uart.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "esp32/clk.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/uart_periph.h"
  27. #include "driver/uart.h"
  28. #include "driver/gpio.h"
  29. #include "driver/uart_select.h"
  30. #define XOFF (char)0x13
  31. #define XON (char)0x11
  32. static const char* UART_TAG = "uart";
  33. #define UART_CHECK(a, str, ret_val) \
  34. if (!(a)) { \
  35. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  36. return (ret_val); \
  37. }
  38. #define UART_EMPTY_THRESH_DEFAULT (10)
  39. #define UART_FULL_THRESH_DEFAULT (120)
  40. #define UART_TOUT_THRESH_DEFAULT (10)
  41. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  42. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  43. #define UART_TX_IDLE_NUM_DEFAULT (0)
  44. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  45. #define UART_MIN_WAKEUP_THRESH (2)
  46. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  47. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  48. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  49. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  50. // Check actual UART mode set
  51. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  52. typedef struct {
  53. uart_event_type_t type; /*!< UART TX data type */
  54. struct {
  55. int brk_len;
  56. size_t size;
  57. uint8_t data[0];
  58. } tx_data;
  59. } uart_tx_data_t;
  60. typedef struct {
  61. int wr;
  62. int rd;
  63. int len;
  64. int* data;
  65. } uart_pat_rb_t;
  66. typedef struct {
  67. uart_port_t uart_num; /*!< UART port number*/
  68. int queue_size; /*!< UART event queue size*/
  69. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  70. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  71. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  72. bool coll_det_flg; /*!< UART collision detection flag */
  73. //rx parameters
  74. int rx_buffered_len; /*!< UART cached data length */
  75. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  76. int rx_buf_size; /*!< RX ring buffer size */
  77. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  78. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  79. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  80. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  81. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  82. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  83. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  84. uart_pat_rb_t rx_pattern_pos;
  85. //tx parameters
  86. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  87. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  88. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  89. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  90. int tx_buf_size; /*!< TX ring buffer size */
  91. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  92. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  93. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  94. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  95. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  96. uint32_t tx_len_cur;
  97. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  98. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  99. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  100. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  101. } uart_obj_t;
  102. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  103. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  104. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  105. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  106. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  107. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  108. {
  109. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  110. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  111. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  112. UART[uart_num]->conf0.bit_num = data_bit;
  113. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  114. return ESP_OK;
  115. }
  116. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  117. {
  118. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  119. *(data_bit) = UART[uart_num]->conf0.bit_num;
  120. return ESP_OK;
  121. }
  122. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  123. {
  124. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  125. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  126. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  127. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  128. if (stop_bit == UART_STOP_BITS_2) {
  129. stop_bit = UART_STOP_BITS_1;
  130. UART[uart_num]->rs485_conf.dl1_en = 1;
  131. } else {
  132. UART[uart_num]->rs485_conf.dl1_en = 0;
  133. }
  134. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  135. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  136. return ESP_OK;
  137. }
  138. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  139. {
  140. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  141. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  142. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  143. (*stop_bit) = UART_STOP_BITS_2;
  144. } else {
  145. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  146. }
  147. return ESP_OK;
  148. }
  149. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  150. {
  151. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  152. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  153. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  154. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  155. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  156. return ESP_OK;
  157. }
  158. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  159. {
  160. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  161. int val = UART[uart_num]->conf0.val;
  162. if(val & UART_PARITY_EN_M) {
  163. if(val & UART_PARITY_M) {
  164. (*parity_mode) = UART_PARITY_ODD;
  165. } else {
  166. (*parity_mode) = UART_PARITY_EVEN;
  167. }
  168. } else {
  169. (*parity_mode) = UART_PARITY_DISABLE;
  170. }
  171. return ESP_OK;
  172. }
  173. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  174. {
  175. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  176. esp_err_t ret = ESP_OK;
  177. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  178. int uart_clk_freq;
  179. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  180. /* this UART has been configured to use REF_TICK */
  181. uart_clk_freq = REF_CLK_FREQ;
  182. } else {
  183. uart_clk_freq = esp_clk_apb_freq();
  184. }
  185. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  186. if (clk_div < 16) {
  187. /* baud rate is too high for this clock frequency */
  188. ret = ESP_ERR_INVALID_ARG;
  189. } else {
  190. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  191. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  192. }
  193. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  194. return ret;
  195. }
  196. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  197. {
  198. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  199. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  200. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  201. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  202. uint32_t uart_clk_freq = esp_clk_apb_freq();
  203. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  204. uart_clk_freq = REF_CLK_FREQ;
  205. }
  206. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  207. return ESP_OK;
  208. }
  209. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  210. {
  211. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  212. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  213. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  214. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  215. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  216. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  217. return ESP_OK;
  218. }
  219. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  220. {
  221. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  222. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  223. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  224. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  225. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  226. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  227. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  228. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  229. UART[uart_num]->swfc_conf.xon_char = XON;
  230. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  231. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  232. return ESP_OK;
  233. }
  234. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  235. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  236. {
  237. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  238. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  239. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  240. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  241. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  242. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  243. UART[uart_num]->conf1.rx_flow_en = 1;
  244. } else {
  245. UART[uart_num]->conf1.rx_flow_en = 0;
  246. }
  247. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  248. UART[uart_num]->conf0.tx_flow_en = 1;
  249. } else {
  250. UART[uart_num]->conf0.tx_flow_en = 0;
  251. }
  252. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  253. return ESP_OK;
  254. }
  255. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  256. {
  257. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  258. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  259. if(UART[uart_num]->conf1.rx_flow_en) {
  260. val |= UART_HW_FLOWCTRL_RTS;
  261. }
  262. if(UART[uart_num]->conf0.tx_flow_en) {
  263. val |= UART_HW_FLOWCTRL_CTS;
  264. }
  265. (*flow_ctrl) = val;
  266. return ESP_OK;
  267. }
  268. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  269. {
  270. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  271. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  272. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  273. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  274. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  275. READ_PERI_REG(UART_FIFO_REG(uart_num));
  276. }
  277. return ESP_OK;
  278. }
  279. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  280. {
  281. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  282. //intr_clr register is write-only
  283. UART[uart_num]->int_clr.val = clr_mask;
  284. return ESP_OK;
  285. }
  286. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  287. {
  288. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  289. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  290. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  291. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  292. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  293. return ESP_OK;
  294. }
  295. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  296. {
  297. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  298. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  299. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  300. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  301. return ESP_OK;
  302. }
  303. static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  304. {
  305. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  306. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  307. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  308. }
  309. static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  310. {
  311. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  312. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  313. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  314. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  315. }
  316. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  317. {
  318. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  319. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  320. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  321. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  322. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  323. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  324. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  325. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  326. free(pdata);
  327. }
  328. return ESP_OK;
  329. }
  330. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  331. {
  332. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  333. esp_err_t ret = ESP_OK;
  334. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  335. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  336. int next = p_pos->wr + 1;
  337. if (next >= p_pos->len) {
  338. next = 0;
  339. }
  340. if (next == p_pos->rd) {
  341. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  342. ret = ESP_FAIL;
  343. } else {
  344. p_pos->data[p_pos->wr] = pos;
  345. p_pos->wr = next;
  346. ret = ESP_OK;
  347. }
  348. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  349. return ret;
  350. }
  351. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  352. {
  353. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  354. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  355. return ESP_ERR_INVALID_STATE;
  356. } else {
  357. esp_err_t ret = ESP_OK;
  358. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  359. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  360. if (p_pos->rd == p_pos->wr) {
  361. ret = ESP_FAIL;
  362. } else {
  363. p_pos->rd++;
  364. }
  365. if (p_pos->rd >= p_pos->len) {
  366. p_pos->rd = 0;
  367. }
  368. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  369. return ret;
  370. }
  371. }
  372. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  373. {
  374. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  375. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  376. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  377. int rd = p_pos->rd;
  378. while(rd != p_pos->wr) {
  379. p_pos->data[rd] -= diff_len;
  380. int rd_rec = rd;
  381. rd ++;
  382. if (rd >= p_pos->len) {
  383. rd = 0;
  384. }
  385. if (p_pos->data[rd_rec] < 0) {
  386. p_pos->rd = rd;
  387. }
  388. }
  389. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  390. return ESP_OK;
  391. }
  392. int uart_pattern_pop_pos(uart_port_t uart_num)
  393. {
  394. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  395. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  396. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  397. int pos = -1;
  398. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  399. pos = pat_pos->data[pat_pos->rd];
  400. uart_pattern_dequeue(uart_num);
  401. }
  402. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  403. return pos;
  404. }
  405. int uart_pattern_get_pos(uart_port_t uart_num)
  406. {
  407. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  408. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  409. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  410. int pos = -1;
  411. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  412. pos = pat_pos->data[pat_pos->rd];
  413. }
  414. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  415. return pos;
  416. }
  417. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  418. {
  419. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  420. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  421. int* pdata = (int*) malloc(queue_length * sizeof(int));
  422. if(pdata == NULL) {
  423. return ESP_ERR_NO_MEM;
  424. }
  425. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  426. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  427. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  428. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  429. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  430. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  431. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  432. free(ptmp);
  433. return ESP_OK;
  434. }
  435. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  436. {
  437. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  438. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  439. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  440. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  441. UART[uart_num]->at_cmd_char.data = pattern_chr;
  442. UART[uart_num]->at_cmd_char.char_num = chr_num;
  443. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  444. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  445. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  446. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  447. }
  448. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  449. {
  450. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  451. }
  452. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  453. {
  454. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  455. }
  456. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  457. {
  458. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  459. }
  460. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  461. {
  462. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  463. }
  464. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  465. {
  466. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  467. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  468. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  469. UART[uart_num]->int_clr.txfifo_empty = 1;
  470. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  471. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  472. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  473. return ESP_OK;
  474. }
  475. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  476. {
  477. int ret;
  478. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  479. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  480. switch(uart_num) {
  481. case UART_NUM_1:
  482. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  483. break;
  484. case UART_NUM_2:
  485. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  486. break;
  487. case UART_NUM_0:
  488. default:
  489. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  490. break;
  491. }
  492. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  493. return ret;
  494. }
  495. esp_err_t uart_isr_free(uart_port_t uart_num)
  496. {
  497. esp_err_t ret;
  498. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  499. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  500. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  501. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  502. p_uart_obj[uart_num]->intr_handle=NULL;
  503. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  504. return ret;
  505. }
  506. //internal signal can be output to multiple GPIO pads
  507. //only one GPIO pad can connect with input signal
  508. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  509. {
  510. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  511. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  512. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  513. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  514. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  515. int tx_sig, rx_sig, rts_sig, cts_sig;
  516. switch(uart_num) {
  517. case UART_NUM_0:
  518. tx_sig = U0TXD_OUT_IDX;
  519. rx_sig = U0RXD_IN_IDX;
  520. rts_sig = U0RTS_OUT_IDX;
  521. cts_sig = U0CTS_IN_IDX;
  522. break;
  523. case UART_NUM_1:
  524. tx_sig = U1TXD_OUT_IDX;
  525. rx_sig = U1RXD_IN_IDX;
  526. rts_sig = U1RTS_OUT_IDX;
  527. cts_sig = U1CTS_IN_IDX;
  528. break;
  529. case UART_NUM_2:
  530. tx_sig = U2TXD_OUT_IDX;
  531. rx_sig = U2RXD_IN_IDX;
  532. rts_sig = U2RTS_OUT_IDX;
  533. cts_sig = U2CTS_IN_IDX;
  534. break;
  535. case UART_NUM_MAX:
  536. default:
  537. tx_sig = U0TXD_OUT_IDX;
  538. rx_sig = U0RXD_IN_IDX;
  539. rts_sig = U0RTS_OUT_IDX;
  540. cts_sig = U0CTS_IN_IDX;
  541. break;
  542. }
  543. if(tx_io_num >= 0) {
  544. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  545. gpio_set_level(tx_io_num, 1);
  546. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  547. }
  548. if(rx_io_num >= 0) {
  549. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  550. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  551. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  552. gpio_matrix_in(rx_io_num, rx_sig, 0);
  553. }
  554. if(rts_io_num >= 0) {
  555. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  556. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  557. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  558. }
  559. if(cts_io_num >= 0) {
  560. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  561. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  562. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  563. gpio_matrix_in(cts_io_num, cts_sig, 0);
  564. }
  565. return ESP_OK;
  566. }
  567. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  568. {
  569. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  570. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  571. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  572. UART[uart_num]->conf0.sw_rts = level & 0x1;
  573. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  574. return ESP_OK;
  575. }
  576. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  577. {
  578. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  579. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  580. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  581. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  582. return ESP_OK;
  583. }
  584. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  585. {
  586. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  587. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  588. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  589. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  590. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  591. return ESP_OK;
  592. }
  593. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  594. {
  595. esp_err_t r;
  596. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  597. UART_CHECK((uart_config), "param null", ESP_FAIL);
  598. if(uart_num == UART_NUM_0) {
  599. periph_module_enable(PERIPH_UART0_MODULE);
  600. } else if(uart_num == UART_NUM_1) {
  601. periph_module_enable(PERIPH_UART1_MODULE);
  602. } else if(uart_num == UART_NUM_2) {
  603. periph_module_enable(PERIPH_UART2_MODULE);
  604. }
  605. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  606. if (r != ESP_OK) return r;
  607. UART[uart_num]->conf0.val =
  608. (uart_config->parity << UART_PARITY_S)
  609. | (uart_config->data_bits << UART_BIT_NUM_S)
  610. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  611. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  612. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  613. if (r != ESP_OK) return r;
  614. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  615. if (r != ESP_OK) return r;
  616. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  617. //A hardware reset does not reset the fifo,
  618. //so we need to reset the fifo manually.
  619. uart_reset_rx_fifo(uart_num);
  620. return r;
  621. }
  622. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  623. {
  624. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  625. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  626. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  627. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  628. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  629. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  630. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  631. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  632. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  633. } else {
  634. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  635. }
  636. UART[uart_num]->conf1.rx_tout_en = 1;
  637. } else {
  638. UART[uart_num]->conf1.rx_tout_en = 0;
  639. }
  640. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  641. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  642. }
  643. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  644. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  645. }
  646. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  647. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  648. return ESP_OK;
  649. }
  650. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  651. {
  652. int cnt = 0;
  653. int len = length;
  654. while (len >= 0) {
  655. if (buf[len] == pat_chr) {
  656. cnt++;
  657. } else {
  658. cnt = 0;
  659. }
  660. if (cnt >= pat_num) {
  661. break;
  662. }
  663. len --;
  664. }
  665. return len;
  666. }
  667. //internal isr handler for default driver code.
  668. static void uart_rx_intr_handler_default(void *param)
  669. {
  670. uart_obj_t *p_uart = (uart_obj_t*) param;
  671. uint8_t uart_num = p_uart->uart_num;
  672. uart_dev_t* uart_reg = UART[uart_num];
  673. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  674. uint8_t buf_idx = 0;
  675. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  676. uart_event_t uart_event;
  677. portBASE_TYPE HPTaskAwoken = 0;
  678. static uint8_t pat_flg = 0;
  679. while(uart_intr_status != 0x0) {
  680. buf_idx = 0;
  681. uart_event.type = UART_EVENT_MAX;
  682. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  683. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  684. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  685. if(p_uart->tx_waiting_brk) {
  686. continue;
  687. }
  688. //TX semaphore will only be used when tx_buf_size is zero.
  689. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  690. p_uart->tx_waiting_fifo = false;
  691. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  692. if(HPTaskAwoken == pdTRUE) {
  693. portYIELD_FROM_ISR();
  694. }
  695. } else {
  696. //We don't use TX ring buffer, because the size is zero.
  697. if(p_uart->tx_buf_size == 0) {
  698. continue;
  699. }
  700. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  701. bool en_tx_flg = false;
  702. //We need to put a loop here, in case all the buffer items are very short.
  703. //That would cause a watch_dog reset because empty interrupt happens so often.
  704. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  705. while(tx_fifo_rem) {
  706. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  707. size_t size;
  708. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  709. if(p_uart->tx_head) {
  710. //The first item is the data description
  711. //Get the first item to get the data information
  712. if(p_uart->tx_len_tot == 0) {
  713. p_uart->tx_ptr = NULL;
  714. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  715. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  716. p_uart->tx_brk_flg = 1;
  717. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  718. }
  719. //We have saved the data description from the 1st item, return buffer.
  720. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  721. if(HPTaskAwoken == pdTRUE) {
  722. portYIELD_FROM_ISR();
  723. }
  724. }else if(p_uart->tx_ptr == NULL) {
  725. //Update the TX item pointer, we will need this to return item to buffer.
  726. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  727. en_tx_flg = true;
  728. p_uart->tx_len_cur = size;
  729. }
  730. }
  731. else {
  732. //Can not get data from ring buffer, return;
  733. break;
  734. }
  735. }
  736. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  737. //To fill the TX FIFO.
  738. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  739. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  740. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  741. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  742. uart_reg->conf0.sw_rts = 0;
  743. uart_reg->int_ena.tx_done = 1;
  744. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  745. }
  746. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  747. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  748. *(p_uart->tx_ptr++) & 0xff);
  749. }
  750. p_uart->tx_len_tot -= send_len;
  751. p_uart->tx_len_cur -= send_len;
  752. tx_fifo_rem -= send_len;
  753. if (p_uart->tx_len_cur == 0) {
  754. //Return item to ring buffer.
  755. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  756. if(HPTaskAwoken == pdTRUE) {
  757. portYIELD_FROM_ISR();
  758. }
  759. p_uart->tx_head = NULL;
  760. p_uart->tx_ptr = NULL;
  761. //Sending item done, now we need to send break if there is a record.
  762. //Set TX break signal after FIFO is empty
  763. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  764. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  765. uart_reg->int_ena.tx_brk_done = 0;
  766. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  767. uart_reg->conf0.txd_brk = 1;
  768. uart_reg->int_clr.tx_brk_done = 1;
  769. uart_reg->int_ena.tx_brk_done = 1;
  770. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  771. p_uart->tx_waiting_brk = 1;
  772. //do not enable TX empty interrupt
  773. en_tx_flg = false;
  774. } else {
  775. //enable TX empty interrupt
  776. en_tx_flg = true;
  777. }
  778. } else {
  779. //enable TX empty interrupt
  780. en_tx_flg = true;
  781. }
  782. }
  783. }
  784. if (en_tx_flg) {
  785. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  786. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  787. }
  788. }
  789. }
  790. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  791. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  792. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  793. ) {
  794. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  795. if(pat_flg == 1) {
  796. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  797. pat_flg = 0;
  798. }
  799. if (p_uart->rx_buffer_full_flg == false) {
  800. //We have to read out all data in RX FIFO to clear the interrupt signal
  801. while (buf_idx < rx_fifo_len) {
  802. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  803. }
  804. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  805. int pat_num = uart_reg->at_cmd_char.char_num;
  806. int pat_idx = -1;
  807. //Get the buffer from the FIFO
  808. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  809. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  810. uart_event.type = UART_PATTERN_DET;
  811. uart_event.size = rx_fifo_len;
  812. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  813. } else {
  814. //After Copying the Data From FIFO ,Clear intr_status
  815. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  816. uart_event.type = UART_DATA;
  817. uart_event.size = rx_fifo_len;
  818. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  819. if (p_uart->uart_select_notif_callback) {
  820. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  821. }
  822. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  823. }
  824. p_uart->rx_stash_len = rx_fifo_len;
  825. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  826. //Mainly for applications that uses flow control or small ring buffer.
  827. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  828. p_uart->rx_buffer_full_flg = true;
  829. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  830. if (uart_event.type == UART_PATTERN_DET) {
  831. if (rx_fifo_len < pat_num) {
  832. //some of the characters are read out in last interrupt
  833. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  834. } else {
  835. uart_pattern_enqueue(uart_num,
  836. pat_idx <= -1 ?
  837. //can not find the pattern in buffer,
  838. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  839. // find the pattern in buffer
  840. p_uart->rx_buffered_len + pat_idx);
  841. }
  842. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  843. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  844. }
  845. }
  846. uart_event.type = UART_BUFFER_FULL;
  847. } else {
  848. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  849. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  850. if (rx_fifo_len < pat_num) {
  851. //some of the characters are read out in last interrupt
  852. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  853. } else if(pat_idx >= 0) {
  854. // find pattern in statsh buffer.
  855. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  856. }
  857. }
  858. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  859. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  860. }
  861. if(HPTaskAwoken == pdTRUE) {
  862. portYIELD_FROM_ISR();
  863. }
  864. } else {
  865. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  866. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  867. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  868. uart_reg->int_clr.at_cmd_char_det = 1;
  869. uart_event.type = UART_PATTERN_DET;
  870. uart_event.size = rx_fifo_len;
  871. pat_flg = 1;
  872. }
  873. }
  874. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  875. // When fifo overflows, we reset the fifo.
  876. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  877. uart_reset_rx_fifo(uart_num);
  878. uart_reg->int_clr.rxfifo_ovf = 1;
  879. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  880. uart_event.type = UART_FIFO_OVF;
  881. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  882. if (p_uart->uart_select_notif_callback) {
  883. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  884. }
  885. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  886. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  887. uart_reg->int_clr.brk_det = 1;
  888. uart_event.type = UART_BREAK;
  889. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  890. uart_reg->int_clr.frm_err = 1;
  891. uart_event.type = UART_FRAME_ERR;
  892. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  893. if (p_uart->uart_select_notif_callback) {
  894. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  895. }
  896. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  897. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  898. uart_reg->int_clr.parity_err = 1;
  899. uart_event.type = UART_PARITY_ERR;
  900. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  901. if (p_uart->uart_select_notif_callback) {
  902. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  903. }
  904. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  905. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  906. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  907. uart_reg->conf0.txd_brk = 0;
  908. uart_reg->int_ena.tx_brk_done = 0;
  909. uart_reg->int_clr.tx_brk_done = 1;
  910. if(p_uart->tx_brk_flg == 1) {
  911. uart_reg->int_ena.txfifo_empty = 1;
  912. }
  913. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  914. if(p_uart->tx_brk_flg == 1) {
  915. p_uart->tx_brk_flg = 0;
  916. p_uart->tx_waiting_brk = 0;
  917. } else {
  918. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  919. if(HPTaskAwoken == pdTRUE) {
  920. portYIELD_FROM_ISR();
  921. }
  922. }
  923. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  924. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  925. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  926. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  927. uart_reg->int_clr.at_cmd_char_det = 1;
  928. uart_event.type = UART_PATTERN_DET;
  929. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  930. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  931. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  932. // RS485 collision or frame error interrupt triggered
  933. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  934. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  935. uart_reset_rx_fifo(uart_num);
  936. // Set collision detection flag
  937. p_uart_obj[uart_num]->coll_det_flg = true;
  938. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  939. uart_event.type = UART_EVENT_MAX;
  940. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  941. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  942. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  943. // If RS485 half duplex mode is enable then reset FIFO and
  944. // reset RTS pin to start receiver driver
  945. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  946. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  947. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  948. uart_reg->conf0.sw_rts = 1;
  949. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  950. }
  951. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  952. if (HPTaskAwoken == pdTRUE) {
  953. portYIELD_FROM_ISR();
  954. }
  955. } else {
  956. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  957. uart_event.type = UART_EVENT_MAX;
  958. }
  959. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  960. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  961. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  962. }
  963. if(HPTaskAwoken == pdTRUE) {
  964. portYIELD_FROM_ISR();
  965. }
  966. }
  967. uart_intr_status = uart_reg->int_st.val;
  968. }
  969. }
  970. /**************************************************************/
  971. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  972. {
  973. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  974. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  975. BaseType_t res;
  976. portTickType ticks_start = xTaskGetTickCount();
  977. //Take tx_mux
  978. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  979. if(res == pdFALSE) {
  980. return ESP_ERR_TIMEOUT;
  981. }
  982. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  983. if(UART[uart_num]->status.txfifo_cnt == 0) {
  984. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  985. return ESP_OK;
  986. }
  987. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  988. TickType_t ticks_end = xTaskGetTickCount();
  989. if (ticks_end - ticks_start > ticks_to_wait) {
  990. ticks_to_wait = 0;
  991. } else {
  992. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  993. }
  994. //take 2nd tx_done_sem, wait given from ISR
  995. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  996. if(res == pdFALSE) {
  997. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  998. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  999. return ESP_ERR_TIMEOUT;
  1000. }
  1001. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1002. return ESP_OK;
  1003. }
  1004. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1005. {
  1006. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1007. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1008. UART[uart_num]->conf0.txd_brk = 1;
  1009. UART[uart_num]->int_clr.tx_brk_done = 1;
  1010. UART[uart_num]->int_ena.tx_brk_done = 1;
  1011. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1012. return ESP_OK;
  1013. }
  1014. //Fill UART tx_fifo and return a number,
  1015. //This function by itself is not thread-safe, always call from within a muxed section.
  1016. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1017. {
  1018. uint8_t i = 0;
  1019. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1020. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1021. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1022. // Set the RTS pin if RS485 mode is enabled
  1023. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1024. UART[uart_num]->conf0.sw_rts = 0;
  1025. UART[uart_num]->int_ena.tx_done = 1;
  1026. }
  1027. for (i = 0; i < copy_cnt; i++) {
  1028. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1029. }
  1030. return copy_cnt;
  1031. }
  1032. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1033. {
  1034. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1035. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1036. UART_CHECK(buffer, "buffer null", (-1));
  1037. if(len == 0) {
  1038. return 0;
  1039. }
  1040. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1041. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1042. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1043. return tx_len;
  1044. }
  1045. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1046. {
  1047. if(size == 0) {
  1048. return 0;
  1049. }
  1050. size_t original_size = size;
  1051. //lock for uart_tx
  1052. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1053. p_uart_obj[uart_num]->coll_det_flg = false;
  1054. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1055. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1056. int offset = 0;
  1057. uart_tx_data_t evt;
  1058. evt.tx_data.size = size;
  1059. evt.tx_data.brk_len = brk_len;
  1060. if(brk_en) {
  1061. evt.type = UART_DATA_BREAK;
  1062. } else {
  1063. evt.type = UART_DATA;
  1064. }
  1065. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1066. while(size > 0) {
  1067. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1068. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1069. size -= send_size;
  1070. offset += send_size;
  1071. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1072. }
  1073. } else {
  1074. while(size) {
  1075. //semaphore for tx_fifo available
  1076. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1077. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1078. if(sent < size) {
  1079. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1080. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1081. }
  1082. size -= sent;
  1083. src += sent;
  1084. }
  1085. }
  1086. if(brk_en) {
  1087. uart_set_break(uart_num, brk_len);
  1088. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1089. }
  1090. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1091. }
  1092. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1093. return original_size;
  1094. }
  1095. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1096. {
  1097. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1098. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1099. UART_CHECK(src, "buffer null", (-1));
  1100. return uart_tx_all(uart_num, src, size, 0, 0);
  1101. }
  1102. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1103. {
  1104. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1105. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1106. UART_CHECK((size > 0), "uart size error", (-1));
  1107. UART_CHECK((src), "uart data null", (-1));
  1108. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1109. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1110. }
  1111. static bool uart_check_buf_full(uart_port_t uart_num)
  1112. {
  1113. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1114. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1115. if(res == pdTRUE) {
  1116. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1117. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1118. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1119. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1120. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1121. return true;
  1122. }
  1123. }
  1124. return false;
  1125. }
  1126. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1127. {
  1128. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1129. UART_CHECK((buf), "uart data null", (-1));
  1130. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1131. uint8_t* data = NULL;
  1132. size_t size;
  1133. size_t copy_len = 0;
  1134. int len_tmp;
  1135. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1136. return -1;
  1137. }
  1138. while(length) {
  1139. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1140. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1141. if(data) {
  1142. p_uart_obj[uart_num]->rx_head_ptr = data;
  1143. p_uart_obj[uart_num]->rx_ptr = data;
  1144. p_uart_obj[uart_num]->rx_cur_remain = size;
  1145. } else {
  1146. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1147. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1148. //to solve the possible asynchronous issues.
  1149. if(uart_check_buf_full(uart_num)) {
  1150. //This condition will never be true if `uart_read_bytes`
  1151. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1152. continue;
  1153. } else {
  1154. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1155. return copy_len;
  1156. }
  1157. }
  1158. }
  1159. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1160. len_tmp = length;
  1161. } else {
  1162. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1163. }
  1164. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1165. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1166. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1167. uart_pattern_queue_update(uart_num, len_tmp);
  1168. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1169. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1170. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1171. copy_len += len_tmp;
  1172. length -= len_tmp;
  1173. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1174. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1175. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1176. p_uart_obj[uart_num]->rx_ptr = NULL;
  1177. uart_check_buf_full(uart_num);
  1178. }
  1179. }
  1180. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1181. return copy_len;
  1182. }
  1183. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1184. {
  1185. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1186. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1187. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1188. return ESP_OK;
  1189. }
  1190. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1191. esp_err_t uart_flush_input(uart_port_t uart_num)
  1192. {
  1193. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1194. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1195. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1196. uint8_t* data;
  1197. size_t size;
  1198. //rx sem protect the ring buffer read related functions
  1199. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1200. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1201. while(true) {
  1202. if(p_uart->rx_head_ptr) {
  1203. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1204. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1205. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1206. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1207. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1208. p_uart->rx_ptr = NULL;
  1209. p_uart->rx_cur_remain = 0;
  1210. p_uart->rx_head_ptr = NULL;
  1211. }
  1212. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1213. if(data == NULL) {
  1214. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1215. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1216. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1217. }
  1218. //We also need to clear the `rx_buffer_full_flg` here.
  1219. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1220. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1221. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1222. break;
  1223. }
  1224. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1225. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1226. uart_pattern_queue_update(uart_num, size);
  1227. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1228. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1229. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1230. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1231. if(res == pdTRUE) {
  1232. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1233. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1234. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1235. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1236. }
  1237. }
  1238. }
  1239. p_uart->rx_ptr = NULL;
  1240. p_uart->rx_cur_remain = 0;
  1241. p_uart->rx_head_ptr = NULL;
  1242. uart_reset_rx_fifo(uart_num);
  1243. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1244. xSemaphoreGive(p_uart->rx_mux);
  1245. return ESP_OK;
  1246. }
  1247. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1248. {
  1249. esp_err_t r;
  1250. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1251. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1252. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1253. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1254. if(p_uart_obj[uart_num] == NULL) {
  1255. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1256. if(p_uart_obj[uart_num] == NULL) {
  1257. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1258. return ESP_FAIL;
  1259. }
  1260. p_uart_obj[uart_num]->uart_num = uart_num;
  1261. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1262. p_uart_obj[uart_num]->coll_det_flg = false;
  1263. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1264. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1265. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1266. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1267. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1268. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1269. p_uart_obj[uart_num]->queue_size = queue_size;
  1270. p_uart_obj[uart_num]->tx_ptr = NULL;
  1271. p_uart_obj[uart_num]->tx_head = NULL;
  1272. p_uart_obj[uart_num]->tx_len_tot = 0;
  1273. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1274. p_uart_obj[uart_num]->tx_brk_len = 0;
  1275. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1276. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1277. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1278. if(uart_queue) {
  1279. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1280. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1281. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1282. } else {
  1283. p_uart_obj[uart_num]->xQueueUart = NULL;
  1284. }
  1285. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1286. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1287. p_uart_obj[uart_num]->rx_ptr = NULL;
  1288. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1289. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1290. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1291. if(tx_buffer_size > 0) {
  1292. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1293. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1294. } else {
  1295. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1296. p_uart_obj[uart_num]->tx_buf_size = 0;
  1297. }
  1298. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1299. } else {
  1300. ESP_LOGE(UART_TAG, "UART driver already installed");
  1301. return ESP_FAIL;
  1302. }
  1303. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1304. if (r!=ESP_OK) goto err;
  1305. uart_intr_config_t uart_intr = {
  1306. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1307. | UART_RXFIFO_TOUT_INT_ENA_M
  1308. | UART_FRM_ERR_INT_ENA_M
  1309. | UART_RXFIFO_OVF_INT_ENA_M
  1310. | UART_BRK_DET_INT_ENA_M
  1311. | UART_PARITY_ERR_INT_ENA_M,
  1312. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1313. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1314. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1315. };
  1316. r=uart_intr_config(uart_num, &uart_intr);
  1317. if (r!=ESP_OK) goto err;
  1318. return r;
  1319. err:
  1320. uart_driver_delete(uart_num);
  1321. return r;
  1322. }
  1323. //Make sure no other tasks are still using UART before you call this function
  1324. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1325. {
  1326. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1327. if(p_uart_obj[uart_num] == NULL) {
  1328. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1329. return ESP_OK;
  1330. }
  1331. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1332. uart_disable_rx_intr(uart_num);
  1333. uart_disable_tx_intr(uart_num);
  1334. uart_pattern_link_free(uart_num);
  1335. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1336. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1337. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1338. }
  1339. if(p_uart_obj[uart_num]->tx_done_sem) {
  1340. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1341. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1342. }
  1343. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1344. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1345. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1346. }
  1347. if(p_uart_obj[uart_num]->tx_mux) {
  1348. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1349. p_uart_obj[uart_num]->tx_mux = NULL;
  1350. }
  1351. if(p_uart_obj[uart_num]->rx_mux) {
  1352. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1353. p_uart_obj[uart_num]->rx_mux = NULL;
  1354. }
  1355. if(p_uart_obj[uart_num]->xQueueUart) {
  1356. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1357. p_uart_obj[uart_num]->xQueueUart = NULL;
  1358. }
  1359. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1360. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1361. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1362. }
  1363. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1364. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1365. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1366. }
  1367. free(p_uart_obj[uart_num]);
  1368. p_uart_obj[uart_num] = NULL;
  1369. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  1370. if(uart_num == UART_NUM_0) {
  1371. periph_module_disable(PERIPH_UART0_MODULE);
  1372. } else if(uart_num == UART_NUM_1) {
  1373. periph_module_disable(PERIPH_UART1_MODULE);
  1374. } else if(uart_num == UART_NUM_2) {
  1375. periph_module_disable(PERIPH_UART2_MODULE);
  1376. }
  1377. }
  1378. return ESP_OK;
  1379. }
  1380. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1381. {
  1382. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1383. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1384. }
  1385. }
  1386. portMUX_TYPE *uart_get_selectlock()
  1387. {
  1388. return &uart_selectlock;
  1389. }
  1390. // Set UART mode
  1391. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1392. {
  1393. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1394. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1395. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1396. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1397. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1398. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1399. }
  1400. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1401. UART[uart_num]->rs485_conf.en = 0;
  1402. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1403. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1404. UART[uart_num]->conf0.irda_en = 0;
  1405. UART[uart_num]->conf0.sw_rts = 0;
  1406. switch (mode) {
  1407. case UART_MODE_UART:
  1408. break;
  1409. case UART_MODE_RS485_COLLISION_DETECT:
  1410. // This mode allows read while transmitting that allows collision detection
  1411. p_uart_obj[uart_num]->coll_det_flg = false;
  1412. // Transmitter’s output signal loop back to the receiver’s input signal
  1413. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1414. // Transmitter should send data when its receiver is busy
  1415. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1416. UART[uart_num]->rs485_conf.en = 1;
  1417. // Enable collision detection interrupts
  1418. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1419. | UART_RXFIFO_FULL_INT_ENA
  1420. | UART_RS485_CLASH_INT_ENA
  1421. | UART_RS485_FRM_ERR_INT_ENA
  1422. | UART_RS485_PARITY_ERR_INT_ENA);
  1423. break;
  1424. case UART_MODE_RS485_APP_CTRL:
  1425. // Application software control, remove echo
  1426. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1427. UART[uart_num]->rs485_conf.en = 1;
  1428. break;
  1429. case UART_MODE_RS485_HALF_DUPLEX:
  1430. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1431. UART[uart_num]->conf0.sw_rts = 1;
  1432. UART[uart_num]->rs485_conf.en = 1;
  1433. // Must be set to 0 to automatically remove echo
  1434. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1435. // This is to void collision
  1436. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1437. break;
  1438. case UART_MODE_IRDA:
  1439. UART[uart_num]->conf0.irda_en = 1;
  1440. break;
  1441. default:
  1442. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1443. break;
  1444. }
  1445. p_uart_obj[uart_num]->uart_mode = mode;
  1446. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1447. return ESP_OK;
  1448. }
  1449. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1450. {
  1451. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1452. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1453. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1454. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1455. // transmission time of one symbol (~11 bit) on current baudrate
  1456. if (tout_thresh > 0) {
  1457. UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V);
  1458. UART[uart_num]->conf1.rx_tout_en = 1;
  1459. } else {
  1460. UART[uart_num]->conf1.rx_tout_en = 0;
  1461. }
  1462. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1463. return ESP_OK;
  1464. }
  1465. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1466. {
  1467. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1468. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1469. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1470. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1471. "wrong mode", ESP_ERR_INVALID_ARG);
  1472. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1473. return ESP_OK;
  1474. }
  1475. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1476. {
  1477. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1478. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1479. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1480. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1481. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1482. return ESP_OK;
  1483. }
  1484. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1485. {
  1486. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1487. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1488. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1489. return ESP_OK;
  1490. }