/* * SPDX-FileCopyrightText: 2017-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /** * Some unit test cases need to have access to reliable timestamps even when CPU and APB clock frequencies change over time. * This reference clock is built upon two peripherals: one RMT channel and one PCNT channel (hopefully we can have these two peripherals in all ESP chips). * * +---------------------+ 500KHz Square Wave +--------------------------+ * | RMT (channel 0, TX) +----------------------------------->+ PCNT (unit 0, channel 0) | * +---------------------+ +--------------------------+ * * RMT TX channel is configured to use a fixed clock (e.g. REF_TICK, XTAL) as clock source, so that our ref clock won't be affected during APB/CPU clock switch. * Configure RMT channel to generate a 500KHz square wave (using carrier feature) to one GPIO. * PCNT takes the input signal from the GPIO and counts the edges (which occur at 1MHz frequency). * PCNT counter is only 16 bit wide, an interrupt is configured to trigger when the counter reaches 30000, * incrementing a 32-bit millisecond counter maintained by software. */ #include "sdkconfig.h" #include "unity.h" #include "test_utils.h" #include "freertos/FreeRTOS.h" #include "driver/pulse_cnt.h" #include "driver/rmt_tx.h" #if !CONFIG_IDF_TARGET_ESP32 #error "RMT+PCNT timestamp workaround is only for ESP32" #endif #define REF_CLOCK_GPIO 0 // GPIO used to combine RMT out signal with PCNT input signal #define REF_CLOCK_PRESCALER_MS 30 // PCNT high threshold interrupt fired every 30ms static pcnt_unit_handle_t s_pcnt_unit; static pcnt_channel_handle_t s_pcnt_chan; static rmt_channel_handle_t s_rmt_chan; static rmt_encoder_handle_t s_rmt_encoder; static volatile uint32_t s_milliseconds; static bool on_reach_watch_point(pcnt_unit_handle_t unit, const pcnt_watch_event_data_t *edata, void *user_ctx) { s_milliseconds += REF_CLOCK_PRESCALER_MS; return false; } void ref_clock_init(void) { // Initialize PCNT pcnt_unit_config_t unit_config = { .high_limit = REF_CLOCK_PRESCALER_MS * 1000, .low_limit = -100, // any minus value is OK, in this case, we don't count down }; TEST_ESP_OK(pcnt_new_unit(&unit_config, &s_pcnt_unit)); pcnt_chan_config_t chan_config = { .edge_gpio_num = REF_CLOCK_GPIO, .level_gpio_num = -1, .flags.io_loop_back = true, }; TEST_ESP_OK(pcnt_new_channel(s_pcnt_unit, &chan_config, &s_pcnt_chan)); // increase count on both edges TEST_ESP_OK(pcnt_channel_set_edge_action(s_pcnt_chan, PCNT_CHANNEL_EDGE_ACTION_INCREASE, PCNT_CHANNEL_EDGE_ACTION_INCREASE)); // don't care level change TEST_ESP_OK(pcnt_channel_set_level_action(s_pcnt_chan, PCNT_CHANNEL_LEVEL_ACTION_KEEP, PCNT_CHANNEL_LEVEL_ACTION_KEEP)); // add watch point TEST_ESP_OK(pcnt_unit_add_watch_point(s_pcnt_unit, REF_CLOCK_PRESCALER_MS * 1000)); // register watch event pcnt_event_callbacks_t cbs = { .on_reach = on_reach_watch_point, }; TEST_ESP_OK(pcnt_unit_register_event_callbacks(s_pcnt_unit, &cbs, NULL)); // enable pcnt TEST_ESP_OK(pcnt_unit_enable(s_pcnt_unit)); // start pcnt TEST_ESP_OK(pcnt_unit_start(s_pcnt_unit)); // Initialize RMT rmt_tx_channel_config_t tx_chan_config = { .clk_src = RMT_CLK_SRC_REF_TICK, // REF_TICK clock source .gpio_num = REF_CLOCK_GPIO, .mem_block_symbols = 64, .resolution_hz = 10000, // channel resolution doesn't really matter, because we only utilize the carrier .trans_queue_depth = 1, .flags.io_loop_back = true, }; TEST_ESP_OK(rmt_new_tx_channel(&tx_chan_config, &s_rmt_chan)); // set carrier configuration rmt_carrier_config_t carrier_config = { .duty_cycle = 0.5, .frequency_hz = 500 * 1000, // 500 KHz }; TEST_ESP_OK(rmt_apply_carrier(s_rmt_chan, &carrier_config)); // enable rmt channel TEST_ESP_OK(rmt_enable(s_rmt_chan)); // create a copy encoder to copy the RMT symbol into RMT HW memory rmt_copy_encoder_config_t encoder_config = {}; TEST_ESP_OK(rmt_new_copy_encoder(&encoder_config, &s_rmt_encoder)); // control the tx channel to output a fixed high level by constructing the following RMT symbol // the carrier is modulated to the high level by default, which results in a 500KHz carrier on the `REF_CLOCK_GPIO` rmt_symbol_word_t data = { .level0 = 1, .duration0 = 1, .level1 = 1, .duration1 = 0, }; rmt_transmit_config_t trans_config = { .loop_count = 0, // no loop .flags.eot_level = 1, }; TEST_ESP_OK(rmt_transmit(s_rmt_chan, s_rmt_encoder, &data, sizeof(data), &trans_config)); s_milliseconds = 0; } void ref_clock_deinit(void) { // Deinitialize PCNT TEST_ESP_OK(pcnt_unit_stop(s_pcnt_unit)); TEST_ESP_OK(pcnt_unit_disable(s_pcnt_unit)); TEST_ESP_OK(pcnt_unit_remove_watch_point(s_pcnt_unit, REF_CLOCK_PRESCALER_MS * 1000)); TEST_ESP_OK(pcnt_del_channel(s_pcnt_chan)); TEST_ESP_OK(pcnt_del_unit(s_pcnt_unit)); // Deinitialize RMT TEST_ESP_OK(rmt_disable(s_rmt_chan)); TEST_ESP_OK(rmt_del_channel(s_rmt_chan)); TEST_ESP_OK(rmt_del_encoder(s_rmt_encoder)); } uint64_t ref_clock_get(void) { int microseconds = 0; TEST_ESP_OK(pcnt_unit_get_count(s_pcnt_unit, µseconds)); return 1000 * (uint64_t)s_milliseconds + (uint64_t)microseconds; }