uart.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "esp_attr.h"
  9. #include "esp_intr_alloc.h"
  10. #include "esp_log.h"
  11. #include "esp_err.h"
  12. #include "esp_check.h"
  13. #include "malloc.h"
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/semphr.h"
  16. #include "freertos/ringbuf.h"
  17. #include "hal/uart_hal.h"
  18. #include "hal/gpio_hal.h"
  19. #include "soc/uart_periph.h"
  20. #include "soc/rtc_cntl_reg.h"
  21. #include "driver/uart.h"
  22. #include "driver/gpio.h"
  23. #include "driver/uart_select.h"
  24. #include "driver/periph_ctrl.h"
  25. #include "sdkconfig.h"
  26. #include "esp_rom_gpio.h"
  27. #if CONFIG_IDF_TARGET_ESP32
  28. #include "esp32/clk.h"
  29. #elif CONFIG_IDF_TARGET_ESP32S2
  30. #include "esp32s2/clk.h"
  31. #elif CONFIG_IDF_TARGET_ESP32S3
  32. #include "esp32s3/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32C3
  34. #include "esp32c3/clk.h"
  35. #elif CONFIG_IDF_TARGET_ESP32H2
  36. #include "esp32h2/clk.h"
  37. #endif
  38. #ifdef CONFIG_UART_ISR_IN_IRAM
  39. #define UART_ISR_ATTR IRAM_ATTR
  40. #else
  41. #define UART_ISR_ATTR
  42. #endif
  43. #define XOFF (0x13)
  44. #define XON (0x11)
  45. static const char* UART_TAG = "uart";
  46. #define UART_EMPTY_THRESH_DEFAULT (10)
  47. #define UART_FULL_THRESH_DEFAULT (120)
  48. #define UART_TOUT_THRESH_DEFAULT (10)
  49. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  50. #define UART_TX_IDLE_NUM_DEFAULT (0)
  51. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  52. #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
  53. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  54. | (UART_INTR_RXFIFO_TOUT) \
  55. | (UART_INTR_RXFIFO_OVF) \
  56. | (UART_INTR_BRK_DET) \
  57. | (UART_INTR_PARITY_ERR))
  58. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  59. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  60. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  61. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  62. // Check actual UART mode set
  63. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  64. #define UART_CONTEX_INIT_DEF(uart_num) {\
  65. .hal.dev = UART_LL_GET_HW(uart_num),\
  66. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  67. .hw_enabled = false,\
  68. }
  69. #if SOC_UART_SUPPORT_RTC_CLK
  70. #define RTC_ENABLED(uart_num) (BIT(uart_num))
  71. #endif
  72. typedef struct {
  73. uart_event_type_t type; /*!< UART TX data type */
  74. struct {
  75. int brk_len;
  76. size_t size;
  77. uint8_t data[0];
  78. } tx_data;
  79. } uart_tx_data_t;
  80. typedef struct {
  81. int wr;
  82. int rd;
  83. int len;
  84. int* data;
  85. } uart_pat_rb_t;
  86. typedef struct {
  87. uart_port_t uart_num; /*!< UART port number*/
  88. int queue_size; /*!< UART event queue size*/
  89. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  90. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  91. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  92. bool coll_det_flg; /*!< UART collision detection flag */
  93. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  94. //rx parameters
  95. int rx_buffered_len; /*!< UART cached data length */
  96. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  97. int rx_buf_size; /*!< RX ring buffer size */
  98. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  99. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  100. uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  101. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  102. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  103. uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  104. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  105. uart_pat_rb_t rx_pattern_pos;
  106. //tx parameters
  107. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  108. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  109. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  110. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  111. int tx_buf_size; /*!< TX ring buffer size */
  112. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  113. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  114. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  115. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  116. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  117. uint32_t tx_len_cur;
  118. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  119. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  120. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  121. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  122. } uart_obj_t;
  123. typedef struct {
  124. uart_hal_context_t hal; /*!< UART hal context*/
  125. portMUX_TYPE spinlock;
  126. bool hw_enabled;
  127. } uart_context_t;
  128. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  129. static uart_context_t uart_context[UART_NUM_MAX] = {
  130. UART_CONTEX_INIT_DEF(UART_NUM_0),
  131. UART_CONTEX_INIT_DEF(UART_NUM_1),
  132. #if UART_NUM_MAX > 2
  133. UART_CONTEX_INIT_DEF(UART_NUM_2),
  134. #endif
  135. };
  136. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  137. #if SOC_UART_SUPPORT_RTC_CLK
  138. static uint8_t rtc_enabled = 0;
  139. static portMUX_TYPE rtc_num_spinlock = portMUX_INITIALIZER_UNLOCKED;
  140. static void rtc_clk_enable(uart_port_t uart_num)
  141. {
  142. portENTER_CRITICAL(&rtc_num_spinlock);
  143. if (!(rtc_enabled & RTC_ENABLED(uart_num))) {
  144. rtc_enabled |= RTC_ENABLED(uart_num);
  145. }
  146. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  147. portEXIT_CRITICAL(&rtc_num_spinlock);
  148. }
  149. static void rtc_clk_disable(uart_port_t uart_num)
  150. {
  151. assert(rtc_enabled & RTC_ENABLED(uart_num));
  152. portENTER_CRITICAL(&rtc_num_spinlock);
  153. rtc_enabled &= ~RTC_ENABLED(uart_num);
  154. if (rtc_enabled == 0) {
  155. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  156. }
  157. portEXIT_CRITICAL(&rtc_num_spinlock);
  158. }
  159. #endif
  160. static void uart_module_enable(uart_port_t uart_num)
  161. {
  162. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  163. if (uart_context[uart_num].hw_enabled != true) {
  164. periph_module_enable(uart_periph_signal[uart_num].module);
  165. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  166. // Workaround for ESP32C3: enable core reset
  167. // before enabling uart module clock
  168. // to prevent uart output garbage value.
  169. #if SOC_UART_REQUIRE_CORE_RESET
  170. uart_hal_set_reset_core(&(uart_context[uart_num].hal), true);
  171. periph_module_reset(uart_periph_signal[uart_num].module);
  172. uart_hal_set_reset_core(&(uart_context[uart_num].hal), false);
  173. #else
  174. periph_module_reset(uart_periph_signal[uart_num].module);
  175. #endif
  176. }
  177. uart_context[uart_num].hw_enabled = true;
  178. }
  179. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  180. }
  181. static void uart_module_disable(uart_port_t uart_num)
  182. {
  183. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  184. if (uart_context[uart_num].hw_enabled != false) {
  185. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  186. periph_module_disable(uart_periph_signal[uart_num].module);
  187. }
  188. uart_context[uart_num].hw_enabled = false;
  189. }
  190. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  191. }
  192. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  193. {
  194. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  195. ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  196. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  197. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  198. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  199. return ESP_OK;
  200. }
  201. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  202. {
  203. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  204. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  205. return ESP_OK;
  206. }
  207. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  208. {
  209. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  210. ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error");
  211. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  212. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  213. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  214. return ESP_OK;
  215. }
  216. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  217. {
  218. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  219. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  220. return ESP_OK;
  221. }
  222. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  223. {
  224. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  225. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  226. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  227. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  228. return ESP_OK;
  229. }
  230. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  231. {
  232. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  233. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  234. return ESP_OK;
  235. }
  236. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  237. {
  238. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  239. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  240. uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate);
  241. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  242. return ESP_OK;
  243. }
  244. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  245. {
  246. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  247. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  248. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  249. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  250. return ESP_OK;
  251. }
  252. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  253. {
  254. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  255. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  256. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  257. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  258. return ESP_OK;
  259. }
  260. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  261. {
  262. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  263. ESP_RETURN_ON_FALSE((rx_thresh_xon < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
  264. ESP_RETURN_ON_FALSE((rx_thresh_xoff < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xoff thresh error");
  265. uart_sw_flowctrl_t sw_flow_ctl = {
  266. .xon_char = XON,
  267. .xoff_char = XOFF,
  268. .xon_thrd = rx_thresh_xon,
  269. .xoff_thrd = rx_thresh_xoff,
  270. };
  271. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  272. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  273. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  274. return ESP_OK;
  275. }
  276. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  277. {
  278. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  279. ESP_RETURN_ON_FALSE((rx_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  280. ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  281. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  282. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  283. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  284. return ESP_OK;
  285. }
  286. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  287. {
  288. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  289. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  290. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  291. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  292. return ESP_OK;
  293. }
  294. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  295. {
  296. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  297. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  298. return ESP_OK;
  299. }
  300. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  301. {
  302. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  303. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  304. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  305. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  306. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  307. return ESP_OK;
  308. }
  309. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  310. {
  311. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  312. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  313. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  314. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  315. return ESP_OK;
  316. }
  317. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  318. {
  319. int* pdata = NULL;
  320. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  321. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  322. pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  323. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  324. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  325. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  326. }
  327. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  328. free(pdata);
  329. return ESP_OK;
  330. }
  331. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  332. {
  333. esp_err_t ret = ESP_OK;
  334. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  335. int next = p_pos->wr + 1;
  336. if (next >= p_pos->len) {
  337. next = 0;
  338. }
  339. if (next == p_pos->rd) {
  340. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  341. ret = ESP_FAIL;
  342. } else {
  343. p_pos->data[p_pos->wr] = pos;
  344. p_pos->wr = next;
  345. ret = ESP_OK;
  346. }
  347. return ret;
  348. }
  349. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  350. {
  351. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  352. return ESP_ERR_INVALID_STATE;
  353. } else {
  354. esp_err_t ret = ESP_OK;
  355. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  356. if (p_pos->rd == p_pos->wr) {
  357. ret = ESP_FAIL;
  358. } else {
  359. p_pos->rd++;
  360. }
  361. if (p_pos->rd >= p_pos->len) {
  362. p_pos->rd = 0;
  363. }
  364. return ret;
  365. }
  366. }
  367. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  368. {
  369. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  370. int rd = p_pos->rd;
  371. while(rd != p_pos->wr) {
  372. p_pos->data[rd] -= diff_len;
  373. int rd_rec = rd;
  374. rd ++;
  375. if (rd >= p_pos->len) {
  376. rd = 0;
  377. }
  378. if (p_pos->data[rd_rec] < 0) {
  379. p_pos->rd = rd;
  380. }
  381. }
  382. return ESP_OK;
  383. }
  384. int uart_pattern_pop_pos(uart_port_t uart_num)
  385. {
  386. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  387. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  388. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  389. int pos = -1;
  390. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  391. pos = pat_pos->data[pat_pos->rd];
  392. uart_pattern_dequeue(uart_num);
  393. }
  394. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  395. return pos;
  396. }
  397. int uart_pattern_get_pos(uart_port_t uart_num)
  398. {
  399. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  400. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  401. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  402. int pos = -1;
  403. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  404. pos = pat_pos->data[pat_pos->rd];
  405. }
  406. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  407. return pos;
  408. }
  409. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  410. {
  411. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  412. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  413. int* pdata = (int*) malloc(queue_length * sizeof(int));
  414. if(pdata == NULL) {
  415. return ESP_ERR_NO_MEM;
  416. }
  417. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  418. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  419. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  420. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  421. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  422. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  423. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  424. free(ptmp);
  425. return ESP_OK;
  426. }
  427. #if CONFIG_IDF_TARGET_ESP32
  428. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  429. {
  430. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  431. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  432. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  433. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  434. uart_at_cmd_t at_cmd = {0};
  435. at_cmd.cmd_char = pattern_chr;
  436. at_cmd.char_num = chr_num;
  437. at_cmd.gap_tout = chr_tout;
  438. at_cmd.pre_idle = pre_idle;
  439. at_cmd.post_idle = post_idle;
  440. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  441. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  442. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  443. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  444. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  445. return ESP_OK;
  446. }
  447. #endif
  448. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  449. {
  450. ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error");
  451. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  452. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  453. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  454. uart_at_cmd_t at_cmd = {0};
  455. at_cmd.cmd_char = pattern_chr;
  456. at_cmd.char_num = chr_num;
  457. #if CONFIG_IDF_TARGET_ESP32
  458. int apb_clk_freq = 0;
  459. uint32_t uart_baud = 0;
  460. uint32_t uart_div = 0;
  461. uart_get_baudrate(uart_num, &uart_baud);
  462. apb_clk_freq = esp_clk_apb_freq();
  463. uart_div = apb_clk_freq / uart_baud;
  464. at_cmd.gap_tout = chr_tout * uart_div;
  465. at_cmd.pre_idle = pre_idle * uart_div;
  466. at_cmd.post_idle = post_idle * uart_div;
  467. #else
  468. at_cmd.gap_tout = chr_tout;
  469. at_cmd.pre_idle = pre_idle;
  470. at_cmd.post_idle = post_idle;
  471. #endif
  472. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  473. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  474. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  475. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  476. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  477. return ESP_OK;
  478. }
  479. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  480. {
  481. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  482. }
  483. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  484. {
  485. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  486. }
  487. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  488. {
  489. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  490. }
  491. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  492. {
  493. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  494. }
  495. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  496. {
  497. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  498. ESP_RETURN_ON_FALSE((thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "empty intr threshold error");
  499. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  500. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  501. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  502. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  503. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  504. return ESP_OK;
  505. }
  506. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  507. {
  508. int ret;
  509. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  510. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  511. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  512. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  513. return ret;
  514. }
  515. esp_err_t uart_isr_free(uart_port_t uart_num)
  516. {
  517. esp_err_t ret;
  518. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  519. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  520. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]->intr_handle != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error");
  521. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  522. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  523. p_uart_obj[uart_num]->intr_handle=NULL;
  524. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  525. return ret;
  526. }
  527. //internal signal can be output to multiple GPIO pads
  528. //only one GPIO pad can connect with input signal
  529. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  530. {
  531. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  532. ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error");
  533. ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error");
  534. ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error");
  535. ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error");
  536. if(tx_io_num >= 0) {
  537. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  538. gpio_set_level(tx_io_num, 1);
  539. esp_rom_gpio_connect_out_signal(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  540. }
  541. if(rx_io_num >= 0) {
  542. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  543. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  544. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  545. esp_rom_gpio_connect_in_signal(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  546. }
  547. if(rts_io_num >= 0) {
  548. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  549. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  550. esp_rom_gpio_connect_out_signal(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  551. }
  552. if(cts_io_num >= 0) {
  553. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  554. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  555. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  556. esp_rom_gpio_connect_in_signal(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  557. }
  558. return ESP_OK;
  559. }
  560. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  561. {
  562. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  563. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control");
  564. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  565. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  566. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  567. return ESP_OK;
  568. }
  569. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  570. {
  571. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  572. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  573. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  574. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  575. return ESP_OK;
  576. }
  577. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  578. {
  579. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  580. ESP_RETURN_ON_FALSE((idle_num <= UART_TX_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart idle num error");
  581. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  582. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  583. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  584. return ESP_OK;
  585. }
  586. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  587. {
  588. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  589. ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null");
  590. ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  591. ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  592. ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  593. uart_module_enable(uart_num);
  594. #if SOC_UART_SUPPORT_RTC_CLK
  595. if (uart_config->source_clk == UART_SCLK_RTC) {
  596. rtc_clk_enable(uart_num);
  597. }
  598. #endif
  599. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  600. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  601. uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_config->source_clk);
  602. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate);
  603. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  604. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  605. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  606. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  607. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  608. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  609. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  610. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  611. return ESP_OK;
  612. }
  613. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  614. {
  615. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  616. ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null");
  617. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  618. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  619. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  620. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  621. } else {
  622. //Disable rx_tout intr
  623. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  624. }
  625. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  626. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  627. }
  628. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  629. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  630. }
  631. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  632. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  633. return ESP_OK;
  634. }
  635. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  636. {
  637. int cnt = 0;
  638. int len = length;
  639. while (len >= 0) {
  640. if (buf[len] == pat_chr) {
  641. cnt++;
  642. } else {
  643. cnt = 0;
  644. }
  645. if (cnt >= pat_num) {
  646. break;
  647. }
  648. len --;
  649. }
  650. return len;
  651. }
  652. //internal isr handler for default driver code.
  653. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  654. {
  655. uart_obj_t *p_uart = (uart_obj_t*) param;
  656. uint8_t uart_num = p_uart->uart_num;
  657. int rx_fifo_len = 0;
  658. uint32_t uart_intr_status = 0;
  659. uart_event_t uart_event;
  660. portBASE_TYPE HPTaskAwoken = 0;
  661. static uint8_t pat_flg = 0;
  662. while(1) {
  663. // The `continue statement` may cause the interrupt to loop infinitely
  664. // we exit the interrupt here
  665. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  666. //Exit form while loop
  667. if(uart_intr_status == 0){
  668. break;
  669. }
  670. uart_event.type = UART_EVENT_MAX;
  671. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  672. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  673. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  674. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  675. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  676. if(p_uart->tx_waiting_brk) {
  677. continue;
  678. }
  679. //TX semaphore will only be used when tx_buf_size is zero.
  680. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  681. p_uart->tx_waiting_fifo = false;
  682. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  683. } else {
  684. //We don't use TX ring buffer, because the size is zero.
  685. if(p_uart->tx_buf_size == 0) {
  686. continue;
  687. }
  688. bool en_tx_flg = false;
  689. uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  690. //We need to put a loop here, in case all the buffer items are very short.
  691. //That would cause a watch_dog reset because empty interrupt happens so often.
  692. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  693. while(tx_fifo_rem) {
  694. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  695. size_t size;
  696. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  697. if(p_uart->tx_head) {
  698. //The first item is the data description
  699. //Get the first item to get the data information
  700. if(p_uart->tx_len_tot == 0) {
  701. p_uart->tx_ptr = NULL;
  702. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  703. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  704. p_uart->tx_brk_flg = 1;
  705. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  706. }
  707. //We have saved the data description from the 1st item, return buffer.
  708. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  709. } else if(p_uart->tx_ptr == NULL) {
  710. //Update the TX item pointer, we will need this to return item to buffer.
  711. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  712. en_tx_flg = true;
  713. p_uart->tx_len_cur = size;
  714. }
  715. } else {
  716. //Can not get data from ring buffer, return;
  717. break;
  718. }
  719. }
  720. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  721. //To fill the TX FIFO.
  722. uint32_t send_len = 0;
  723. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  724. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  725. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  726. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  727. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  728. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  729. }
  730. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  731. (const uint8_t *)p_uart->tx_ptr,
  732. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  733. &send_len);
  734. p_uart->tx_ptr += send_len;
  735. p_uart->tx_len_tot -= send_len;
  736. p_uart->tx_len_cur -= send_len;
  737. tx_fifo_rem -= send_len;
  738. if (p_uart->tx_len_cur == 0) {
  739. //Return item to ring buffer.
  740. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  741. p_uart->tx_head = NULL;
  742. p_uart->tx_ptr = NULL;
  743. //Sending item done, now we need to send break if there is a record.
  744. //Set TX break signal after FIFO is empty
  745. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  746. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  747. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  748. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  749. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  750. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  751. p_uart->tx_waiting_brk = 1;
  752. //do not enable TX empty interrupt
  753. en_tx_flg = false;
  754. } else {
  755. //enable TX empty interrupt
  756. en_tx_flg = true;
  757. }
  758. } else {
  759. //enable TX empty interrupt
  760. en_tx_flg = true;
  761. }
  762. }
  763. }
  764. if (en_tx_flg) {
  765. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  766. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  767. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  768. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  769. }
  770. }
  771. }
  772. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  773. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  774. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  775. ) {
  776. if(pat_flg == 1) {
  777. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  778. pat_flg = 0;
  779. }
  780. if (p_uart->rx_buffer_full_flg == false) {
  781. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  782. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  783. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  784. }
  785. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  786. uint8_t pat_chr = 0;
  787. uint8_t pat_num = 0;
  788. int pat_idx = -1;
  789. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  790. //Get the buffer from the FIFO
  791. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  792. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  793. uart_event.type = UART_PATTERN_DET;
  794. uart_event.size = rx_fifo_len;
  795. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  796. } else {
  797. //After Copying the Data From FIFO ,Clear intr_status
  798. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  799. uart_event.type = UART_DATA;
  800. uart_event.size = rx_fifo_len;
  801. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  802. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  803. if (p_uart->uart_select_notif_callback) {
  804. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  805. }
  806. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  807. }
  808. p_uart->rx_stash_len = rx_fifo_len;
  809. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  810. //Mainly for applications that uses flow control or small ring buffer.
  811. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  812. p_uart->rx_buffer_full_flg = true;
  813. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  814. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  815. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  816. if (uart_event.type == UART_PATTERN_DET) {
  817. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  818. if (rx_fifo_len < pat_num) {
  819. //some of the characters are read out in last interrupt
  820. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  821. } else {
  822. uart_pattern_enqueue(uart_num,
  823. pat_idx <= -1 ?
  824. //can not find the pattern in buffer,
  825. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  826. // find the pattern in buffer
  827. p_uart->rx_buffered_len + pat_idx);
  828. }
  829. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  830. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  831. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  832. }
  833. }
  834. uart_event.type = UART_BUFFER_FULL;
  835. } else {
  836. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  837. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  838. if (rx_fifo_len < pat_num) {
  839. //some of the characters are read out in last interrupt
  840. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  841. } else if(pat_idx >= 0) {
  842. // find the pattern in stash buffer.
  843. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  844. }
  845. }
  846. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  847. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  848. }
  849. } else {
  850. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  851. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  852. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  853. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  854. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  855. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  856. uart_event.type = UART_PATTERN_DET;
  857. uart_event.size = rx_fifo_len;
  858. pat_flg = 1;
  859. }
  860. }
  861. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  862. // When fifo overflows, we reset the fifo.
  863. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  864. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  865. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  866. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  867. if (p_uart->uart_select_notif_callback) {
  868. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  869. }
  870. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  871. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  872. uart_event.type = UART_FIFO_OVF;
  873. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  874. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  875. uart_event.type = UART_BREAK;
  876. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  877. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  878. if (p_uart->uart_select_notif_callback) {
  879. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  880. }
  881. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  882. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  883. uart_event.type = UART_FRAME_ERR;
  884. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  885. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  886. if (p_uart->uart_select_notif_callback) {
  887. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  888. }
  889. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  890. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  891. uart_event.type = UART_PARITY_ERR;
  892. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  893. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  894. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  895. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  896. if(p_uart->tx_brk_flg == 1) {
  897. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  898. }
  899. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  900. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  901. if(p_uart->tx_brk_flg == 1) {
  902. p_uart->tx_brk_flg = 0;
  903. p_uart->tx_waiting_brk = 0;
  904. } else {
  905. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  906. }
  907. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  908. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  909. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  910. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  911. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  912. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  913. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  914. uart_event.type = UART_PATTERN_DET;
  915. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  916. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  917. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  918. // RS485 collision or frame error interrupt triggered
  919. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  920. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  921. // Set collision detection flag
  922. p_uart_obj[uart_num]->coll_det_flg = true;
  923. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  924. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  925. uart_event.type = UART_EVENT_MAX;
  926. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  927. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  928. // The TX_DONE interrupt is triggered but transmit is active
  929. // then postpone interrupt processing for next interrupt
  930. uart_event.type = UART_EVENT_MAX;
  931. } else {
  932. // Workaround for RS485: If the RS485 half duplex mode is active
  933. // and transmitter is in idle state then reset received buffer and reset RTS pin
  934. // skip this behavior for other UART modes
  935. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  936. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  937. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  938. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  939. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  940. }
  941. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  942. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  943. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  944. }
  945. } else {
  946. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  947. uart_event.type = UART_EVENT_MAX;
  948. }
  949. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  950. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  951. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  952. }
  953. }
  954. }
  955. if(HPTaskAwoken == pdTRUE) {
  956. portYIELD_FROM_ISR();
  957. }
  958. }
  959. /**************************************************************/
  960. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  961. {
  962. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  963. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  964. BaseType_t res;
  965. portTickType ticks_start = xTaskGetTickCount();
  966. //Take tx_mux
  967. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  968. if(res == pdFALSE) {
  969. return ESP_ERR_TIMEOUT;
  970. }
  971. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  972. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  973. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  974. return ESP_OK;
  975. }
  976. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  977. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  978. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  979. TickType_t ticks_end = xTaskGetTickCount();
  980. if (ticks_end - ticks_start > ticks_to_wait) {
  981. ticks_to_wait = 0;
  982. } else {
  983. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  984. }
  985. //take 2nd tx_done_sem, wait given from ISR
  986. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  987. if(res == pdFALSE) {
  988. // The TX_DONE interrupt will be disabled in ISR
  989. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  990. return ESP_ERR_TIMEOUT;
  991. }
  992. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  993. return ESP_OK;
  994. }
  995. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  996. {
  997. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  998. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  999. ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null");
  1000. if(len == 0) {
  1001. return 0;
  1002. }
  1003. int tx_len = 0;
  1004. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1005. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1006. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1007. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1008. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1009. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1010. }
  1011. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  1012. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1013. return tx_len;
  1014. }
  1015. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1016. {
  1017. if(size == 0) {
  1018. return 0;
  1019. }
  1020. size_t original_size = size;
  1021. //lock for uart_tx
  1022. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1023. p_uart_obj[uart_num]->coll_det_flg = false;
  1024. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1025. size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1026. int offset = 0;
  1027. uart_tx_data_t evt;
  1028. evt.tx_data.size = size;
  1029. evt.tx_data.brk_len = brk_len;
  1030. if(brk_en) {
  1031. evt.type = UART_DATA_BREAK;
  1032. } else {
  1033. evt.type = UART_DATA;
  1034. }
  1035. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1036. while(size > 0) {
  1037. size_t send_size = size > max_size / 2 ? max_size / 2 : size;
  1038. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1039. size -= send_size;
  1040. offset += send_size;
  1041. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1042. }
  1043. } else {
  1044. while(size) {
  1045. //semaphore for tx_fifo available
  1046. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1047. uint32_t sent = 0;
  1048. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1049. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1050. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1051. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1052. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1053. }
  1054. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1055. if(sent < size) {
  1056. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1057. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1058. }
  1059. size -= sent;
  1060. src += sent;
  1061. }
  1062. }
  1063. if(brk_en) {
  1064. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1065. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1066. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1067. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1068. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1069. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1070. }
  1071. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1072. }
  1073. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1074. return original_size;
  1075. }
  1076. int uart_write_bytes(uart_port_t uart_num, const void* src, size_t size)
  1077. {
  1078. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1079. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error");
  1080. ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null");
  1081. return uart_tx_all(uart_num, src, size, 0, 0);
  1082. }
  1083. int uart_write_bytes_with_break(uart_port_t uart_num, const void* src, size_t size, int brk_len)
  1084. {
  1085. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1086. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1087. ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error");
  1088. ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null");
  1089. ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error");
  1090. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1091. }
  1092. static bool uart_check_buf_full(uart_port_t uart_num)
  1093. {
  1094. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1095. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1096. if(res == pdTRUE) {
  1097. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1098. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1099. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1100. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1101. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1102. return true;
  1103. }
  1104. }
  1105. return false;
  1106. }
  1107. int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t ticks_to_wait)
  1108. {
  1109. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1110. ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null");
  1111. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1112. uint8_t* data = NULL;
  1113. size_t size;
  1114. size_t copy_len = 0;
  1115. int len_tmp;
  1116. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1117. return -1;
  1118. }
  1119. while(length) {
  1120. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1121. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1122. if(data) {
  1123. p_uart_obj[uart_num]->rx_head_ptr = data;
  1124. p_uart_obj[uart_num]->rx_ptr = data;
  1125. p_uart_obj[uart_num]->rx_cur_remain = size;
  1126. } else {
  1127. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1128. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1129. //to solve the possible asynchronous issues.
  1130. if(uart_check_buf_full(uart_num)) {
  1131. //This condition will never be true if `uart_read_bytes`
  1132. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1133. continue;
  1134. } else {
  1135. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1136. return copy_len;
  1137. }
  1138. }
  1139. }
  1140. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1141. len_tmp = length;
  1142. } else {
  1143. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1144. }
  1145. memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1146. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1147. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1148. uart_pattern_queue_update(uart_num, len_tmp);
  1149. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1150. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1151. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1152. copy_len += len_tmp;
  1153. length -= len_tmp;
  1154. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1155. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1156. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1157. p_uart_obj[uart_num]->rx_ptr = NULL;
  1158. uart_check_buf_full(uart_num);
  1159. }
  1160. }
  1161. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1162. return copy_len;
  1163. }
  1164. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1165. {
  1166. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1167. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1168. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1169. return ESP_OK;
  1170. }
  1171. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1172. static esp_err_t uart_disable_intr_mask_and_return_prev(uart_port_t uart_num, uint32_t disable_mask, uint32_t* prev_mask)
  1173. {
  1174. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1175. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1176. *prev_mask = uart_hal_get_intr_ena_status(&uart_context[uart_num].hal) & disable_mask;
  1177. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  1178. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1179. return ESP_OK;
  1180. }
  1181. esp_err_t uart_flush_input(uart_port_t uart_num)
  1182. {
  1183. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1184. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1185. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1186. uint8_t* data;
  1187. size_t size;
  1188. uint32_t prev_mask;
  1189. //rx sem protect the ring buffer read related functions
  1190. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1191. uart_disable_intr_mask_and_return_prev(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT, &prev_mask);
  1192. while(true) {
  1193. if(p_uart->rx_head_ptr) {
  1194. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1195. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1196. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1197. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1198. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1199. p_uart->rx_ptr = NULL;
  1200. p_uart->rx_cur_remain = 0;
  1201. p_uart->rx_head_ptr = NULL;
  1202. }
  1203. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1204. if(data == NULL) {
  1205. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1206. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1207. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1208. }
  1209. //We also need to clear the `rx_buffer_full_flg` here.
  1210. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1211. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1212. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1213. break;
  1214. }
  1215. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1216. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1217. uart_pattern_queue_update(uart_num, size);
  1218. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1219. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1220. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1221. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1222. if(res == pdTRUE) {
  1223. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1224. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1225. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1226. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1227. }
  1228. }
  1229. }
  1230. p_uart->rx_ptr = NULL;
  1231. p_uart->rx_cur_remain = 0;
  1232. p_uart->rx_head_ptr = NULL;
  1233. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1234. uart_enable_intr_mask(uart_num, prev_mask);
  1235. xSemaphoreGive(p_uart->rx_mux);
  1236. return ESP_OK;
  1237. }
  1238. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1239. {
  1240. esp_err_t r;
  1241. #ifdef CONFIG_ESP_GDBSTUB_ENABLED
  1242. ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig.");
  1243. #endif // CONFIG_ESP_GDBSTUB_ENABLED
  1244. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1245. ESP_RETURN_ON_FALSE((rx_buffer_size > SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "uart rx buffer length error");
  1246. ESP_RETURN_ON_FALSE((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error");
  1247. #if CONFIG_UART_ISR_IN_IRAM
  1248. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1249. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1250. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1251. }
  1252. #else
  1253. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1254. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1255. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1256. }
  1257. #endif
  1258. if(p_uart_obj[uart_num] == NULL) {
  1259. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1260. if(p_uart_obj[uart_num] == NULL) {
  1261. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1262. return ESP_FAIL;
  1263. }
  1264. p_uart_obj[uart_num]->uart_num = uart_num;
  1265. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1266. p_uart_obj[uart_num]->coll_det_flg = false;
  1267. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1268. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1269. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1270. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1271. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1272. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1273. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1274. p_uart_obj[uart_num]->queue_size = queue_size;
  1275. p_uart_obj[uart_num]->tx_ptr = NULL;
  1276. p_uart_obj[uart_num]->tx_head = NULL;
  1277. p_uart_obj[uart_num]->tx_len_tot = 0;
  1278. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1279. p_uart_obj[uart_num]->tx_brk_len = 0;
  1280. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1281. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1282. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1283. if(uart_queue) {
  1284. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1285. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1286. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1287. } else {
  1288. p_uart_obj[uart_num]->xQueueUart = NULL;
  1289. }
  1290. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1291. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1292. p_uart_obj[uart_num]->rx_ptr = NULL;
  1293. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1294. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1295. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1296. if(tx_buffer_size > 0) {
  1297. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1298. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1299. } else {
  1300. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1301. p_uart_obj[uart_num]->tx_buf_size = 0;
  1302. }
  1303. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1304. } else {
  1305. ESP_LOGE(UART_TAG, "UART driver already installed");
  1306. return ESP_FAIL;
  1307. }
  1308. uart_intr_config_t uart_intr = {
  1309. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1310. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1311. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1312. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1313. };
  1314. uart_module_enable(uart_num);
  1315. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1316. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1317. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1318. if (r!=ESP_OK) goto err;
  1319. r=uart_intr_config(uart_num, &uart_intr);
  1320. if (r!=ESP_OK) goto err;
  1321. return r;
  1322. err:
  1323. uart_driver_delete(uart_num);
  1324. return r;
  1325. }
  1326. //Make sure no other tasks are still using UART before you call this function
  1327. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1328. {
  1329. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1330. if(p_uart_obj[uart_num] == NULL) {
  1331. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1332. return ESP_OK;
  1333. }
  1334. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1335. uart_disable_rx_intr(uart_num);
  1336. uart_disable_tx_intr(uart_num);
  1337. uart_pattern_link_free(uart_num);
  1338. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1339. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1340. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1341. }
  1342. if(p_uart_obj[uart_num]->tx_done_sem) {
  1343. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1344. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1345. }
  1346. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1347. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1348. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1349. }
  1350. if(p_uart_obj[uart_num]->tx_mux) {
  1351. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1352. p_uart_obj[uart_num]->tx_mux = NULL;
  1353. }
  1354. if(p_uart_obj[uart_num]->rx_mux) {
  1355. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1356. p_uart_obj[uart_num]->rx_mux = NULL;
  1357. }
  1358. if(p_uart_obj[uart_num]->xQueueUart) {
  1359. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1360. p_uart_obj[uart_num]->xQueueUart = NULL;
  1361. }
  1362. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1363. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1364. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1365. }
  1366. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1367. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1368. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1369. }
  1370. heap_caps_free(p_uart_obj[uart_num]);
  1371. p_uart_obj[uart_num] = NULL;
  1372. #if SOC_UART_SUPPORT_RTC_CLK
  1373. uart_sclk_t sclk = 0;
  1374. uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
  1375. if (sclk == UART_SCLK_RTC) {
  1376. rtc_clk_disable(uart_num);
  1377. }
  1378. #endif
  1379. uart_module_disable(uart_num);
  1380. return ESP_OK;
  1381. }
  1382. bool uart_is_driver_installed(uart_port_t uart_num)
  1383. {
  1384. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1385. }
  1386. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1387. {
  1388. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1389. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1390. }
  1391. }
  1392. portMUX_TYPE *uart_get_selectlock(void)
  1393. {
  1394. return &uart_selectlock;
  1395. }
  1396. // Set UART mode
  1397. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1398. {
  1399. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1400. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  1401. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1402. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1403. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG,
  1404. "disable hw flowctrl before using RS485 mode");
  1405. }
  1406. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1407. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1408. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1409. // This mode allows read while transmitting that allows collision detection
  1410. p_uart_obj[uart_num]->coll_det_flg = false;
  1411. // Enable collision detection interrupts
  1412. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1413. | UART_INTR_RXFIFO_FULL
  1414. | UART_INTR_RS485_CLASH
  1415. | UART_INTR_RS485_FRM_ERR
  1416. | UART_INTR_RS485_PARITY_ERR);
  1417. }
  1418. p_uart_obj[uart_num]->uart_mode = mode;
  1419. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1420. return ESP_OK;
  1421. }
  1422. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1423. {
  1424. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1425. ESP_RETURN_ON_FALSE((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1426. "rx fifo full threshold value error");
  1427. if (p_uart_obj[uart_num] == NULL) {
  1428. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1429. return ESP_ERR_INVALID_STATE;
  1430. }
  1431. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1432. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1433. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1434. }
  1435. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1436. return ESP_OK;
  1437. }
  1438. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1439. {
  1440. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1441. ESP_RETURN_ON_FALSE((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1442. "tx fifo empty threshold value error");
  1443. if (p_uart_obj[uart_num] == NULL) {
  1444. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1445. return ESP_ERR_INVALID_STATE;
  1446. }
  1447. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1448. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1449. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1450. }
  1451. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1452. return ESP_OK;
  1453. }
  1454. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1455. {
  1456. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1457. // get maximum timeout threshold
  1458. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1459. if (tout_thresh > tout_max_thresh) {
  1460. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1461. return ESP_ERR_INVALID_ARG;
  1462. }
  1463. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1464. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1465. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1466. return ESP_OK;
  1467. }
  1468. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1469. {
  1470. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1471. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1472. ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer");
  1473. ESP_RETURN_ON_FALSE(
  1474. (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1475. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1476. ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode");
  1477. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1478. return ESP_OK;
  1479. }
  1480. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1481. {
  1482. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1483. ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1484. wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG,
  1485. "wakeup_threshold out of bounds");
  1486. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1487. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1488. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1489. return ESP_OK;
  1490. }
  1491. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1492. {
  1493. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1494. ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL");
  1495. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1496. return ESP_OK;
  1497. }
  1498. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1499. {
  1500. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1501. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1502. return ESP_OK;
  1503. }
  1504. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1505. {
  1506. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1507. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1508. return ESP_OK;
  1509. }
  1510. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1511. {
  1512. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1513. if (rx_tout) {
  1514. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1515. } else {
  1516. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1517. }
  1518. }