flash_ops.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <assert.h>
  16. #include <string.h>
  17. #include <stdio.h>
  18. #include <sys/param.h> // For MIN/MAX(a, b)
  19. #include <freertos/FreeRTOS.h>
  20. #include <freertos/task.h>
  21. #include <freertos/semphr.h>
  22. #include <esp32/rom/spi_flash.h>
  23. #include <esp32/rom/cache.h>
  24. #include <soc/soc.h>
  25. #include <soc/dport_reg.h>
  26. #include <soc/soc_memory_layout.h>
  27. #include "sdkconfig.h"
  28. #include "esp_ipc.h"
  29. #include "esp_attr.h"
  30. #include "esp_spi_flash.h"
  31. #include "esp_log.h"
  32. #include "esp32/clk.h"
  33. #include "esp_flash_partitions.h"
  34. #include "cache_utils.h"
  35. #include "esp_flash.h"
  36. /* bytes erased by SPIEraseBlock() ROM function */
  37. #define BLOCK_ERASE_SIZE 65536
  38. /* Limit number of bytes written/read in a single SPI operation,
  39. as these operations disable all higher priority tasks from running.
  40. */
  41. #define MAX_WRITE_CHUNK 8192
  42. #define MAX_READ_CHUNK 16384
  43. static const char *TAG __attribute__((unused)) = "spi_flash";
  44. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  45. static spi_flash_counters_t s_flash_stats;
  46. #define COUNTER_START() uint32_t ts_begin = xthal_get_ccount()
  47. #define COUNTER_STOP(counter) \
  48. do{ \
  49. s_flash_stats.counter.count++; \
  50. s_flash_stats.counter.time += (xthal_get_ccount() - ts_begin) / (esp_clk_cpu_freq() / 1000000); \
  51. } while(0)
  52. #define COUNTER_ADD_BYTES(counter, size) \
  53. do { \
  54. s_flash_stats.counter.bytes += size; \
  55. } while (0)
  56. #else
  57. #define COUNTER_START()
  58. #define COUNTER_STOP(counter)
  59. #define COUNTER_ADD_BYTES(counter, size)
  60. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
  61. static esp_err_t spi_flash_translate_rc(esp_rom_spiflash_result_t rc);
  62. static bool is_safe_write_address(size_t addr, size_t size);
  63. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
  64. .start = spi_flash_disable_interrupts_caches_and_other_cpu,
  65. .end = spi_flash_enable_interrupts_caches_and_other_cpu,
  66. .op_lock = spi_flash_op_lock,
  67. .op_unlock = spi_flash_op_unlock,
  68. #if !CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
  69. .is_safe_write_address = is_safe_write_address
  70. #endif
  71. };
  72. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = {
  73. .start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os,
  74. .end = spi_flash_enable_interrupts_caches_no_os,
  75. .op_lock = 0,
  76. .op_unlock = 0,
  77. #if !CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
  78. .is_safe_write_address = 0
  79. #endif
  80. };
  81. static const spi_flash_guard_funcs_t *s_flash_guard_ops;
  82. #ifdef CONFIG_SPI_FLASH_DANGEROUS_WRITE_ABORTS
  83. #define UNSAFE_WRITE_ADDRESS abort()
  84. #else
  85. #define UNSAFE_WRITE_ADDRESS return false
  86. #endif
  87. /* CHECK_WRITE_ADDRESS macro to fail writes which land in the
  88. bootloader, partition table, or running application region.
  89. */
  90. #if CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
  91. #define CHECK_WRITE_ADDRESS(ADDR, SIZE)
  92. #else /* FAILS or ABORTS */
  93. #define CHECK_WRITE_ADDRESS(ADDR, SIZE) do { \
  94. if (s_flash_guard_ops && s_flash_guard_ops->is_safe_write_address && !s_flash_guard_ops->is_safe_write_address(ADDR, SIZE)) { \
  95. return ESP_ERR_INVALID_ARG; \
  96. } \
  97. } while(0)
  98. #endif // CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
  99. static __attribute__((unused)) bool is_safe_write_address(size_t addr, size_t size)
  100. {
  101. if (!esp_partition_main_flash_region_safe(addr, size)) {
  102. UNSAFE_WRITE_ADDRESS;
  103. }
  104. return true;
  105. }
  106. void spi_flash_init()
  107. {
  108. spi_flash_init_lock();
  109. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  110. spi_flash_reset_counters();
  111. #endif
  112. }
  113. void IRAM_ATTR spi_flash_guard_set(const spi_flash_guard_funcs_t *funcs)
  114. {
  115. s_flash_guard_ops = funcs;
  116. }
  117. const spi_flash_guard_funcs_t *IRAM_ATTR spi_flash_guard_get()
  118. {
  119. return s_flash_guard_ops;
  120. }
  121. size_t IRAM_ATTR spi_flash_get_chip_size()
  122. {
  123. return g_rom_flashchip.chip_size;
  124. }
  125. static inline void IRAM_ATTR spi_flash_guard_start()
  126. {
  127. if (s_flash_guard_ops && s_flash_guard_ops->start) {
  128. s_flash_guard_ops->start();
  129. }
  130. }
  131. static inline void IRAM_ATTR spi_flash_guard_end()
  132. {
  133. if (s_flash_guard_ops && s_flash_guard_ops->end) {
  134. s_flash_guard_ops->end();
  135. }
  136. }
  137. static inline void IRAM_ATTR spi_flash_guard_op_lock()
  138. {
  139. if (s_flash_guard_ops && s_flash_guard_ops->op_lock) {
  140. s_flash_guard_ops->op_lock();
  141. }
  142. }
  143. static inline void IRAM_ATTR spi_flash_guard_op_unlock()
  144. {
  145. if (s_flash_guard_ops && s_flash_guard_ops->op_unlock) {
  146. s_flash_guard_ops->op_unlock();
  147. }
  148. }
  149. #ifdef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  150. static esp_rom_spiflash_result_t IRAM_ATTR spi_flash_unlock()
  151. {
  152. static bool unlocked = false;
  153. if (!unlocked) {
  154. spi_flash_guard_start();
  155. esp_rom_spiflash_result_t rc = esp_rom_spiflash_unlock();
  156. spi_flash_guard_end();
  157. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  158. return rc;
  159. }
  160. unlocked = true;
  161. }
  162. return ESP_ROM_SPIFLASH_RESULT_OK;
  163. }
  164. #else
  165. static esp_rom_spiflash_result_t IRAM_ATTR spi_flash_unlock()
  166. {
  167. esp_err_t err = esp_flash_set_chip_write_protect(NULL, false);
  168. if (err != ESP_OK) {
  169. return ESP_ROM_SPIFLASH_RESULT_ERR;
  170. }
  171. return ESP_ROM_SPIFLASH_RESULT_OK;
  172. }
  173. #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  174. esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
  175. {
  176. CHECK_WRITE_ADDRESS(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  177. return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  178. }
  179. #ifdef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  180. //deprecated, only used in compatible mode
  181. esp_err_t IRAM_ATTR spi_flash_erase_range(size_t start_addr, size_t size)
  182. {
  183. CHECK_WRITE_ADDRESS(start_addr, size);
  184. if (start_addr % SPI_FLASH_SEC_SIZE != 0) {
  185. return ESP_ERR_INVALID_ARG;
  186. }
  187. if (size % SPI_FLASH_SEC_SIZE != 0) {
  188. return ESP_ERR_INVALID_SIZE;
  189. }
  190. if (size + start_addr > spi_flash_get_chip_size()) {
  191. return ESP_ERR_INVALID_SIZE;
  192. }
  193. size_t start = start_addr / SPI_FLASH_SEC_SIZE;
  194. size_t end = start + size / SPI_FLASH_SEC_SIZE;
  195. const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE;
  196. COUNTER_START();
  197. esp_rom_spiflash_result_t rc;
  198. rc = spi_flash_unlock();
  199. if (rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  200. for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) {
  201. spi_flash_guard_start();
  202. if (sector % sectors_per_block == 0 && end - sector >= sectors_per_block) {
  203. rc = esp_rom_spiflash_erase_block(sector / sectors_per_block);
  204. sector += sectors_per_block;
  205. COUNTER_ADD_BYTES(erase, sectors_per_block * SPI_FLASH_SEC_SIZE);
  206. } else {
  207. rc = esp_rom_spiflash_erase_sector(sector);
  208. ++sector;
  209. COUNTER_ADD_BYTES(erase, SPI_FLASH_SEC_SIZE);
  210. }
  211. spi_flash_guard_end();
  212. }
  213. }
  214. COUNTER_STOP(erase);
  215. spi_flash_guard_start();
  216. spi_flash_check_and_flush_cache(start_addr, size);
  217. spi_flash_guard_end();
  218. return spi_flash_translate_rc(rc);
  219. }
  220. /* Wrapper around esp_rom_spiflash_write() that verifies data as written if CONFIG_SPI_FLASH_VERIFY_WRITE is set.
  221. If CONFIG_SPI_FLASH_VERIFY_WRITE is not set, this is esp_rom_spiflash_write().
  222. */
  223. static IRAM_ATTR esp_rom_spiflash_result_t spi_flash_write_inner(uint32_t target, const uint32_t *src_addr, int32_t len)
  224. {
  225. #ifndef CONFIG_SPI_FLASH_VERIFY_WRITE
  226. return esp_rom_spiflash_write(target, src_addr, len);
  227. #else // CONFIG_SPI_FLASH_VERIFY_WRITE
  228. esp_rom_spiflash_result_t res = ESP_ROM_SPIFLASH_RESULT_OK;
  229. assert(len % sizeof(uint32_t) == 0);
  230. uint32_t before_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  231. uint32_t after_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  232. int32_t remaining = len;
  233. for(int i = 0; i < len; i += sizeof(before_buf)) {
  234. int i_w = i / sizeof(uint32_t); // index in words (i is an index in bytes)
  235. int32_t read_len = MIN(sizeof(before_buf), remaining);
  236. // Read "before" contents from flash
  237. res = esp_rom_spiflash_read(target + i, before_buf, read_len);
  238. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  239. break;
  240. }
  241. #ifdef CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
  242. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  243. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  244. uint32_t write = src_addr[i_w + r_w];
  245. uint32_t before = before_buf[r_w];
  246. if ((before & write) != write) {
  247. spi_flash_guard_end();
  248. ESP_LOGW(TAG, "Write at offset 0x%x requests 0x%08x but will write 0x%08x -> 0x%08x",
  249. target + i + r, write, before, before & write);
  250. spi_flash_guard_start();
  251. }
  252. }
  253. #endif
  254. res = esp_rom_spiflash_write(target + i, &src_addr[i_w], read_len);
  255. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  256. break;
  257. }
  258. res = esp_rom_spiflash_read(target + i, after_buf, read_len);
  259. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  260. break;
  261. }
  262. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  263. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  264. uint32_t expected = src_addr[i_w + r_w] & before_buf[r_w];
  265. uint32_t actual = after_buf[r_w];
  266. if (expected != actual) {
  267. #ifdef CONFIG_SPI_FLASH_LOG_FAILED_WRITE
  268. spi_flash_guard_end();
  269. ESP_LOGE(TAG, "Bad write at offset 0x%x expected 0x%08x readback 0x%08x", target + i + r, expected, actual);
  270. spi_flash_guard_start();
  271. #endif
  272. res = ESP_ROM_SPIFLASH_RESULT_ERR;
  273. }
  274. }
  275. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  276. break;
  277. }
  278. remaining -= read_len;
  279. }
  280. return res;
  281. #endif // CONFIG_SPI_FLASH_VERIFY_WRITE
  282. }
  283. esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
  284. {
  285. CHECK_WRITE_ADDRESS(dst, size);
  286. // Out of bound writes are checked in ROM code, but we can give better
  287. // error code here
  288. if (dst + size > g_rom_flashchip.chip_size) {
  289. return ESP_ERR_INVALID_SIZE;
  290. }
  291. if (size == 0) {
  292. return ESP_OK;
  293. }
  294. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  295. COUNTER_START();
  296. const uint8_t *srcc = (const uint8_t *) srcv;
  297. /*
  298. * Large operations are split into (up to) 3 parts:
  299. * - Left padding: 4 bytes up to the first 4-byte aligned destination offset.
  300. * - Middle part
  301. * - Right padding: 4 bytes from the last 4-byte aligned offset covered.
  302. */
  303. size_t left_off = dst & ~3U;
  304. size_t left_size = MIN(((dst + 3) & ~3U) - dst, size);
  305. size_t mid_off = left_size;
  306. size_t mid_size = (size - left_size) & ~3U;
  307. size_t right_off = left_size + mid_size;
  308. size_t right_size = size - mid_size - left_size;
  309. rc = spi_flash_unlock();
  310. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  311. goto out;
  312. }
  313. if (left_size > 0) {
  314. uint32_t t = 0xffffffff;
  315. memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size);
  316. spi_flash_guard_start();
  317. rc = spi_flash_write_inner(left_off, &t, 4);
  318. spi_flash_guard_end();
  319. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  320. goto out;
  321. }
  322. COUNTER_ADD_BYTES(write, 4);
  323. }
  324. if (mid_size > 0) {
  325. /* If src buffer is 4-byte aligned as well and is not in a region that requires cache access to be enabled, we
  326. * can write directly without buffering in RAM. */
  327. #ifdef ESP_PLATFORM
  328. bool direct_write = esp_ptr_internal(srcc)
  329. && esp_ptr_byte_accessible(srcc)
  330. && ((uintptr_t) srcc + mid_off) % 4 == 0;
  331. #else
  332. bool direct_write = true;
  333. #endif
  334. while(mid_size > 0 && rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  335. uint32_t write_buf[8];
  336. uint32_t write_size = MIN(mid_size, MAX_WRITE_CHUNK);
  337. const uint8_t *write_src = srcc + mid_off;
  338. if (!direct_write) {
  339. write_size = MIN(write_size, sizeof(write_buf));
  340. memcpy(write_buf, write_src, write_size);
  341. write_src = (const uint8_t *)write_buf;
  342. }
  343. spi_flash_guard_start();
  344. rc = spi_flash_write_inner(dst + mid_off, (const uint32_t *) write_src, write_size);
  345. spi_flash_guard_end();
  346. COUNTER_ADD_BYTES(write, write_size);
  347. mid_size -= write_size;
  348. mid_off += write_size;
  349. }
  350. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  351. goto out;
  352. }
  353. }
  354. if (right_size > 0) {
  355. uint32_t t = 0xffffffff;
  356. memcpy(&t, srcc + right_off, right_size);
  357. spi_flash_guard_start();
  358. rc = spi_flash_write_inner(dst + right_off, &t, 4);
  359. spi_flash_guard_end();
  360. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  361. goto out;
  362. }
  363. COUNTER_ADD_BYTES(write, 4);
  364. }
  365. out:
  366. COUNTER_STOP(write);
  367. spi_flash_guard_start();
  368. spi_flash_check_and_flush_cache(dst, size);
  369. spi_flash_guard_end();
  370. return spi_flash_translate_rc(rc);
  371. }
  372. #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  373. esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size)
  374. {
  375. CHECK_WRITE_ADDRESS(dest_addr, size);
  376. const uint8_t *ssrc = (const uint8_t *)src;
  377. if ((dest_addr % 16) != 0) {
  378. return ESP_ERR_INVALID_ARG;
  379. }
  380. if ((size % 16) != 0) {
  381. return ESP_ERR_INVALID_SIZE;
  382. }
  383. COUNTER_START();
  384. esp_rom_spiflash_result_t rc;
  385. rc = spi_flash_unlock();
  386. if (rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  387. /* esp_rom_spiflash_write_encrypted encrypts data in RAM as it writes,
  388. so copy to a temporary buffer - 32 bytes at a time.
  389. Each call to esp_rom_spiflash_write_encrypted takes a 32 byte "row" of
  390. data to encrypt, and each row is two 16 byte AES blocks
  391. that share a key (as derived from flash address).
  392. */
  393. uint8_t encrypt_buf[32] __attribute__((aligned(4)));
  394. uint32_t row_size;
  395. for (size_t i = 0; i < size; i += row_size) {
  396. uint32_t row_addr = dest_addr + i;
  397. if (i == 0 && (row_addr % 32) != 0) {
  398. /* writing to second block of a 32 byte row */
  399. row_size = 16;
  400. row_addr -= 16;
  401. /* copy to second block in buffer */
  402. memcpy(encrypt_buf + 16, ssrc + i, 16);
  403. /* decrypt the first block from flash, will reencrypt to same bytes */
  404. spi_flash_read_encrypted(row_addr, encrypt_buf, 16);
  405. } else if (size - i == 16) {
  406. /* 16 bytes left, is first block of a 32 byte row */
  407. row_size = 16;
  408. /* copy to first block in buffer */
  409. memcpy(encrypt_buf, ssrc + i, 16);
  410. /* decrypt the second block from flash, will reencrypt to same bytes */
  411. spi_flash_read_encrypted(row_addr + 16, encrypt_buf + 16, 16);
  412. } else {
  413. /* Writing a full 32 byte row (2 blocks) */
  414. row_size = 32;
  415. memcpy(encrypt_buf, ssrc + i, 32);
  416. }
  417. spi_flash_guard_start();
  418. rc = esp_rom_spiflash_write_encrypted(row_addr, (uint32_t *)encrypt_buf, 32);
  419. spi_flash_guard_end();
  420. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  421. break;
  422. }
  423. }
  424. bzero(encrypt_buf, sizeof(encrypt_buf));
  425. }
  426. COUNTER_ADD_BYTES(write, size);
  427. COUNTER_STOP(write);
  428. spi_flash_guard_start();
  429. spi_flash_check_and_flush_cache(dest_addr, size);
  430. spi_flash_guard_end();
  431. return spi_flash_translate_rc(rc);
  432. }
  433. #ifdef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  434. esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
  435. {
  436. // Out of bound reads are checked in ROM code, but we can give better
  437. // error code here
  438. if (src + size > g_rom_flashchip.chip_size) {
  439. return ESP_ERR_INVALID_SIZE;
  440. }
  441. if (size == 0) {
  442. return ESP_OK;
  443. }
  444. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  445. COUNTER_START();
  446. spi_flash_guard_start();
  447. /* To simplify boundary checks below, we handle small reads separately. */
  448. if (size < 16) {
  449. uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */
  450. uint32_t read_src = src & ~3U;
  451. uint32_t left_off = src & 3U;
  452. uint32_t read_size = (left_off + size + 3) & ~3U;
  453. rc = esp_rom_spiflash_read(read_src, t, read_size);
  454. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  455. goto out;
  456. }
  457. COUNTER_ADD_BYTES(read, read_size);
  458. #ifdef ESP_PLATFORM
  459. if (esp_ptr_external_ram(dstv)) {
  460. spi_flash_guard_end();
  461. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  462. spi_flash_guard_start();
  463. } else {
  464. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  465. }
  466. #else
  467. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  468. #endif
  469. goto out;
  470. }
  471. uint8_t *dstc = (uint8_t *) dstv;
  472. intptr_t dsti = (intptr_t) dstc;
  473. /*
  474. * Large operations are split into (up to) 3 parts:
  475. * - The middle part: from the first 4-aligned position in src to the first
  476. * 4-aligned position in dst.
  477. */
  478. size_t src_mid_off = (src % 4 == 0 ? 0 : 4 - (src % 4));
  479. size_t dst_mid_off = (dsti % 4 == 0 ? 0 : 4 - (dsti % 4));
  480. size_t mid_size = (size - MAX(src_mid_off, dst_mid_off)) & ~3U;
  481. /*
  482. * - Once the middle part is in place, src_mid_off bytes from the preceding
  483. * 4-aligned source location are added on the left.
  484. */
  485. size_t pad_left_src = src & ~3U;
  486. size_t pad_left_size = src_mid_off;
  487. /*
  488. * - Finally, the right part is added: from the end of the middle part to
  489. * the end. Depending on the alignment of source and destination, this may
  490. * be a 4 or 8 byte read from pad_right_src.
  491. */
  492. size_t pad_right_src = (src + pad_left_size + mid_size) & ~3U;
  493. size_t pad_right_off = (pad_right_src - src);
  494. size_t pad_right_size = (size - pad_right_off);
  495. #ifdef ESP_PLATFORM
  496. bool direct_read = esp_ptr_internal(dstc)
  497. && esp_ptr_byte_accessible(dstc)
  498. && ((uintptr_t) dstc + dst_mid_off) % 4 == 0;
  499. #else
  500. bool direct_read = true;
  501. #endif
  502. if (mid_size > 0) {
  503. uint32_t mid_remaining = mid_size;
  504. uint32_t mid_read = 0;
  505. while (mid_remaining > 0) {
  506. uint32_t read_size = MIN(mid_remaining, MAX_READ_CHUNK);
  507. uint32_t read_buf[8];
  508. uint8_t *read_dst_final = dstc + dst_mid_off + mid_read;
  509. uint8_t *read_dst = read_dst_final;
  510. if (!direct_read) {
  511. read_size = MIN(read_size, sizeof(read_buf));
  512. read_dst = (uint8_t *) read_buf;
  513. }
  514. rc = esp_rom_spiflash_read(src + src_mid_off + mid_read,
  515. (uint32_t *) read_dst, read_size);
  516. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  517. goto out;
  518. }
  519. mid_remaining -= read_size;
  520. mid_read += read_size;
  521. if (!direct_read) {
  522. spi_flash_guard_end();
  523. memcpy(read_dst_final, read_buf, read_size);
  524. spi_flash_guard_start();
  525. } else if (mid_remaining > 0) {
  526. /* Drop guard momentarily, allows other tasks to preempt */
  527. spi_flash_guard_end();
  528. spi_flash_guard_start();
  529. }
  530. }
  531. COUNTER_ADD_BYTES(read, mid_size);
  532. /*
  533. * If offsets in src and dst are different, perform an in-place shift
  534. * to put destination data into its final position.
  535. * Note that the shift can be left (src_mid_off < dst_mid_off) or right.
  536. */
  537. if (src_mid_off != dst_mid_off) {
  538. if (!direct_read) {
  539. spi_flash_guard_end();
  540. }
  541. memmove(dstc + src_mid_off, dstc + dst_mid_off, mid_size);
  542. if (!direct_read) {
  543. spi_flash_guard_start();
  544. }
  545. }
  546. }
  547. if (pad_left_size > 0) {
  548. uint32_t t;
  549. rc = esp_rom_spiflash_read(pad_left_src, &t, 4);
  550. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  551. goto out;
  552. }
  553. COUNTER_ADD_BYTES(read, 4);
  554. if (!direct_read) {
  555. spi_flash_guard_end();
  556. }
  557. memcpy(dstc, ((uint8_t *) &t) + (4 - pad_left_size), pad_left_size);
  558. if (!direct_read) {
  559. spi_flash_guard_start();
  560. }
  561. }
  562. if (pad_right_size > 0) {
  563. uint32_t t[2];
  564. int32_t read_size = (pad_right_size <= 4 ? 4 : 8);
  565. rc = esp_rom_spiflash_read(pad_right_src, t, read_size);
  566. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  567. goto out;
  568. }
  569. COUNTER_ADD_BYTES(read, read_size);
  570. if (!direct_read) {
  571. spi_flash_guard_end();
  572. }
  573. memcpy(dstc + pad_right_off, t, pad_right_size);
  574. if (!direct_read) {
  575. spi_flash_guard_start();
  576. }
  577. }
  578. out:
  579. spi_flash_guard_end();
  580. COUNTER_STOP(read);
  581. return spi_flash_translate_rc(rc);
  582. }
  583. #endif
  584. esp_err_t IRAM_ATTR spi_flash_read_encrypted(size_t src, void *dstv, size_t size)
  585. {
  586. if (src + size > g_rom_flashchip.chip_size) {
  587. return ESP_ERR_INVALID_SIZE;
  588. }
  589. if (size == 0) {
  590. return ESP_OK;
  591. }
  592. esp_err_t err;
  593. const uint8_t *map;
  594. spi_flash_mmap_handle_t map_handle;
  595. size_t map_src = src & ~(SPI_FLASH_MMU_PAGE_SIZE - 1);
  596. size_t map_size = size + (src - map_src);
  597. err = spi_flash_mmap(map_src, map_size, SPI_FLASH_MMAP_DATA, (const void **)&map, &map_handle);
  598. if (err != ESP_OK) {
  599. return err;
  600. }
  601. memcpy(dstv, map + (src - map_src), size);
  602. spi_flash_munmap(map_handle);
  603. return err;
  604. }
  605. static esp_err_t IRAM_ATTR spi_flash_translate_rc(esp_rom_spiflash_result_t rc)
  606. {
  607. switch (rc) {
  608. case ESP_ROM_SPIFLASH_RESULT_OK:
  609. return ESP_OK;
  610. case ESP_ROM_SPIFLASH_RESULT_TIMEOUT:
  611. return ESP_ERR_FLASH_OP_TIMEOUT;
  612. case ESP_ROM_SPIFLASH_RESULT_ERR:
  613. default:
  614. return ESP_ERR_FLASH_OP_FAIL;
  615. }
  616. }
  617. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  618. static inline void dump_counter(spi_flash_counter_t *counter, const char *name)
  619. {
  620. ESP_LOGI(TAG, "%s count=%8d time=%8dus bytes=%8d\n", name,
  621. counter->count, counter->time, counter->bytes);
  622. }
  623. const spi_flash_counters_t *spi_flash_get_counters()
  624. {
  625. return &s_flash_stats;
  626. }
  627. void spi_flash_reset_counters()
  628. {
  629. memset(&s_flash_stats, 0, sizeof(s_flash_stats));
  630. }
  631. void spi_flash_dump_counters()
  632. {
  633. dump_counter(&s_flash_stats.read, "read ");
  634. dump_counter(&s_flash_stats.write, "write");
  635. dump_counter(&s_flash_stats.erase, "erase");
  636. }
  637. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS