system_api.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376
  1. // Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include "esp_system.h"
  16. #include "esp_attr.h"
  17. #include "esp_wifi.h"
  18. #include "esp_private/wifi.h"
  19. #include "esp_log.h"
  20. #include "sdkconfig.h"
  21. #include "esp32/rom/efuse.h"
  22. #include "esp32/rom/cache.h"
  23. #include "esp32/rom/uart.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/gpio_periph.h"
  26. #include "soc/efuse_periph.h"
  27. #include "soc/rtc_periph.h"
  28. #include "soc/timer_periph.h"
  29. #include "soc/cpu.h"
  30. #include "soc/rtc.h"
  31. #include "soc/rtc_wdt.h"
  32. #include "freertos/FreeRTOS.h"
  33. #include "freertos/task.h"
  34. #include "freertos/xtensa_api.h"
  35. #include "esp_heap_caps.h"
  36. #include "esp_private/system_internal.h"
  37. #include "esp_efuse.h"
  38. #include "esp_efuse_table.h"
  39. static const char* TAG = "system_api";
  40. static uint8_t base_mac_addr[6] = { 0 };
  41. #define SHUTDOWN_HANDLERS_NO 2
  42. static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO];
  43. esp_err_t esp_base_mac_addr_set(uint8_t *mac)
  44. {
  45. if (mac == NULL) {
  46. ESP_LOGE(TAG, "Base MAC address is NULL");
  47. abort();
  48. }
  49. memcpy(base_mac_addr, mac, 6);
  50. return ESP_OK;
  51. }
  52. esp_err_t esp_base_mac_addr_get(uint8_t *mac)
  53. {
  54. uint8_t null_mac[6] = {0};
  55. if (memcmp(base_mac_addr, null_mac, 6) == 0) {
  56. ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
  57. return ESP_ERR_INVALID_MAC;
  58. }
  59. memcpy(mac, base_mac_addr, 6);
  60. return ESP_OK;
  61. }
  62. esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
  63. {
  64. uint8_t version;
  65. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_VER, &version, 8);
  66. if (version != 1) {
  67. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE version error, version = %d", version);
  68. return ESP_ERR_INVALID_VERSION;
  69. }
  70. uint8_t efuse_crc;
  71. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48);
  72. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_CRC, &efuse_crc, 8);
  73. uint8_t calc_crc = esp_crc8(mac, 6);
  74. if (efuse_crc != calc_crc) {
  75. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  76. return ESP_ERR_INVALID_CRC;
  77. }
  78. return ESP_OK;
  79. }
  80. esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
  81. {
  82. uint8_t efuse_crc;
  83. esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
  84. esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &efuse_crc, 8);
  85. uint8_t calc_crc = esp_crc8(mac, 6);
  86. if (efuse_crc != calc_crc) {
  87. // Small range of MAC addresses are accepted even if CRC is invalid.
  88. // These addresses are reserved for Espressif internal use.
  89. uint32_t mac_high = ((uint32_t)mac[0] << 8) | mac[1];
  90. if ((mac_high & 0xFFFF) == 0x18fe) {
  91. uint32_t mac_low = ((uint32_t)mac[2] << 24) | ((uint32_t)mac[3] << 16) | ((uint32_t)mac[4] << 8) | mac[5];
  92. if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
  93. return ESP_OK;
  94. }
  95. } else {
  96. ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  97. abort();
  98. }
  99. }
  100. return ESP_OK;
  101. }
  102. esp_err_t esp_derive_local_mac(uint8_t* local_mac, const uint8_t* universal_mac)
  103. {
  104. uint8_t idx;
  105. if (local_mac == NULL || universal_mac == NULL) {
  106. ESP_LOGE(TAG, "mac address param is NULL");
  107. return ESP_ERR_INVALID_ARG;
  108. }
  109. memcpy(local_mac, universal_mac, 6);
  110. for (idx = 0; idx < 64; idx++) {
  111. local_mac[0] = universal_mac[0] | 0x02;
  112. local_mac[0] ^= idx << 2;
  113. if (memcmp(local_mac, universal_mac, 6)) {
  114. break;
  115. }
  116. }
  117. return ESP_OK;
  118. }
  119. esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
  120. {
  121. uint8_t efuse_mac[6];
  122. if (mac == NULL) {
  123. ESP_LOGE(TAG, "mac address param is NULL");
  124. return ESP_ERR_INVALID_ARG;
  125. }
  126. if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) {
  127. ESP_LOGE(TAG, "mac type is incorrect");
  128. return ESP_ERR_INVALID_ARG;
  129. }
  130. _Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \
  131. || UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \
  132. "incorrect NUM_MAC_ADDRESS_FROM_EFUSE value");
  133. if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
  134. esp_efuse_mac_get_default(efuse_mac);
  135. }
  136. switch (type) {
  137. case ESP_MAC_WIFI_STA:
  138. memcpy(mac, efuse_mac, 6);
  139. break;
  140. case ESP_MAC_WIFI_SOFTAP:
  141. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  142. memcpy(mac, efuse_mac, 6);
  143. mac[5] += 1;
  144. }
  145. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  146. esp_derive_local_mac(mac, efuse_mac);
  147. }
  148. break;
  149. case ESP_MAC_BT:
  150. memcpy(mac, efuse_mac, 6);
  151. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  152. mac[5] += 2;
  153. }
  154. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  155. mac[5] += 1;
  156. }
  157. break;
  158. case ESP_MAC_ETH:
  159. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  160. memcpy(mac, efuse_mac, 6);
  161. mac[5] += 3;
  162. }
  163. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  164. efuse_mac[5] += 1;
  165. esp_derive_local_mac(mac, efuse_mac);
  166. }
  167. break;
  168. default:
  169. ESP_LOGW(TAG, "incorrect mac type");
  170. break;
  171. }
  172. return ESP_OK;
  173. }
  174. esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler)
  175. {
  176. for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  177. if (shutdown_handlers[i] == handler) {
  178. return ESP_ERR_INVALID_STATE;
  179. } else if (shutdown_handlers[i] == NULL) {
  180. shutdown_handlers[i] = handler;
  181. return ESP_OK;
  182. }
  183. }
  184. return ESP_ERR_NO_MEM;
  185. }
  186. esp_err_t esp_unregister_shutdown_handler(shutdown_handler_t handler)
  187. {
  188. for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  189. if (shutdown_handlers[i] == handler) {
  190. shutdown_handlers[i] = NULL;
  191. return ESP_OK;
  192. }
  193. }
  194. return ESP_ERR_INVALID_STATE;
  195. }
  196. void esp_restart_noos() __attribute__ ((noreturn));
  197. void IRAM_ATTR esp_restart(void)
  198. {
  199. int i;
  200. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  201. if (shutdown_handlers[i]) {
  202. shutdown_handlers[i]();
  203. }
  204. }
  205. // Disable scheduler on this core.
  206. vTaskSuspendAll();
  207. esp_restart_noos();
  208. }
  209. /* "inner" restart function for after RTOS, interrupts & anything else on this
  210. * core are already stopped. Stalls other core, resets hardware,
  211. * triggers restart.
  212. */
  213. void IRAM_ATTR esp_restart_noos()
  214. {
  215. // Disable interrupts
  216. xt_ints_off(0xFFFFFFFF);
  217. // Enable RTC watchdog for 1 second
  218. rtc_wdt_protect_off();
  219. rtc_wdt_disable();
  220. rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC);
  221. rtc_wdt_set_stage(RTC_WDT_STAGE1, RTC_WDT_STAGE_ACTION_RESET_SYSTEM);
  222. rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_200ns);
  223. rtc_wdt_set_length_of_reset_signal(RTC_WDT_CPU_RESET_SIG, RTC_WDT_LENGTH_200ns);
  224. rtc_wdt_set_time(RTC_WDT_STAGE0, 1000);
  225. rtc_wdt_flashboot_mode_enable();
  226. // Reset and stall the other CPU.
  227. // CPU must be reset before stalling, in case it was running a s32c1i
  228. // instruction. This would cause memory pool to be locked by arbiter
  229. // to the stalled CPU, preventing current CPU from accessing this pool.
  230. const uint32_t core_id = xPortGetCoreID();
  231. const uint32_t other_core_id = (core_id == 0) ? 1 : 0;
  232. esp_cpu_reset(other_core_id);
  233. esp_cpu_stall(other_core_id);
  234. // Other core is now stalled, can access DPORT registers directly
  235. esp_dport_access_int_abort();
  236. // Disable TG0/TG1 watchdogs
  237. TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  238. TIMERG0.wdt_config0.en = 0;
  239. TIMERG0.wdt_wprotect=0;
  240. TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  241. TIMERG1.wdt_config0.en = 0;
  242. TIMERG1.wdt_wprotect=0;
  243. // Flush any data left in UART FIFOs
  244. uart_tx_wait_idle(0);
  245. uart_tx_wait_idle(1);
  246. uart_tx_wait_idle(2);
  247. // Disable cache
  248. Cache_Read_Disable(0);
  249. Cache_Read_Disable(1);
  250. // 2nd stage bootloader reconfigures SPI flash signals.
  251. // Reset them to the defaults expected by ROM.
  252. WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
  253. WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
  254. WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
  255. WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
  256. WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
  257. WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
  258. // Reset wifi/bluetooth/ethernet/sdio (bb/mac)
  259. DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
  260. DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
  261. DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
  262. DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
  263. DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
  264. DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
  265. // Reset timer/spi/uart
  266. DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
  267. DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_UART_RST | DPORT_UART1_RST | DPORT_UART2_RST);
  268. DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
  269. // Set CPU back to XTAL source, no PLL, same as hard reset
  270. rtc_clk_cpu_freq_set_xtal();
  271. // Clear entry point for APP CPU
  272. DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
  273. // Reset CPUs
  274. if (core_id == 0) {
  275. // Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
  276. esp_cpu_reset(1);
  277. esp_cpu_reset(0);
  278. } else {
  279. // Running on APP CPU: need to reset PRO CPU and unstall it,
  280. // then reset APP CPU
  281. esp_cpu_reset(0);
  282. esp_cpu_unstall(0);
  283. esp_cpu_reset(1);
  284. }
  285. while(true) {
  286. ;
  287. }
  288. }
  289. uint32_t esp_get_free_heap_size( void )
  290. {
  291. return heap_caps_get_free_size( MALLOC_CAP_DEFAULT );
  292. }
  293. uint32_t esp_get_minimum_free_heap_size( void )
  294. {
  295. return heap_caps_get_minimum_free_size( MALLOC_CAP_DEFAULT );
  296. }
  297. const char* esp_get_idf_version(void)
  298. {
  299. return IDF_VER;
  300. }
  301. void esp_chip_info(esp_chip_info_t* out_info)
  302. {
  303. uint32_t efuse_rd3 = REG_READ(EFUSE_BLK0_RDATA3_REG);
  304. memset(out_info, 0, sizeof(*out_info));
  305. out_info->model = CHIP_ESP32;
  306. out_info->revision = esp_efuse_get_chip_ver();
  307. if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) {
  308. out_info->cores = 2;
  309. } else {
  310. out_info->cores = 1;
  311. }
  312. out_info->features = CHIP_FEATURE_WIFI_BGN;
  313. if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) {
  314. out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE;
  315. }
  316. int package = (efuse_rd3 & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S;
  317. if (package == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 ||
  318. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 ||
  319. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
  320. out_info->features |= CHIP_FEATURE_EMB_FLASH;
  321. }
  322. }