bt.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr_alloc.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "driver/periph_ctrl.h"
  38. #include "soc/rtc.h"
  39. #include "soc/soc_memory_layout.h"
  40. #include "esp32/clk.h"
  41. #include "esp_coexist_internal.h"
  42. #if !CONFIG_FREERTOS_UNICORE
  43. #include "esp_ipc.h"
  44. #endif
  45. #if CONFIG_BT_ENABLED
  46. /* Macro definition
  47. ************************************************************************
  48. */
  49. #define BTDM_LOG_TAG "BTDM_INIT"
  50. #define BTDM_INIT_PERIOD (5000) /* ms */
  51. /* Bluetooth system and controller config */
  52. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  53. #define BTDM_CFG_HCI_UART (1<<1)
  54. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  55. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  56. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  57. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  58. /* Sleep mode */
  59. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  60. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  61. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  62. /* Low Power Clock Selection */
  63. #define BTDM_LPCLK_SEL_XTAL (0)
  64. #define BTDM_LPCLK_SEL_XTAL32K (1)
  65. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  66. #define BTDM_LPCLK_SEL_8M (3)
  67. /* Sleep and wakeup interval control */
  68. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  69. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  70. #define BT_DEBUG(...)
  71. #define BT_API_CALL_CHECK(info, api_call, ret) \
  72. do{\
  73. esp_err_t __err = (api_call);\
  74. if ((ret) != __err) {\
  75. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  76. return __err;\
  77. }\
  78. } while(0)
  79. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  80. #define OSI_VERSION 0x00010002
  81. #define OSI_MAGIC_VALUE 0xFADEBEAD
  82. /* SPIRAM Configuration */
  83. #if CONFIG_SPIRAM_USE_MALLOC
  84. #define BTDM_MAX_QUEUE_NUM (5)
  85. #endif
  86. /* Types definition
  87. ************************************************************************
  88. */
  89. /* VHCI function interface */
  90. typedef struct vhci_host_callback {
  91. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  92. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  93. } vhci_host_callback_t;
  94. /* Dram region */
  95. typedef struct {
  96. esp_bt_mode_t mode;
  97. intptr_t start;
  98. intptr_t end;
  99. } btdm_dram_available_region_t;
  100. /* PSRAM configuration */
  101. #if CONFIG_SPIRAM_USE_MALLOC
  102. typedef struct {
  103. QueueHandle_t handle;
  104. void *storage;
  105. void *buffer;
  106. } btdm_queue_item_t;
  107. #endif
  108. /* OSI function */
  109. struct osi_funcs_t {
  110. uint32_t _version;
  111. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  112. void (*_ints_on)(unsigned int mask);
  113. void (*_interrupt_disable)(void);
  114. void (*_interrupt_restore)(void);
  115. void (*_task_yield)(void);
  116. void (*_task_yield_from_isr)(void);
  117. void *(*_semphr_create)(uint32_t max, uint32_t init);
  118. void (*_semphr_delete)(void *semphr);
  119. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  120. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  121. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  122. int32_t (*_semphr_give)(void *semphr);
  123. void *(*_mutex_create)(void);
  124. void (*_mutex_delete)(void *mutex);
  125. int32_t (*_mutex_lock)(void *mutex);
  126. int32_t (*_mutex_unlock)(void *mutex);
  127. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  128. void (* _queue_delete)(void *queue);
  129. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  130. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  131. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  132. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  133. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  134. void (* _task_delete)(void *task_handle);
  135. bool (* _is_in_isr)(void);
  136. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  137. void *(* _malloc)(uint32_t size);
  138. void *(* _malloc_internal)(uint32_t size);
  139. void (* _free)(void *p);
  140. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  141. void (* _srand)(unsigned int seed);
  142. int (* _rand)(void);
  143. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  144. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  145. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  146. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  147. void (* _btdm_sleep_enter_phase2)(void);
  148. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  149. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  150. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  151. bool (* _coex_bt_wakeup_request)(void);
  152. void (* _coex_bt_wakeup_request_end)(void);
  153. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  154. int (* _coex_bt_release)(uint32_t event);
  155. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  156. uint32_t (* _coex_bb_reset_lock)(void);
  157. void (* _coex_bb_reset_unlock)(uint32_t restore);
  158. int (* _coex_schm_register_btdm_callback)(void *callback);
  159. void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status);
  160. void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status);
  161. uint32_t (* _coex_schm_interval_get)(void);
  162. uint8_t (* _coex_schm_curr_period_get)(void);
  163. void *(* _coex_schm_curr_phase_get)(void);
  164. int (* _coex_wifi_channel_get)(uint8_t *primary, uint8_t *secondary);
  165. int (* _coex_register_wifi_channel_change_callback)(void *cb);
  166. uint32_t _magic;
  167. };
  168. typedef void (*workitem_handler_t)(void* arg);
  169. /* External functions or values
  170. ************************************************************************
  171. */
  172. /* not for user call, so don't put to include file */
  173. /* OSI */
  174. extern int btdm_osi_funcs_register(void *osi_funcs);
  175. /* Initialise and De-initialise */
  176. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  177. extern void btdm_controller_deinit(void);
  178. extern int btdm_controller_enable(esp_bt_mode_t mode);
  179. extern void btdm_controller_disable(void);
  180. extern uint8_t btdm_controller_get_mode(void);
  181. extern const char *btdm_controller_get_compile_version(void);
  182. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  183. extern int btdm_dispatch_work_to_controller(workitem_handler_t callback, void *arg, bool blocking);
  184. /* Sleep */
  185. extern void btdm_controller_enable_sleep(bool enable);
  186. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  187. extern uint8_t btdm_controller_get_sleep_mode(void);
  188. extern bool btdm_power_state_active(void);
  189. extern void btdm_wakeup_request(void);
  190. extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);
  191. /* Low Power Clock */
  192. extern bool btdm_lpclk_select_src(uint32_t sel);
  193. extern bool btdm_lpclk_set_div(uint32_t div);
  194. /* VHCI */
  195. extern bool API_vhci_host_check_send_available(void);
  196. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  197. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  198. /* TX power */
  199. extern int ble_txpwr_set(int power_type, int power_level);
  200. extern int ble_txpwr_get(int power_type);
  201. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  202. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  203. extern void bredr_sco_datapath_set(uint8_t data_path);
  204. extern void btdm_controller_scan_duplicate_list_clear(void);
  205. /* Coexistence */
  206. extern int coex_bt_request(uint32_t event, uint32_t latency, uint32_t duration);
  207. extern int coex_bt_release(uint32_t event);
  208. extern int coex_register_bt_cb(coex_func_cb_t cb);
  209. extern uint32_t coex_bb_reset_lock(void);
  210. extern void coex_bb_reset_unlock(uint32_t restore);
  211. extern int coex_schm_register_btdm_callback(void *callback);
  212. extern void coex_schm_status_bit_clear(uint32_t type, uint32_t status);
  213. extern void coex_schm_status_bit_set(uint32_t type, uint32_t status);
  214. extern uint32_t coex_schm_interval_get(void);
  215. extern uint8_t coex_schm_curr_period_get(void);
  216. extern void * coex_schm_curr_phase_get(void);
  217. extern int coex_wifi_channel_get(uint8_t *primary, uint8_t *secondary);
  218. extern int coex_register_wifi_channel_change_callback(void *cb);
  219. extern char _bss_start_btdm;
  220. extern char _bss_end_btdm;
  221. extern char _data_start_btdm;
  222. extern char _data_end_btdm;
  223. extern uint32_t _data_start_btdm_rom;
  224. extern uint32_t _data_end_btdm_rom;
  225. extern uint32_t _bt_bss_start;
  226. extern uint32_t _bt_bss_end;
  227. extern uint32_t _nimble_bss_start;
  228. extern uint32_t _nimble_bss_end;
  229. extern uint32_t _btdm_bss_start;
  230. extern uint32_t _btdm_bss_end;
  231. extern uint32_t _bt_data_start;
  232. extern uint32_t _bt_data_end;
  233. extern uint32_t _nimble_data_start;
  234. extern uint32_t _nimble_data_end;
  235. extern uint32_t _btdm_data_start;
  236. extern uint32_t _btdm_data_end;
  237. /* Local Function Declare
  238. *********************************************************************
  239. */
  240. #if CONFIG_SPIRAM_USE_MALLOC
  241. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  242. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  243. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  244. static void IRAM_ATTR interrupt_disable(void);
  245. static void IRAM_ATTR interrupt_restore(void);
  246. static void IRAM_ATTR task_yield_from_isr(void);
  247. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  248. static void semphr_delete_wrapper(void *semphr);
  249. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  250. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  251. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  252. static int32_t semphr_give_wrapper(void *semphr);
  253. static void *mutex_create_wrapper(void);
  254. static void mutex_delete_wrapper(void *mutex);
  255. static int32_t mutex_lock_wrapper(void *mutex);
  256. static int32_t mutex_unlock_wrapper(void *mutex);
  257. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  258. static void queue_delete_wrapper(void *queue);
  259. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  260. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  261. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  262. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  263. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  264. static void task_delete_wrapper(void *task_handle);
  265. static bool IRAM_ATTR is_in_isr_wrapper(void);
  266. static void IRAM_ATTR cause_sw_intr(void *arg);
  267. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  268. static void *malloc_internal_wrapper(size_t size);
  269. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  270. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  271. static int IRAM_ATTR rand_wrapper(void);
  272. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  273. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  274. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  275. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  276. static void btdm_sleep_enter_phase2_wrapper(void);
  277. static void btdm_sleep_exit_phase3_wrapper(void);
  278. static bool coex_bt_wakeup_request(void);
  279. static void coex_bt_wakeup_request_end(void);
  280. static int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  281. static int coex_bt_release_wrapper(uint32_t event);
  282. static int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  283. static uint32_t coex_bb_reset_lock_wrapper(void);
  284. static void coex_bb_reset_unlock_wrapper(uint32_t restore);
  285. static int coex_schm_register_btdm_callback_wrapper(void *callback);
  286. static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status);
  287. static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status);
  288. static uint32_t coex_schm_interval_get_wrapper(void);
  289. static uint8_t coex_schm_curr_period_get_wrapper(void);
  290. static void * coex_schm_curr_phase_get_wrapper(void);
  291. static int coex_wifi_channel_get_wrapper(uint8_t *primary, uint8_t *secondary);
  292. static int coex_register_wifi_channel_change_callback_wrapper(void *cb);
  293. /* Local variable definition
  294. ***************************************************************************
  295. */
  296. /* OSI funcs */
  297. static const struct osi_funcs_t osi_funcs_ro = {
  298. ._version = OSI_VERSION,
  299. ._set_isr = xt_set_interrupt_handler,
  300. ._ints_on = xt_ints_on,
  301. ._interrupt_disable = interrupt_disable,
  302. ._interrupt_restore = interrupt_restore,
  303. ._task_yield = vPortYield,
  304. ._task_yield_from_isr = task_yield_from_isr,
  305. ._semphr_create = semphr_create_wrapper,
  306. ._semphr_delete = semphr_delete_wrapper,
  307. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  308. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  309. ._semphr_take = semphr_take_wrapper,
  310. ._semphr_give = semphr_give_wrapper,
  311. ._mutex_create = mutex_create_wrapper,
  312. ._mutex_delete = mutex_delete_wrapper,
  313. ._mutex_lock = mutex_lock_wrapper,
  314. ._mutex_unlock = mutex_unlock_wrapper,
  315. ._queue_create = queue_create_wrapper,
  316. ._queue_delete = queue_delete_wrapper,
  317. ._queue_send = queue_send_wrapper,
  318. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  319. ._queue_recv = queue_recv_wrapper,
  320. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  321. ._task_create = task_create_wrapper,
  322. ._task_delete = task_delete_wrapper,
  323. ._is_in_isr = is_in_isr_wrapper,
  324. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  325. ._malloc = malloc,
  326. ._malloc_internal = malloc_internal_wrapper,
  327. ._free = free,
  328. ._read_efuse_mac = read_mac_wrapper,
  329. ._srand = srand_wrapper,
  330. ._rand = rand_wrapper,
  331. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  332. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  333. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  334. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  335. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  336. ._btdm_sleep_exit_phase1 = NULL,
  337. ._btdm_sleep_exit_phase2 = NULL,
  338. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  339. ._coex_bt_wakeup_request = coex_bt_wakeup_request,
  340. ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end,
  341. ._coex_bt_request = coex_bt_request_wrapper,
  342. ._coex_bt_release = coex_bt_release_wrapper,
  343. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  344. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  345. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  346. ._coex_schm_register_btdm_callback = coex_schm_register_btdm_callback_wrapper,
  347. ._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper,
  348. ._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper,
  349. ._coex_schm_interval_get = coex_schm_interval_get_wrapper,
  350. ._coex_schm_curr_period_get = coex_schm_curr_period_get_wrapper,
  351. ._coex_schm_curr_phase_get = coex_schm_curr_phase_get_wrapper,
  352. ._coex_wifi_channel_get = coex_wifi_channel_get_wrapper,
  353. ._coex_register_wifi_channel_change_callback = coex_register_wifi_channel_change_callback_wrapper,
  354. ._magic = OSI_MAGIC_VALUE,
  355. };
  356. /* the mode column will be modified by release function to indicate the available region */
  357. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  358. //following is .data
  359. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  360. //following is memory which HW will use
  361. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  362. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  363. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  364. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  365. //following is .bss
  366. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  367. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  368. };
  369. /* Reserve the full memory region used by Bluetooth Controller,
  370. * some may be released later at runtime. */
  371. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  372. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  373. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  374. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  375. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  376. #if CONFIG_SPIRAM_USE_MALLOC
  377. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  378. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  379. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  380. /* Static variable declare */
  381. // timestamp when PHY/RF was switched on
  382. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  383. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  384. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  385. // measured average low power clock period in micro seconds
  386. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  387. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  388. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  389. // used low power clock
  390. static DRAM_ATTR uint8_t btdm_lpclk_sel;
  391. #endif /* #ifdef CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG */
  392. static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
  393. #ifdef CONFIG_PM_ENABLE
  394. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  395. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  396. static bool s_pm_lock_acquired = true;
  397. static DRAM_ATTR bool s_btdm_allow_light_sleep;
  398. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  399. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  400. static void btdm_slp_tmr_callback(void *arg);
  401. #endif /* #ifdef CONFIG_PM_ENABLE */
  402. static inline void btdm_check_and_init_bb(void)
  403. {
  404. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  405. int64_t latest_ts = esp_phy_rf_get_on_ts();
  406. if (latest_ts != s_time_phy_rf_just_enabled ||
  407. s_time_phy_rf_just_enabled == 0) {
  408. btdm_rf_bb_init_phase2();
  409. s_time_phy_rf_just_enabled = latest_ts;
  410. }
  411. }
  412. #if CONFIG_SPIRAM_USE_MALLOC
  413. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  414. {
  415. if (!btdm_queue_table_mux || !queue) {
  416. return NULL;
  417. }
  418. bool ret = false;
  419. btdm_queue_item_t *item;
  420. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  421. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  422. item = &btdm_queue_table[i];
  423. if (item->handle == NULL) {
  424. memcpy(item, queue, sizeof(btdm_queue_item_t));
  425. ret = true;
  426. break;
  427. }
  428. }
  429. xSemaphoreGive(btdm_queue_table_mux);
  430. return ret;
  431. }
  432. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  433. {
  434. if (!btdm_queue_table_mux || !queue) {
  435. return false;
  436. }
  437. bool ret = false;
  438. btdm_queue_item_t *item;
  439. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  440. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  441. item = &btdm_queue_table[i];
  442. if (item->handle == queue->handle) {
  443. memcpy(queue, item, sizeof(btdm_queue_item_t));
  444. memset(item, 0, sizeof(btdm_queue_item_t));
  445. ret = true;
  446. break;
  447. }
  448. }
  449. xSemaphoreGive(btdm_queue_table_mux);
  450. return ret;
  451. }
  452. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  453. static void IRAM_ATTR interrupt_disable(void)
  454. {
  455. if (xPortInIsrContext()) {
  456. portENTER_CRITICAL_ISR(&global_int_mux);
  457. } else {
  458. portENTER_CRITICAL(&global_int_mux);
  459. }
  460. }
  461. static void IRAM_ATTR interrupt_restore(void)
  462. {
  463. if (xPortInIsrContext()) {
  464. portEXIT_CRITICAL_ISR(&global_int_mux);
  465. } else {
  466. portEXIT_CRITICAL(&global_int_mux);
  467. }
  468. }
  469. static void IRAM_ATTR task_yield_from_isr(void)
  470. {
  471. portYIELD_FROM_ISR();
  472. }
  473. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  474. {
  475. #if !CONFIG_SPIRAM_USE_MALLOC
  476. return (void *)xSemaphoreCreateCounting(max, init);
  477. #else
  478. StaticQueue_t *queue_buffer = NULL;
  479. QueueHandle_t handle = NULL;
  480. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  481. if (!queue_buffer) {
  482. goto error;
  483. }
  484. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  485. if (!handle) {
  486. goto error;
  487. }
  488. btdm_queue_item_t item = {
  489. .handle = handle,
  490. .storage = NULL,
  491. .buffer = queue_buffer,
  492. };
  493. if (!btdm_queue_generic_register(&item)) {
  494. goto error;
  495. }
  496. return handle;
  497. error:
  498. if (handle) {
  499. vSemaphoreDelete(handle);
  500. }
  501. if (queue_buffer) {
  502. free(queue_buffer);
  503. }
  504. return NULL;
  505. #endif
  506. }
  507. static void semphr_delete_wrapper(void *semphr)
  508. {
  509. #if !CONFIG_SPIRAM_USE_MALLOC
  510. vSemaphoreDelete(semphr);
  511. #else
  512. btdm_queue_item_t item = {
  513. .handle = semphr,
  514. .storage = NULL,
  515. .buffer = NULL,
  516. };
  517. if (btdm_queue_generic_deregister(&item)) {
  518. vSemaphoreDelete(item.handle);
  519. free(item.buffer);
  520. }
  521. return;
  522. #endif
  523. }
  524. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  525. {
  526. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  527. }
  528. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  529. {
  530. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  531. }
  532. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  533. {
  534. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  535. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  536. } else {
  537. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  538. }
  539. }
  540. static int32_t semphr_give_wrapper(void *semphr)
  541. {
  542. return (int32_t)xSemaphoreGive(semphr);
  543. }
  544. static void *mutex_create_wrapper(void)
  545. {
  546. #if CONFIG_SPIRAM_USE_MALLOC
  547. StaticQueue_t *queue_buffer = NULL;
  548. QueueHandle_t handle = NULL;
  549. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  550. if (!queue_buffer) {
  551. goto error;
  552. }
  553. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  554. if (!handle) {
  555. goto error;
  556. }
  557. btdm_queue_item_t item = {
  558. .handle = handle,
  559. .storage = NULL,
  560. .buffer = queue_buffer,
  561. };
  562. if (!btdm_queue_generic_register(&item)) {
  563. goto error;
  564. }
  565. return handle;
  566. error:
  567. if (handle) {
  568. vSemaphoreDelete(handle);
  569. }
  570. if (queue_buffer) {
  571. free(queue_buffer);
  572. }
  573. return NULL;
  574. #else
  575. return (void *)xSemaphoreCreateMutex();
  576. #endif
  577. }
  578. static void mutex_delete_wrapper(void *mutex)
  579. {
  580. #if !CONFIG_SPIRAM_USE_MALLOC
  581. vSemaphoreDelete(mutex);
  582. #else
  583. btdm_queue_item_t item = {
  584. .handle = mutex,
  585. .storage = NULL,
  586. .buffer = NULL,
  587. };
  588. if (btdm_queue_generic_deregister(&item)) {
  589. vSemaphoreDelete(item.handle);
  590. free(item.buffer);
  591. }
  592. return;
  593. #endif
  594. }
  595. static int32_t mutex_lock_wrapper(void *mutex)
  596. {
  597. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  598. }
  599. static int32_t mutex_unlock_wrapper(void *mutex)
  600. {
  601. return (int32_t)xSemaphoreGive(mutex);
  602. }
  603. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  604. {
  605. #if CONFIG_SPIRAM_USE_MALLOC
  606. StaticQueue_t *queue_buffer = NULL;
  607. uint8_t *queue_storage = NULL;
  608. QueueHandle_t handle = NULL;
  609. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  610. if (!queue_buffer) {
  611. goto error;
  612. }
  613. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  614. if (!queue_storage ) {
  615. goto error;
  616. }
  617. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  618. if (!handle) {
  619. goto error;
  620. }
  621. btdm_queue_item_t item = {
  622. .handle = handle,
  623. .storage = queue_storage,
  624. .buffer = queue_buffer,
  625. };
  626. if (!btdm_queue_generic_register(&item)) {
  627. goto error;
  628. }
  629. return handle;
  630. error:
  631. if (handle) {
  632. vQueueDelete(handle);
  633. }
  634. if (queue_storage) {
  635. free(queue_storage);
  636. }
  637. if (queue_buffer) {
  638. free(queue_buffer);
  639. }
  640. return NULL;
  641. #else
  642. return (void *)xQueueCreate(queue_len, item_size);
  643. #endif
  644. }
  645. static void queue_delete_wrapper(void *queue)
  646. {
  647. #if !CONFIG_SPIRAM_USE_MALLOC
  648. vQueueDelete(queue);
  649. #else
  650. btdm_queue_item_t item = {
  651. .handle = queue,
  652. .storage = NULL,
  653. .buffer = NULL,
  654. };
  655. if (btdm_queue_generic_deregister(&item)) {
  656. vQueueDelete(item.handle);
  657. free(item.storage);
  658. free(item.buffer);
  659. }
  660. return;
  661. #endif
  662. }
  663. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  664. {
  665. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  666. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  667. } else {
  668. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  669. }
  670. }
  671. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  672. {
  673. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  674. }
  675. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  676. {
  677. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  678. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  679. } else {
  680. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  681. }
  682. }
  683. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  684. {
  685. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  686. }
  687. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  688. {
  689. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  690. }
  691. static void task_delete_wrapper(void *task_handle)
  692. {
  693. vTaskDelete(task_handle);
  694. }
  695. static bool IRAM_ATTR is_in_isr_wrapper(void)
  696. {
  697. return !xPortCanYield();
  698. }
  699. static void IRAM_ATTR cause_sw_intr(void *arg)
  700. {
  701. /* just convert void * to int, because the width is the same */
  702. uint32_t intr_no = (uint32_t)arg;
  703. XTHAL_SET_INTSET((1<<intr_no));
  704. }
  705. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  706. {
  707. esp_err_t err = ESP_OK;
  708. #if CONFIG_FREERTOS_UNICORE
  709. cause_sw_intr((void *)intr_no);
  710. #else /* CONFIG_FREERTOS_UNICORE */
  711. if (xPortGetCoreID() == core_id) {
  712. cause_sw_intr((void *)intr_no);
  713. } else {
  714. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  715. }
  716. #endif /* !CONFIG_FREERTOS_UNICORE */
  717. return err;
  718. }
  719. static void *malloc_internal_wrapper(size_t size)
  720. {
  721. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  722. }
  723. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  724. {
  725. return esp_read_mac(mac, ESP_MAC_BT);
  726. }
  727. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  728. {
  729. /* empty function */
  730. }
  731. static int IRAM_ATTR rand_wrapper(void)
  732. {
  733. return (int)esp_random();
  734. }
  735. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  736. {
  737. // The number of lp cycles should not lead to overflow. Thrs: 100s
  738. // clock measurement is conducted
  739. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  740. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  741. return (uint32_t)us;
  742. }
  743. /*
  744. * @brief Converts a duration in slots into a number of low power clock cycles.
  745. */
  746. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  747. {
  748. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  749. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  750. // clock measurement is conducted
  751. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  752. return (uint32_t)cycles;
  753. }
  754. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  755. {
  756. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  757. return false;
  758. }
  759. /* wake up in advance considering the delay in enabling PHY/RF */
  760. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  761. return true;
  762. }
  763. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  764. {
  765. #ifdef CONFIG_PM_ENABLE
  766. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  767. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  768. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  769. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  770. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  771. // and set the timer in advance
  772. uint32_t uncertainty = (us_to_sleep >> 11);
  773. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  774. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  775. }
  776. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  777. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  778. }
  779. #endif
  780. }
  781. static void btdm_sleep_enter_phase2_wrapper(void)
  782. {
  783. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  784. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  785. esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
  786. #ifdef CONFIG_PM_ENABLE
  787. if (s_pm_lock_acquired) {
  788. esp_pm_lock_release(s_pm_lock);
  789. s_pm_lock_acquired = false;
  790. }
  791. #endif
  792. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  793. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  794. // pause bluetooth baseband
  795. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  796. }
  797. }
  798. static void btdm_sleep_exit_phase3_wrapper(void)
  799. {
  800. #ifdef CONFIG_PM_ENABLE
  801. if (!s_pm_lock_acquired) {
  802. s_pm_lock_acquired = true;
  803. esp_pm_lock_acquire(s_pm_lock);
  804. }
  805. #endif
  806. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  807. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  808. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  809. btdm_check_and_init_bb();
  810. #ifdef CONFIG_PM_ENABLE
  811. esp_timer_stop(s_btdm_slp_tmr);
  812. #endif
  813. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  814. // resume bluetooth baseband
  815. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  816. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  817. }
  818. }
  819. #ifdef CONFIG_PM_ENABLE
  820. static void btdm_slp_tmr_customer_callback(void * arg)
  821. {
  822. (void)(arg);
  823. if (!s_pm_lock_acquired) {
  824. s_pm_lock_acquired = true;
  825. esp_pm_lock_acquire(s_pm_lock);
  826. }
  827. }
  828. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  829. {
  830. (void)(arg);
  831. btdm_dispatch_work_to_controller(btdm_slp_tmr_customer_callback, NULL, true);
  832. }
  833. #endif
  834. #define BTDM_ASYNC_WAKEUP_REQ_HCI 0
  835. #define BTDM_ASYNC_WAKEUP_REQ_COEX 1
  836. #define BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA 2
  837. #define BTDM_ASYNC_WAKEUP_REQMAX 3
  838. static void btdm_wakeup_request_callback(void * arg)
  839. {
  840. (void)(arg);
  841. #if CONFIG_PM_ENABLE
  842. if (!s_pm_lock_acquired) {
  843. s_pm_lock_acquired = true;
  844. esp_pm_lock_acquire(s_pm_lock);
  845. }
  846. esp_timer_stop(s_btdm_slp_tmr);
  847. #endif
  848. btdm_wakeup_request();
  849. semphr_give_wrapper(s_wakeup_req_sem);
  850. }
  851. static bool async_wakeup_request(int event)
  852. {
  853. bool do_wakeup_request = false;
  854. switch (event) {
  855. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  856. btdm_in_wakeup_requesting_set(true);
  857. // NO break
  858. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  859. if (!btdm_power_state_active()) {
  860. do_wakeup_request = true;
  861. btdm_dispatch_work_to_controller(btdm_wakeup_request_callback, NULL, true);
  862. semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
  863. }
  864. break;
  865. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  866. if (!btdm_power_state_active()) {
  867. do_wakeup_request = true;
  868. #if CONFIG_PM_ENABLE
  869. if (!s_pm_lock_acquired) {
  870. s_pm_lock_acquired = true;
  871. esp_pm_lock_acquire(s_pm_lock);
  872. }
  873. esp_timer_stop(s_btdm_slp_tmr);
  874. #endif
  875. btdm_wakeup_request();
  876. }
  877. break;
  878. default:
  879. return false;
  880. }
  881. return do_wakeup_request;
  882. }
  883. static void async_wakeup_request_end(int event)
  884. {
  885. bool request_lock = false;
  886. switch (event) {
  887. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  888. request_lock = true;
  889. break;
  890. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  891. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  892. request_lock = false;
  893. break;
  894. default:
  895. return;
  896. }
  897. if (request_lock) {
  898. btdm_in_wakeup_requesting_set(false);
  899. }
  900. return;
  901. }
  902. static bool coex_bt_wakeup_request(void)
  903. {
  904. return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX);
  905. }
  906. static void coex_bt_wakeup_request_end(void)
  907. {
  908. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX);
  909. return;
  910. }
  911. static int IRAM_ATTR coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration)
  912. {
  913. #if CONFIG_SW_COEXIST_ENABLE
  914. return coex_bt_request(event, latency, duration);
  915. #else
  916. return 0;
  917. #endif
  918. }
  919. static int IRAM_ATTR coex_bt_release_wrapper(uint32_t event)
  920. {
  921. #if CONFIG_SW_COEXIST_ENABLE
  922. return coex_bt_release(event);
  923. #else
  924. return 0;
  925. #endif
  926. }
  927. static int coex_register_bt_cb_wrapper(coex_func_cb_t cb)
  928. {
  929. #if CONFIG_SW_COEXIST_ENABLE
  930. return coex_register_bt_cb(cb);
  931. #else
  932. return 0;
  933. #endif
  934. }
  935. static uint32_t IRAM_ATTR coex_bb_reset_lock_wrapper(void)
  936. {
  937. #if CONFIG_SW_COEXIST_ENABLE
  938. return coex_bb_reset_lock();
  939. #else
  940. return 0;
  941. #endif
  942. }
  943. static void IRAM_ATTR coex_bb_reset_unlock_wrapper(uint32_t restore)
  944. {
  945. #if CONFIG_SW_COEXIST_ENABLE
  946. coex_bb_reset_unlock(restore);
  947. #endif
  948. }
  949. static int coex_schm_register_btdm_callback_wrapper(void *callback)
  950. {
  951. #if CONFIG_SW_COEXIST_ENABLE
  952. return coex_schm_register_btdm_callback(callback);
  953. #else
  954. return 0;
  955. #endif
  956. }
  957. static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status)
  958. {
  959. #if CONFIG_SW_COEXIST_ENABLE
  960. coex_schm_status_bit_clear(type, status);
  961. #endif
  962. }
  963. static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status)
  964. {
  965. #if CONFIG_SW_COEXIST_ENABLE
  966. coex_schm_status_bit_set(type, status);
  967. #endif
  968. }
  969. static uint32_t coex_schm_interval_get_wrapper(void)
  970. {
  971. #if CONFIG_SW_COEXIST_ENABLE
  972. return coex_schm_interval_get();
  973. #else
  974. return 0;
  975. #endif
  976. }
  977. static uint8_t coex_schm_curr_period_get_wrapper(void)
  978. {
  979. #if CONFIG_SW_COEXIST_ENABLE
  980. return coex_schm_curr_period_get();
  981. #else
  982. return 1;
  983. #endif
  984. }
  985. static void * coex_schm_curr_phase_get_wrapper(void)
  986. {
  987. #if CONFIG_SW_COEXIST_ENABLE
  988. return coex_schm_curr_phase_get();
  989. #else
  990. return NULL;
  991. #endif
  992. }
  993. static int coex_wifi_channel_get_wrapper(uint8_t *primary, uint8_t *secondary)
  994. {
  995. #if CONFIG_SW_COEXIST_ENABLE
  996. return coex_wifi_channel_get(primary, secondary);
  997. #else
  998. return -1;
  999. #endif
  1000. }
  1001. static int coex_register_wifi_channel_change_callback_wrapper(void *cb)
  1002. {
  1003. #if CONFIG_SW_COEXIST_ENABLE
  1004. return coex_register_wifi_channel_change_callback(cb);
  1005. #else
  1006. return -1;
  1007. #endif
  1008. }
  1009. bool esp_vhci_host_check_send_available(void)
  1010. {
  1011. return API_vhci_host_check_send_available();
  1012. }
  1013. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  1014. {
  1015. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI);
  1016. API_vhci_host_send_packet(data, len);
  1017. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI);
  1018. }
  1019. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  1020. {
  1021. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  1022. }
  1023. static uint32_t btdm_config_mask_load(void)
  1024. {
  1025. uint32_t mask = 0x0;
  1026. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  1027. mask |= BTDM_CFG_HCI_UART;
  1028. #endif
  1029. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  1030. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  1031. #endif
  1032. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  1033. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  1034. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  1035. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  1036. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  1037. return mask;
  1038. }
  1039. static void btdm_controller_mem_init(void)
  1040. {
  1041. /* initialise .data section */
  1042. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  1043. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  1044. //initial em, .bss section
  1045. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  1046. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  1047. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  1048. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  1049. }
  1050. }
  1051. }
  1052. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  1053. {
  1054. int ret = heap_caps_add_region(start, end);
  1055. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  1056. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  1057. * we replace it by ESP_OK
  1058. */
  1059. if (ret == ESP_ERR_INVALID_SIZE) {
  1060. return ESP_OK;
  1061. }
  1062. return ret;
  1063. }
  1064. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  1065. {
  1066. bool update = true;
  1067. intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
  1068. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1069. return ESP_ERR_INVALID_STATE;
  1070. }
  1071. //already released
  1072. if (!(mode & btdm_dram_available_region[0].mode)) {
  1073. return ESP_ERR_INVALID_STATE;
  1074. }
  1075. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  1076. //skip the share mode, idle mode and other mode
  1077. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  1078. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  1079. //clear the bit of the mode which will be released
  1080. btdm_dram_available_region[i].mode &= ~mode;
  1081. continue;
  1082. } else {
  1083. //clear the bit of the mode which will be released
  1084. btdm_dram_available_region[i].mode &= ~mode;
  1085. }
  1086. if (update) {
  1087. mem_start = btdm_dram_available_region[i].start;
  1088. mem_end = btdm_dram_available_region[i].end;
  1089. update = false;
  1090. }
  1091. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  1092. mem_end = btdm_dram_available_region[i].end;
  1093. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  1094. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  1095. && mem_end == btdm_dram_available_region[i+1].start) {
  1096. continue;
  1097. } else {
  1098. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  1099. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1100. update = true;
  1101. }
  1102. } else {
  1103. mem_end = btdm_dram_available_region[i].end;
  1104. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  1105. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1106. update = true;
  1107. }
  1108. }
  1109. if (mode == ESP_BT_MODE_BTDM) {
  1110. mem_start = (intptr_t)&_btdm_bss_start;
  1111. mem_end = (intptr_t)&_btdm_bss_end;
  1112. if (mem_start != mem_end) {
  1113. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1114. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1115. }
  1116. mem_start = (intptr_t)&_btdm_data_start;
  1117. mem_end = (intptr_t)&_btdm_data_end;
  1118. if (mem_start != mem_end) {
  1119. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1120. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1121. }
  1122. }
  1123. return ESP_OK;
  1124. }
  1125. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  1126. {
  1127. int ret;
  1128. intptr_t mem_start, mem_end;
  1129. ret = esp_bt_controller_mem_release(mode);
  1130. if (ret != ESP_OK) {
  1131. return ret;
  1132. }
  1133. if (mode == ESP_BT_MODE_BTDM) {
  1134. mem_start = (intptr_t)&_bt_bss_start;
  1135. mem_end = (intptr_t)&_bt_bss_end;
  1136. if (mem_start != mem_end) {
  1137. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1138. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1139. }
  1140. mem_start = (intptr_t)&_bt_data_start;
  1141. mem_end = (intptr_t)&_bt_data_end;
  1142. if (mem_start != mem_end) {
  1143. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1144. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1145. }
  1146. mem_start = (intptr_t)&_nimble_bss_start;
  1147. mem_end = (intptr_t)&_nimble_bss_end;
  1148. if (mem_start != mem_end) {
  1149. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1150. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1151. }
  1152. mem_start = (intptr_t)&_nimble_data_start;
  1153. mem_end = (intptr_t)&_nimble_data_end;
  1154. if (mem_start != mem_end) {
  1155. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1156. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1157. }
  1158. }
  1159. return ESP_OK;
  1160. }
  1161. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  1162. {
  1163. esp_err_t err;
  1164. uint32_t btdm_cfg_mask = 0;
  1165. //if all the bt available memory was already released, cannot initialize bluetooth controller
  1166. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  1167. return ESP_ERR_INVALID_STATE;
  1168. }
  1169. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  1170. if (osi_funcs_p == NULL) {
  1171. return ESP_ERR_NO_MEM;
  1172. }
  1173. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  1174. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  1175. return ESP_ERR_INVALID_ARG;
  1176. }
  1177. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1178. return ESP_ERR_INVALID_STATE;
  1179. }
  1180. if (cfg == NULL) {
  1181. return ESP_ERR_INVALID_ARG;
  1182. }
  1183. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  1184. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  1185. return ESP_ERR_INVALID_ARG;
  1186. }
  1187. //overwrite some parameters
  1188. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  1189. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  1190. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  1191. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  1192. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  1193. return ESP_ERR_INVALID_ARG;
  1194. }
  1195. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  1196. #if CONFIG_SPIRAM_USE_MALLOC
  1197. btdm_queue_table_mux = xSemaphoreCreateMutex();
  1198. if (btdm_queue_table_mux == NULL) {
  1199. return ESP_ERR_NO_MEM;
  1200. }
  1201. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1202. #endif
  1203. s_wakeup_req_sem = semphr_create_wrapper(1, 0);
  1204. if (s_wakeup_req_sem == NULL) {
  1205. err = ESP_ERR_NO_MEM;
  1206. goto error;
  1207. }
  1208. btdm_controller_mem_init();
  1209. periph_module_enable(PERIPH_BT_MODULE);
  1210. #ifdef CONFIG_PM_ENABLE
  1211. s_btdm_allow_light_sleep = false;
  1212. #endif
  1213. // set default sleep clock cycle and its fractional bits
  1214. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1215. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1216. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  1217. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1218. #if CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
  1219. // check whether or not EXT_CRYS is working
  1220. if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) {
  1221. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // set default value
  1222. #ifdef CONFIG_PM_ENABLE
  1223. s_btdm_allow_light_sleep = true;
  1224. #endif
  1225. } else {
  1226. ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
  1227. "light sleep mode will not be able to apply when bluetooth is enabled");
  1228. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1229. }
  1230. #else
  1231. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1232. #endif
  1233. bool select_src_ret, set_div_ret;
  1234. if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
  1235. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1236. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  1237. assert(select_src_ret && set_div_ret);
  1238. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1239. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1240. } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
  1241. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1242. set_div_ret = btdm_lpclk_set_div(0);
  1243. assert(select_src_ret && set_div_ret);
  1244. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1245. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1246. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1247. assert(btdm_lpcycle_us != 0);
  1248. }
  1249. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1250. #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
  1251. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1252. #else
  1253. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1254. #endif
  1255. #ifdef CONFIG_PM_ENABLE
  1256. if (!s_btdm_allow_light_sleep) {
  1257. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  1258. goto error;
  1259. }
  1260. }
  1261. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1262. goto error;
  1263. }
  1264. esp_timer_create_args_t create_args = {
  1265. .callback = btdm_slp_tmr_callback,
  1266. .arg = NULL,
  1267. .name = "btSlp"
  1268. };
  1269. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1270. goto error;
  1271. }
  1272. s_pm_lock_acquired = true;
  1273. #endif
  1274. btdm_cfg_mask = btdm_config_mask_load();
  1275. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1276. err = ESP_ERR_NO_MEM;
  1277. goto error;
  1278. }
  1279. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1280. return ESP_OK;
  1281. error:
  1282. #ifdef CONFIG_PM_ENABLE
  1283. if (!s_btdm_allow_light_sleep) {
  1284. if (s_light_sleep_pm_lock != NULL) {
  1285. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1286. s_light_sleep_pm_lock = NULL;
  1287. }
  1288. }
  1289. if (s_pm_lock != NULL) {
  1290. esp_pm_lock_delete(s_pm_lock);
  1291. s_pm_lock = NULL;
  1292. }
  1293. if (s_btdm_slp_tmr != NULL) {
  1294. esp_timer_delete(s_btdm_slp_tmr);
  1295. s_btdm_slp_tmr = NULL;
  1296. }
  1297. #endif
  1298. if (s_wakeup_req_sem) {
  1299. semphr_delete_wrapper(s_wakeup_req_sem);
  1300. s_wakeup_req_sem = NULL;
  1301. }
  1302. return err;
  1303. }
  1304. esp_err_t esp_bt_controller_deinit(void)
  1305. {
  1306. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1307. return ESP_ERR_INVALID_STATE;
  1308. }
  1309. btdm_controller_deinit();
  1310. periph_module_disable(PERIPH_BT_MODULE);
  1311. #ifdef CONFIG_PM_ENABLE
  1312. if (!s_btdm_allow_light_sleep) {
  1313. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1314. s_light_sleep_pm_lock = NULL;
  1315. }
  1316. esp_timer_stop(s_btdm_slp_tmr);
  1317. esp_timer_delete(s_btdm_slp_tmr);
  1318. s_btdm_slp_tmr = NULL;
  1319. s_pm_lock_acquired = false;
  1320. #endif
  1321. semphr_delete_wrapper(s_wakeup_req_sem);
  1322. s_wakeup_req_sem = NULL;
  1323. #if CONFIG_SPIRAM_USE_MALLOC
  1324. vSemaphoreDelete(btdm_queue_table_mux);
  1325. btdm_queue_table_mux = NULL;
  1326. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1327. #endif
  1328. free(osi_funcs_p);
  1329. osi_funcs_p = NULL;
  1330. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1331. btdm_lpcycle_us = 0;
  1332. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1333. return ESP_OK;
  1334. }
  1335. static void bt_shutdown(void)
  1336. {
  1337. esp_err_t ret = ESP_OK;
  1338. ESP_LOGD(BTDM_LOG_TAG, "stop Bluetooth");
  1339. ret = esp_bt_controller_disable();
  1340. if (ESP_OK != ret) {
  1341. ESP_LOGW(BTDM_LOG_TAG, "controller disable ret=%d", ret);
  1342. }
  1343. return;
  1344. }
  1345. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1346. {
  1347. int ret;
  1348. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1349. return ESP_ERR_INVALID_STATE;
  1350. }
  1351. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1352. if (mode != btdm_controller_get_mode()) {
  1353. return ESP_ERR_INVALID_ARG;
  1354. }
  1355. #ifdef CONFIG_PM_ENABLE
  1356. if (!s_btdm_allow_light_sleep) {
  1357. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1358. }
  1359. esp_pm_lock_acquire(s_pm_lock);
  1360. #endif
  1361. esp_phy_load_cal_and_init(PHY_BT_MODULE);
  1362. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
  1363. //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
  1364. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
  1365. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1366. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1367. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  1368. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  1369. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1370. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1371. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1372. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1373. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1374. }
  1375. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1376. btdm_controller_enable_sleep(true);
  1377. }
  1378. // inititalize bluetooth baseband
  1379. btdm_check_and_init_bb();
  1380. ret = btdm_controller_enable(mode);
  1381. if (ret) {
  1382. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1383. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1384. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1385. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1386. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1387. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1388. }
  1389. esp_phy_rf_deinit(PHY_BT_MODULE);
  1390. #ifdef CONFIG_PM_ENABLE
  1391. if (!s_btdm_allow_light_sleep) {
  1392. esp_pm_lock_release(s_light_sleep_pm_lock);
  1393. }
  1394. esp_pm_lock_release(s_pm_lock);
  1395. #endif
  1396. return ESP_ERR_INVALID_STATE;
  1397. }
  1398. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1399. ret = esp_register_shutdown_handler(bt_shutdown);
  1400. if (ret != ESP_OK) {
  1401. ESP_LOGW(BTDM_LOG_TAG, "Register shutdown handler failed, ret = 0x%x", ret);
  1402. }
  1403. return ESP_OK;
  1404. }
  1405. esp_err_t esp_bt_controller_disable(void)
  1406. {
  1407. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1408. return ESP_ERR_INVALID_STATE;
  1409. }
  1410. // disable modem sleep and wake up from sleep mode
  1411. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1412. btdm_controller_enable_sleep(false);
  1413. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA);
  1414. while (!btdm_power_state_active()) {
  1415. ets_delay_us(1000);
  1416. }
  1417. }
  1418. btdm_controller_disable();
  1419. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1420. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1421. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1422. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1423. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1424. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1425. }
  1426. esp_phy_rf_deinit(PHY_BT_MODULE);
  1427. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1428. esp_unregister_shutdown_handler(bt_shutdown);
  1429. #ifdef CONFIG_PM_ENABLE
  1430. if (!s_btdm_allow_light_sleep) {
  1431. esp_pm_lock_release(s_light_sleep_pm_lock);
  1432. }
  1433. esp_pm_lock_release(s_pm_lock);
  1434. #endif
  1435. return ESP_OK;
  1436. }
  1437. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1438. {
  1439. return btdm_controller_status;
  1440. }
  1441. /* extra functions */
  1442. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1443. {
  1444. if (ble_txpwr_set(power_type, power_level) != 0) {
  1445. return ESP_ERR_INVALID_ARG;
  1446. }
  1447. return ESP_OK;
  1448. }
  1449. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1450. {
  1451. return (esp_power_level_t)ble_txpwr_get(power_type);
  1452. }
  1453. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1454. {
  1455. esp_err_t err;
  1456. int ret;
  1457. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1458. if (ret == 0) {
  1459. err = ESP_OK;
  1460. } else if (ret == -1) {
  1461. err = ESP_ERR_INVALID_ARG;
  1462. } else {
  1463. err = ESP_ERR_INVALID_STATE;
  1464. }
  1465. return err;
  1466. }
  1467. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1468. {
  1469. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1470. return ESP_ERR_INVALID_ARG;
  1471. }
  1472. return ESP_OK;
  1473. }
  1474. esp_err_t esp_bt_sleep_enable (void)
  1475. {
  1476. esp_err_t status;
  1477. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1478. return ESP_ERR_INVALID_STATE;
  1479. }
  1480. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1481. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1482. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1483. btdm_controller_enable_sleep (true);
  1484. status = ESP_OK;
  1485. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1486. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1487. btdm_controller_enable_sleep (true);
  1488. status = ESP_OK;
  1489. } else {
  1490. status = ESP_ERR_NOT_SUPPORTED;
  1491. }
  1492. return status;
  1493. }
  1494. esp_err_t esp_bt_sleep_disable (void)
  1495. {
  1496. esp_err_t status;
  1497. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1498. return ESP_ERR_INVALID_STATE;
  1499. }
  1500. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1501. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1502. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1503. btdm_controller_enable_sleep (false);
  1504. status = ESP_OK;
  1505. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1506. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1507. btdm_controller_enable_sleep (false);
  1508. status = ESP_OK;
  1509. } else {
  1510. status = ESP_ERR_NOT_SUPPORTED;
  1511. }
  1512. return status;
  1513. }
  1514. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1515. {
  1516. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1517. return ESP_ERR_INVALID_STATE;
  1518. }
  1519. bredr_sco_datapath_set(data_path);
  1520. return ESP_OK;
  1521. }
  1522. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1523. {
  1524. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1525. return ESP_ERR_INVALID_STATE;
  1526. }
  1527. btdm_controller_scan_duplicate_list_clear();
  1528. return ESP_OK;
  1529. }
  1530. #endif /* CONFIG_BT_ENABLED */