:
|
|
|
- *
|
|
|
- * This function is provided for convenience only, and is used by many
|
|
|
- * of the demo applications. Do not consider it to be part of the
|
|
|
- * scheduler.
|
|
|
- *
|
|
|
- * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
|
|
|
- * of the uxTaskGetSystemState() output into a human readable table that
|
|
|
- * displays the amount of time each task has spent in the Running state
|
|
|
- * in both absolute and percentage terms.
|
|
|
- *
|
|
|
- * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
|
|
|
- * function that might bloat the code size, use a lot of stack, and
|
|
|
- * provide different results on different platforms. An alternative,
|
|
|
- * tiny, third party, and limited functionality implementation of
|
|
|
- * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
|
|
|
- * a file called printf-stdarg.c (note printf-stdarg.c does not provide
|
|
|
- * a full snprintf() implementation!).
|
|
|
- *
|
|
|
- * It is recommended that production systems call uxTaskGetSystemState()
|
|
|
- * directly to get access to raw stats data, rather than indirectly
|
|
|
- * through a call to vTaskGetRunTimeStats().
|
|
|
- */
|
|
|
-
|
|
|
- /* Make sure the write buffer does not contain a string. */
|
|
|
- *pcWriteBuffer = ( char ) 0x00;
|
|
|
-
|
|
|
- /* Take a snapshot of the number of tasks in case it changes while this
|
|
|
- * function is executing. */
|
|
|
- uxArraySize = uxCurrentNumberOfTasks;
|
|
|
-
|
|
|
- /* Allocate an array index for each task. NOTE! If
|
|
|
- * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
|
|
|
- * equate to NULL. */
|
|
|
- pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
|
|
|
-
|
|
|
- if( pxTaskStatusArray != NULL )
|
|
|
- {
|
|
|
- /* Generate the (binary) data. */
|
|
|
- uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
|
|
|
-
|
|
|
- /* For percentage calculations. */
|
|
|
- ulTotalTime /= 100UL;
|
|
|
-
|
|
|
- /* Avoid divide by zero errors. */
|
|
|
- if( ulTotalTime > 0UL )
|
|
|
- {
|
|
|
- /* Create a human readable table from the binary data. */
|
|
|
- for( x = 0; x < uxArraySize; x++ )
|
|
|
- {
|
|
|
- /* What percentage of the total run time has the task used?
|
|
|
- * This will always be rounded down to the nearest integer.
|
|
|
- * ulTotalRunTimeDiv100 has already been divided by 100. */
|
|
|
- ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
|
|
|
-
|
|
|
- /* Write the task name to the string, padding with
|
|
|
- * spaces so it can be printed in tabular form more
|
|
|
- * easily. */
|
|
|
- pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
|
|
|
-
|
|
|
- if( ulStatsAsPercentage > 0UL )
|
|
|
- {
|
|
|
- #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
|
|
- {
|
|
|
- sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- /* sizeof( int ) == sizeof( long ) so a smaller
|
|
|
- * printf() library can be used. */
|
|
|
- sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* If the percentage is zero here then the task has
|
|
|
- * consumed less than 1% of the total run time. */
|
|
|
- #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
|
|
- {
|
|
|
- sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
|
|
|
- }
|
|
|
- #else
|
|
|
- {
|
|
|
- /* sizeof( int ) == sizeof( long ) so a smaller
|
|
|
- * printf() library can be used. */
|
|
|
- sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
|
|
|
- }
|
|
|
- #endif
|
|
|
- }
|
|
|
-
|
|
|
- pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
|
|
|
- * is 0 then vPortFree() will be #defined to nothing. */
|
|
|
- vPortFree( pxTaskStatusArray );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-TickType_t uxTaskResetEventItemValue( void )
|
|
|
-{
|
|
|
- TickType_t uxReturn;
|
|
|
- BaseType_t xCoreID;
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, we need to take the kernel lock here to ensure nothing else
|
|
|
- * modifies the task's event item value simultaneously. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- xCoreID = xPortGetCoreID();
|
|
|
-
|
|
|
- uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCoreID ]->xEventListItem ) );
|
|
|
-
|
|
|
- /* Reset the event list item to its normal value - so it can be used with
|
|
|
- * queues and semaphores. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCoreID ]->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xCoreID ]->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL_ISR( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- return uxReturn;
|
|
|
-}
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_MUTEXES == 1 )
|
|
|
-
|
|
|
- TaskHandle_t pvTaskIncrementMutexHeldCount( void )
|
|
|
- {
|
|
|
- TCB_t * pxCurTCB;
|
|
|
- BaseType_t xCoreID;
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, we need to take the kernel lock here as we are about to
|
|
|
- * access kernel data structures. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
- xCoreID = xPortGetCoreID();
|
|
|
-
|
|
|
- /* If xSemaphoreCreateMutex() is called before any tasks have been created
|
|
|
- * then pxCurrentTCB will be NULL. */
|
|
|
- if( pxCurrentTCB[ xCoreID ] != NULL )
|
|
|
- {
|
|
|
- ( pxCurrentTCB[ xCoreID ]->uxMutexesHeld )++;
|
|
|
- }
|
|
|
-
|
|
|
- pxCurTCB = pxCurrentTCB[ xCoreID ];
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- return pxCurTCB;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_MUTEXES */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
|
|
|
- BaseType_t xClearCountOnExit,
|
|
|
- TickType_t xTicksToWait )
|
|
|
- {
|
|
|
- uint32_t ulReturn;
|
|
|
-
|
|
|
- configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* Only block if the notification count is not already non-zero. */
|
|
|
- if( pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] == 0UL )
|
|
|
- {
|
|
|
- /* Mark this task as waiting for a notification. */
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
|
|
|
-
|
|
|
- if( xTicksToWait > ( TickType_t ) 0 )
|
|
|
- {
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
- traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
|
|
|
-
|
|
|
- /* All ports are written to allow a yield in a critical
|
|
|
- * section (some will yield immediately, others wait until the
|
|
|
- * critical section exits) - but it is not something that
|
|
|
- * application code should ever do. */
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- traceTASK_NOTIFY_TAKE( uxIndexToWait );
|
|
|
- ulReturn = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ];
|
|
|
-
|
|
|
- if( ulReturn != 0UL )
|
|
|
- {
|
|
|
- if( xClearCountOnExit != pdFALSE )
|
|
|
- {
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] = 0UL;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return ulReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
|
|
|
- uint32_t ulBitsToClearOnEntry,
|
|
|
- uint32_t ulBitsToClearOnExit,
|
|
|
- uint32_t * pulNotificationValue,
|
|
|
- TickType_t xTicksToWait )
|
|
|
- {
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* Only block if a notification is not already pending. */
|
|
|
- if( pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- /* Clear bits in the task's notification value as bits may get
|
|
|
- * set by the notifying task or interrupt. This can be used to
|
|
|
- * clear the value to zero. */
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
|
|
|
-
|
|
|
- /* Mark this task as waiting for a notification. */
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
|
|
|
-
|
|
|
- if( xTicksToWait > ( TickType_t ) 0 )
|
|
|
- {
|
|
|
- prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
|
|
|
- traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
|
|
|
-
|
|
|
- /* All ports are written to allow a yield in a critical
|
|
|
- * section (some will yield immediately, others wait until the
|
|
|
- * critical section exits) - but it is not something that
|
|
|
- * application code should ever do. */
|
|
|
- portYIELD_WITHIN_API();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- traceTASK_NOTIFY_WAIT( uxIndexToWait );
|
|
|
-
|
|
|
- if( pulNotificationValue != NULL )
|
|
|
- {
|
|
|
- /* Output the current notification value, which may or may not
|
|
|
- * have changed. */
|
|
|
- *pulNotificationValue = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ];
|
|
|
- }
|
|
|
-
|
|
|
- /* If ucNotifyValue is set then either the task never entered the
|
|
|
- * blocked state (because a notification was already pending) or the
|
|
|
- * task unblocked because of a notification. Otherwise the task
|
|
|
- * unblocked because of a timeout. */
|
|
|
- if( pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- /* A notification was not received. */
|
|
|
- xReturn = pdFALSE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* A notification was already pending or a notification was
|
|
|
- * received while the task was waiting. */
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
|
|
|
- xReturn = pdTRUE;
|
|
|
- }
|
|
|
-
|
|
|
- pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
|
|
|
- UBaseType_t uxIndexToNotify,
|
|
|
- uint32_t ulValue,
|
|
|
- eNotifyAction eAction,
|
|
|
- uint32_t * pulPreviousNotificationValue )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- BaseType_t xReturn = pdPASS;
|
|
|
- uint8_t ucOriginalNotifyState;
|
|
|
-
|
|
|
- configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
- configASSERT( xTaskToNotify );
|
|
|
- pxTCB = xTaskToNotify;
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- if( pulPreviousNotificationValue != NULL )
|
|
|
- {
|
|
|
- *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
|
|
|
- }
|
|
|
-
|
|
|
- ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
|
|
|
-
|
|
|
- pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
|
|
|
-
|
|
|
- switch( eAction )
|
|
|
- {
|
|
|
- case eSetBits:
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
|
|
|
- break;
|
|
|
-
|
|
|
- case eIncrement:
|
|
|
- ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSetValueWithOverwrite:
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSetValueWithoutOverwrite:
|
|
|
-
|
|
|
- if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The value could not be written to the task. */
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
-
|
|
|
- break;
|
|
|
-
|
|
|
- case eNoAction:
|
|
|
-
|
|
|
- /* The task is being notified without its notify value being
|
|
|
- * updated. */
|
|
|
- break;
|
|
|
-
|
|
|
- default:
|
|
|
-
|
|
|
- /* Should not get here if all enums are handled.
|
|
|
- * Artificially force an assert by testing a value the
|
|
|
- * compiler can't assume is const. */
|
|
|
- configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL );
|
|
|
-
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- traceTASK_NOTIFY( uxIndexToNotify );
|
|
|
-
|
|
|
- /* If the task is in the blocked state specifically to wait for a
|
|
|
- * notification then unblock it now. */
|
|
|
- if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
-
|
|
|
- /* The task should not have been on an event list. */
|
|
|
- configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
-
|
|
|
- #if ( configUSE_TICKLESS_IDLE != 0 )
|
|
|
- {
|
|
|
- /* If a task is blocked waiting for a notification then
|
|
|
- * xNextTaskUnblockTime might be set to the blocked task's time
|
|
|
- * out time. If the task is unblocked for a reason other than
|
|
|
- * a timeout xNextTaskUnblockTime is normally left unchanged,
|
|
|
- * because it will automatically get reset to a new value when
|
|
|
- * the tick count equals xNextTaskUnblockTime. However if
|
|
|
- * tickless idling is used it might be more important to enter
|
|
|
- * sleep mode at the earliest possible time - so reset
|
|
|
- * xNextTaskUnblockTime here to ensure it is updated at the
|
|
|
- * earliest possible time. */
|
|
|
- prvResetNextTaskUnblockTime();
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) )
|
|
|
- {
|
|
|
- /* The notified task has a priority above the currently
|
|
|
- * executing task so a yield is required. */
|
|
|
- taskYIELD_IF_USING_PREEMPTION();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
|
|
|
- UBaseType_t uxIndexToNotify,
|
|
|
- uint32_t ulValue,
|
|
|
- eNotifyAction eAction,
|
|
|
- uint32_t * pulPreviousNotificationValue,
|
|
|
- BaseType_t * pxHigherPriorityTaskWoken )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint8_t ucOriginalNotifyState;
|
|
|
- BaseType_t xReturn = pdPASS;
|
|
|
- UBaseType_t uxSavedInterruptStatus;
|
|
|
-
|
|
|
- configASSERT( xTaskToNotify );
|
|
|
- configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
- * maximum system call (or maximum API call) interrupt priority.
|
|
|
- * Interrupts that are above the maximum system call priority are keep
|
|
|
- * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
- * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
- * is defined in FreeRTOSConfig.h then
|
|
|
- * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
- * been assigned a priority above the configured maximum system call
|
|
|
- * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
- * from interrupts that have been assigned a priority at or (logically)
|
|
|
- * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
- * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
- * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
- * provided on the following link:
|
|
|
- * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- pxTCB = xTaskToNotify;
|
|
|
-
|
|
|
- prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
|
|
|
- {
|
|
|
- if( pulPreviousNotificationValue != NULL )
|
|
|
- {
|
|
|
- *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
|
|
|
- }
|
|
|
-
|
|
|
- ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
|
|
|
- pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
|
|
|
-
|
|
|
- switch( eAction )
|
|
|
- {
|
|
|
- case eSetBits:
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
|
|
|
- break;
|
|
|
-
|
|
|
- case eIncrement:
|
|
|
- ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSetValueWithOverwrite:
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
- break;
|
|
|
-
|
|
|
- case eSetValueWithoutOverwrite:
|
|
|
-
|
|
|
- if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The value could not be written to the task. */
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
-
|
|
|
- break;
|
|
|
-
|
|
|
- case eNoAction:
|
|
|
-
|
|
|
- /* The task is being notified without its notify value being
|
|
|
- * updated. */
|
|
|
- break;
|
|
|
-
|
|
|
- default:
|
|
|
-
|
|
|
- /* Should not get here if all enums are handled.
|
|
|
- * Artificially force an assert by testing a value the
|
|
|
- * compiler can't assume is const. */
|
|
|
- configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL );
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
|
|
|
-
|
|
|
- /* If the task is in the blocked state specifically to wait for a
|
|
|
- * notification then unblock it now. */
|
|
|
- if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- /* The task should not have been on an event list. */
|
|
|
- configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
-
|
|
|
- if( taskCAN_BE_SCHEDULED( pxTCB ) )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The delayed and ready lists cannot be accessed, so hold
|
|
|
- * this task pending until the scheduler is resumed. */
|
|
|
- vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
-
|
|
|
- if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) )
|
|
|
- {
|
|
|
- /* The notified task has a priority above the currently
|
|
|
- * executing task so a yield is required. */
|
|
|
- if( pxHigherPriorityTaskWoken != NULL )
|
|
|
- {
|
|
|
- *pxHigherPriorityTaskWoken = pdTRUE;
|
|
|
- }
|
|
|
-
|
|
|
- /* Mark that a yield is pending in case the user is not
|
|
|
- * using the "xHigherPriorityTaskWoken" parameter to an ISR
|
|
|
- * safe FreeRTOS function. */
|
|
|
- xYieldPending[ xPortGetCoreID() ] = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
|
|
|
- UBaseType_t uxIndexToNotify,
|
|
|
- BaseType_t * pxHigherPriorityTaskWoken )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint8_t ucOriginalNotifyState;
|
|
|
- UBaseType_t uxSavedInterruptStatus;
|
|
|
-
|
|
|
- configASSERT( xTaskToNotify );
|
|
|
- configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- /* RTOS ports that support interrupt nesting have the concept of a
|
|
|
- * maximum system call (or maximum API call) interrupt priority.
|
|
|
- * Interrupts that are above the maximum system call priority are keep
|
|
|
- * permanently enabled, even when the RTOS kernel is in a critical section,
|
|
|
- * but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
|
|
- * is defined in FreeRTOSConfig.h then
|
|
|
- * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
|
|
- * failure if a FreeRTOS API function is called from an interrupt that has
|
|
|
- * been assigned a priority above the configured maximum system call
|
|
|
- * priority. Only FreeRTOS functions that end in FromISR can be called
|
|
|
- * from interrupts that have been assigned a priority at or (logically)
|
|
|
- * below the maximum system call interrupt priority. FreeRTOS maintains a
|
|
|
- * separate interrupt safe API to ensure interrupt entry is as fast and as
|
|
|
- * simple as possible. More information (albeit Cortex-M specific) is
|
|
|
- * provided on the following link:
|
|
|
- * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
|
|
|
- portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
|
|
-
|
|
|
- pxTCB = xTaskToNotify;
|
|
|
-
|
|
|
- prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
|
|
|
- {
|
|
|
- ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
|
|
|
- pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
|
|
|
-
|
|
|
- /* 'Giving' is equivalent to incrementing a count in a counting
|
|
|
- * semaphore. */
|
|
|
- ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
|
|
|
-
|
|
|
- traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
|
|
|
-
|
|
|
- /* If the task is in the blocked state specifically to wait for a
|
|
|
- * notification then unblock it now. */
|
|
|
- if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
|
|
|
- {
|
|
|
- /* The task should not have been on an event list. */
|
|
|
- configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
|
|
|
-
|
|
|
- if( taskCAN_BE_SCHEDULED( pxTCB ) )
|
|
|
- {
|
|
|
- ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
|
|
|
- prvAddTaskToReadyList( pxTCB );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The delayed and ready lists cannot be accessed, so hold
|
|
|
- * this task pending until the scheduler is resumed. */
|
|
|
- vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) );
|
|
|
- }
|
|
|
-
|
|
|
- if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) )
|
|
|
- {
|
|
|
- /* The notified task has a priority above the currently
|
|
|
- * executing task so a yield is required. */
|
|
|
- if( pxHigherPriorityTaskWoken != NULL )
|
|
|
- {
|
|
|
- *pxHigherPriorityTaskWoken = pdTRUE;
|
|
|
- }
|
|
|
-
|
|
|
- /* Mark that a yield is pending in case the user is not
|
|
|
- * using the "xHigherPriorityTaskWoken" parameter in an ISR
|
|
|
- * safe FreeRTOS function. */
|
|
|
- xYieldPending[ xPortGetCoreID() ] = pdTRUE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
|
|
|
- UBaseType_t uxIndexToClear )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- BaseType_t xReturn;
|
|
|
-
|
|
|
- configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
|
|
|
-
|
|
|
- /* If null is passed in here then it is the calling task that is having
|
|
|
- * its notification state cleared. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
|
|
|
- {
|
|
|
- pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
|
|
|
- xReturn = pdPASS;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- xReturn = pdFAIL;
|
|
|
- }
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return xReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( configUSE_TASK_NOTIFICATIONS == 1 )
|
|
|
-
|
|
|
- uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
|
|
|
- UBaseType_t uxIndexToClear,
|
|
|
- uint32_t ulBitsToClear )
|
|
|
- {
|
|
|
- TCB_t * pxTCB;
|
|
|
- uint32_t ulReturn;
|
|
|
-
|
|
|
- /* If null is passed in here then it is the calling task that is having
|
|
|
- * its notification state cleared. */
|
|
|
- pxTCB = prvGetTCBFromHandle( xTask );
|
|
|
-
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- {
|
|
|
- /* Return the notification as it was before the bits were cleared,
|
|
|
- * then clear the bit mask. */
|
|
|
- ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
|
|
|
- pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
|
|
|
- }
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
-
|
|
|
- return ulReturn;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* configUSE_TASK_NOTIFICATIONS */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
|
|
|
-
|
|
|
- uint32_t ulTaskGetIdleRunTimeCounter( void )
|
|
|
- {
|
|
|
- uint32_t ulRunTimeCounter;
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
-
|
|
|
- /* For SMP, we need to take the kernel lock here as we are about to
|
|
|
- * access kernel data structures. */
|
|
|
- taskENTER_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- ulRunTimeCounter = xIdleTaskHandle[ xPortGetCoreID() ]->ulRunTimeCounter;
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- /* Release the previously taken kernel lock. */
|
|
|
- taskEXIT_CRITICAL( &xKernelLock );
|
|
|
- #endif /* ( configNUM_CORES > 1 ) */
|
|
|
-
|
|
|
- return ulRunTimeCounter;
|
|
|
- }
|
|
|
-
|
|
|
-#endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
|
|
|
-/*-----------------------------------------------------------*/
|
|
|
-
|
|
|
-static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
|
|
|
- const BaseType_t xCanBlockIndefinitely )
|
|
|
-{
|
|
|
- TickType_t xTimeToWake;
|
|
|
- const TickType_t xConstTickCount = xTickCount;
|
|
|
- BaseType_t xCurCoreID = xPortGetCoreID();
|
|
|
-
|
|
|
- #if ( configNUM_CORES > 1 )
|
|
|
- if( listIS_CONTAINED_WITHIN( &xTasksWaitingTermination, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ) == pdTRUE )
|
|
|
- {
|
|
|
- /* vTaskDelete() has been called to delete this task. This would have happened from the other core while this task was spinning on xTaskQueueMutex,
|
|
|
- * so don't move the running task to the delayed list - as soon as this core re-enables interrupts this task will
|
|
|
- * be suspended permanently. Todo: IDF-5844. */
|
|
|
- return;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- #if ( INCLUDE_xTaskAbortDelay == 1 )
|
|
|
- {
|
|
|
- /* About to enter a delayed list, so ensure the ucDelayAborted flag is
|
|
|
- * reset to pdFALSE so it can be detected as having been set to pdTRUE
|
|
|
- * when the task leaves the Blocked state. */
|
|
|
- pxCurrentTCB[ xCurCoreID ]->ucDelayAborted = pdFALSE;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- /* Remove the task from the ready list before adding it to the blocked list
|
|
|
- * as the same list item is used for both lists. */
|
|
|
- if( uxListRemove( &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ) == ( UBaseType_t ) 0 )
|
|
|
- {
|
|
|
- /* The current task must be in a ready list, so there is no need to
|
|
|
- * check, and the port reset macro can be called directly. */
|
|
|
- portRESET_READY_PRIORITY( pxCurrentTCB[ xCurCoreID ]->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
-
|
|
|
- #if ( INCLUDE_vTaskSuspend == 1 )
|
|
|
- {
|
|
|
- if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
|
|
|
- {
|
|
|
- /* Add the task to the suspended task list instead of a delayed task
|
|
|
- * list to ensure it is not woken by a timing event. It will block
|
|
|
- * indefinitely. */
|
|
|
- vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* Calculate the time at which the task should be woken if the event
|
|
|
- * does not occur. This may overflow but this doesn't matter, the
|
|
|
- * kernel will manage it correctly. */
|
|
|
- xTimeToWake = xConstTickCount + xTicksToWait;
|
|
|
-
|
|
|
- /* The list item will be inserted in wake time order. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ), xTimeToWake );
|
|
|
-
|
|
|
- if( xTimeToWake < xConstTickCount )
|
|
|
- {
|
|
|
- /* Wake time has overflowed. Place this item in the overflow
|
|
|
- * list. */
|
|
|
- vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The wake time has not overflowed, so the current block list
|
|
|
- * is used. */
|
|
|
- vListInsert( pxDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
|
|
|
-
|
|
|
- /* If the task entering the blocked state was placed at the
|
|
|
- * head of the list of blocked tasks then xNextTaskUnblockTime
|
|
|
- * needs to be updated too. */
|
|
|
- if( xTimeToWake < xNextTaskUnblockTime )
|
|
|
- {
|
|
|
- xNextTaskUnblockTime = xTimeToWake;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- #else /* INCLUDE_vTaskSuspend */
|
|
|
- {
|
|
|
- /* Calculate the time at which the task should be woken if the event
|
|
|
- * does not occur. This may overflow but this doesn't matter, the kernel
|
|
|
- * will manage it correctly. */
|
|
|
- xTimeToWake = xConstTickCount + xTicksToWait;
|
|
|
-
|
|
|
- /* The list item will be inserted in wake time order. */
|
|
|
- listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ), xTimeToWake );
|
|
|
-
|
|
|
- if( xTimeToWake < xConstTickCount )
|
|
|
- {
|
|
|
- /* Wake time has overflowed. Place this item in the overflow list. */
|
|
|
- vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- /* The wake time has not overflowed, so the current block list is used. */
|
|
|
- vListInsert( pxDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
|
|
|
-
|
|
|
- /* If the task entering the blocked state was placed at the head of the
|
|
|
- * list of blocked tasks then xNextTaskUnblockTime needs to be updated
|
|
|
- * too. */
|
|
|
- if( xTimeToWake < xNextTaskUnblockTime )
|
|
|
- {
|
|
|
- xNextTaskUnblockTime = xTimeToWake;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mtCOVERAGE_TEST_MARKER();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
|
|
|
- ( void ) xCanBlockIndefinitely;
|
|
|
- }
|
|
|
- #endif /* INCLUDE_vTaskSuspend */
|
|
|
-}
|
|
|
-
|
|
|
-/* Code below here allows additional code to be inserted into this source file,
|
|
|
- * especially where access to file scope functions and data is needed (for example
|
|
|
- * when performing module tests). */
|
|
|
-
|
|
|
-#ifdef FREERTOS_MODULE_TEST
|
|
|
- #include "tasks_test_access_functions.h"
|
|
|
-#endif
|
|
|
-
|
|
|
-
|
|
|
-#if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
|
|
|
-
|
|
|
- #include "freertos_tasks_c_additions.h"
|
|
|
-
|
|
|
- #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
|
|
|
- static void freertos_tasks_c_additions_init( void )
|
|
|
- {
|
|
|
- FREERTOS_TASKS_C_ADDITIONS_INIT();
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
-#endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
|