gptimer.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
  1. /*
  2. * SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <sys/lock.h>
  8. #include "sdkconfig.h"
  9. #if CONFIG_GPTIMER_ENABLE_DEBUG_LOG
  10. // The local log level must be defined before including esp_log.h
  11. // Set the maximum log level for this source file
  12. #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
  13. #endif
  14. #include "freertos/FreeRTOS.h"
  15. #include "esp_attr.h"
  16. #include "esp_err.h"
  17. #include "esp_heap_caps.h"
  18. #include "esp_intr_alloc.h"
  19. #include "esp_log.h"
  20. #include "esp_check.h"
  21. #include "esp_pm.h"
  22. #include "driver/gptimer.h"
  23. #include "hal/timer_types.h"
  24. #include "hal/timer_hal.h"
  25. #include "hal/timer_ll.h"
  26. #include "soc/timer_periph.h"
  27. #include "esp_memory_utils.h"
  28. #include "esp_private/periph_ctrl.h"
  29. #include "esp_private/esp_clk.h"
  30. // If ISR handler is allowed to run whilst cache is disabled,
  31. // Make sure all the code and related variables used by the handler are in the SRAM
  32. #if CONFIG_GPTIMER_ISR_IRAM_SAFE || CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM
  33. #define GPTIMER_MEM_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
  34. #else
  35. #define GPTIMER_MEM_ALLOC_CAPS MALLOC_CAP_DEFAULT
  36. #endif
  37. #if CONFIG_GPTIMER_ISR_IRAM_SAFE
  38. #define GPTIMER_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED)
  39. #else
  40. #define GPTIMER_INTR_ALLOC_FLAGS ESP_INTR_FLAG_INTRDISABLED
  41. #endif
  42. #define GPTIMER_PM_LOCK_NAME_LEN_MAX 16
  43. static const char *TAG = "gptimer";
  44. typedef struct gptimer_platform_t gptimer_platform_t;
  45. typedef struct gptimer_group_t gptimer_group_t;
  46. typedef struct gptimer_t gptimer_t;
  47. struct gptimer_platform_t {
  48. _lock_t mutex; // platform level mutex lock
  49. gptimer_group_t *groups[SOC_TIMER_GROUPS]; // timer group pool
  50. int group_ref_counts[SOC_TIMER_GROUPS]; // reference count used to protect group install/uninstall
  51. };
  52. struct gptimer_group_t {
  53. int group_id;
  54. portMUX_TYPE spinlock; // to protect per-group register level concurrent access
  55. gptimer_t *timers[SOC_TIMER_GROUP_TIMERS_PER_GROUP];
  56. };
  57. typedef enum {
  58. GPTIMER_FSM_INIT,
  59. GPTIMER_FSM_ENABLE,
  60. } gptimer_fsm_t;
  61. struct gptimer_t {
  62. gptimer_group_t *group;
  63. int timer_id;
  64. uint32_t resolution_hz;
  65. uint64_t reload_count;
  66. uint64_t alarm_count;
  67. gptimer_count_direction_t direction;
  68. timer_hal_context_t hal;
  69. gptimer_fsm_t fsm;
  70. intr_handle_t intr;
  71. portMUX_TYPE spinlock; // to protect per-timer resources concurrent accessed by task and ISR handler
  72. gptimer_alarm_cb_t on_alarm;
  73. void *user_ctx;
  74. gptimer_clock_source_t clk_src;
  75. esp_pm_lock_handle_t pm_lock; // power management lock
  76. #if CONFIG_PM_ENABLE
  77. char pm_lock_name[GPTIMER_PM_LOCK_NAME_LEN_MAX]; // pm lock name
  78. #endif
  79. struct {
  80. uint32_t intr_shared: 1;
  81. uint32_t auto_reload_on_alarm: 1;
  82. uint32_t alarm_en: 1;
  83. } flags;
  84. };
  85. // gptimer driver platform, it's always a singleton
  86. static gptimer_platform_t s_platform;
  87. static gptimer_group_t *gptimer_acquire_group_handle(int group_id);
  88. static void gptimer_release_group_handle(gptimer_group_t *group);
  89. static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz);
  90. static void gptimer_default_isr(void *args);
  91. static esp_err_t gptimer_register_to_group(gptimer_t *timer)
  92. {
  93. gptimer_group_t *group = NULL;
  94. int timer_id = -1;
  95. for (int i = 0; i < SOC_TIMER_GROUPS; i++) {
  96. group = gptimer_acquire_group_handle(i);
  97. ESP_RETURN_ON_FALSE(group, ESP_ERR_NO_MEM, TAG, "no mem for group (%d)", i);
  98. // loop to search free timer in the group
  99. portENTER_CRITICAL(&group->spinlock);
  100. for (int j = 0; j < SOC_TIMER_GROUP_TIMERS_PER_GROUP; j++) {
  101. if (!group->timers[j]) {
  102. timer_id = j;
  103. group->timers[j] = timer;
  104. break;
  105. }
  106. }
  107. portEXIT_CRITICAL(&group->spinlock);
  108. if (timer_id < 0) {
  109. gptimer_release_group_handle(group);
  110. group = NULL;
  111. } else {
  112. timer->timer_id = timer_id;
  113. timer->group = group;
  114. break;;
  115. }
  116. }
  117. ESP_RETURN_ON_FALSE(timer_id != -1, ESP_ERR_NOT_FOUND, TAG, "no free timer");
  118. return ESP_OK;
  119. }
  120. static void gptimer_unregister_from_group(gptimer_t *timer)
  121. {
  122. gptimer_group_t *group = timer->group;
  123. int timer_id = timer->timer_id;
  124. portENTER_CRITICAL(&group->spinlock);
  125. group->timers[timer_id] = NULL;
  126. portEXIT_CRITICAL(&group->spinlock);
  127. // timer has a reference on group, release it now
  128. gptimer_release_group_handle(group);
  129. }
  130. static esp_err_t gptimer_destory(gptimer_t *timer)
  131. {
  132. if (timer->pm_lock) {
  133. ESP_RETURN_ON_ERROR(esp_pm_lock_delete(timer->pm_lock), TAG, "delete pm_lock failed");
  134. }
  135. if (timer->intr) {
  136. ESP_RETURN_ON_ERROR(esp_intr_free(timer->intr), TAG, "delete interrupt service failed");
  137. }
  138. if (timer->group) {
  139. gptimer_unregister_from_group(timer);
  140. }
  141. free(timer);
  142. return ESP_OK;
  143. }
  144. esp_err_t gptimer_new_timer(const gptimer_config_t *config, gptimer_handle_t *ret_timer)
  145. {
  146. #if CONFIG_GPTIMER_ENABLE_DEBUG_LOG
  147. esp_log_level_set(TAG, ESP_LOG_DEBUG);
  148. #endif
  149. esp_err_t ret = ESP_OK;
  150. gptimer_t *timer = NULL;
  151. ESP_GOTO_ON_FALSE(config && ret_timer, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
  152. ESP_GOTO_ON_FALSE(config->resolution_hz, ESP_ERR_INVALID_ARG, err, TAG, "invalid timer resolution:%"PRIu32, config->resolution_hz);
  153. timer = heap_caps_calloc(1, sizeof(gptimer_t), GPTIMER_MEM_ALLOC_CAPS);
  154. ESP_GOTO_ON_FALSE(timer, ESP_ERR_NO_MEM, err, TAG, "no mem for gptimer");
  155. // register timer to the group (because one group can have several timers)
  156. ESP_GOTO_ON_ERROR(gptimer_register_to_group(timer), err, TAG, "register timer failed");
  157. gptimer_group_t *group = timer->group;
  158. int group_id = group->group_id;
  159. int timer_id = timer->timer_id;
  160. // initialize HAL layer
  161. timer_hal_init(&timer->hal, group_id, timer_id);
  162. // select clock source, set clock resolution
  163. ESP_GOTO_ON_ERROR(gptimer_select_periph_clock(timer, config->clk_src, config->resolution_hz), err, TAG, "set periph clock failed");
  164. // initialize counter value to zero
  165. timer_hal_set_counter_value(&timer->hal, 0);
  166. // set counting direction
  167. timer_ll_set_count_direction(timer->hal.dev, timer_id, config->direction);
  168. // interrupt register is shared by all timers in the same group
  169. portENTER_CRITICAL(&group->spinlock);
  170. timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id), false); // disable interrupt
  171. timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id)); // clear pending interrupt event
  172. portEXIT_CRITICAL(&group->spinlock);
  173. // initialize other members of timer
  174. timer->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
  175. timer->fsm = GPTIMER_FSM_INIT; // put the timer into init state
  176. timer->direction = config->direction;
  177. timer->flags.intr_shared = config->flags.intr_shared;
  178. ESP_LOGD(TAG, "new gptimer (%d,%d) at %p, resolution=%"PRIu32"Hz", group_id, timer_id, timer, timer->resolution_hz);
  179. *ret_timer = timer;
  180. return ESP_OK;
  181. err:
  182. if (timer) {
  183. gptimer_destory(timer);
  184. }
  185. return ret;
  186. }
  187. esp_err_t gptimer_del_timer(gptimer_handle_t timer)
  188. {
  189. ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  190. ESP_RETURN_ON_FALSE(timer->fsm == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state");
  191. gptimer_group_t *group = timer->group;
  192. int group_id = group->group_id;
  193. int timer_id = timer->timer_id;
  194. ESP_LOGD(TAG, "del timer (%d,%d)", group_id, timer_id);
  195. timer_hal_deinit(&timer->hal);
  196. // recycle memory resource
  197. ESP_RETURN_ON_ERROR(gptimer_destory(timer), TAG, "destory gptimer failed");
  198. return ESP_OK;
  199. }
  200. esp_err_t gptimer_set_raw_count(gptimer_handle_t timer, unsigned long long value)
  201. {
  202. ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  203. portENTER_CRITICAL_SAFE(&timer->spinlock);
  204. timer_hal_set_counter_value(&timer->hal, value);
  205. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  206. return ESP_OK;
  207. }
  208. esp_err_t gptimer_get_raw_count(gptimer_handle_t timer, unsigned long long *value)
  209. {
  210. ESP_RETURN_ON_FALSE_ISR(timer && value, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  211. portENTER_CRITICAL_SAFE(&timer->spinlock);
  212. *value = timer_hal_capture_and_get_counter_value(&timer->hal);
  213. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  214. return ESP_OK;
  215. }
  216. esp_err_t gptimer_register_event_callbacks(gptimer_handle_t timer, const gptimer_event_callbacks_t *cbs, void *user_data)
  217. {
  218. gptimer_group_t *group = NULL;
  219. ESP_RETURN_ON_FALSE(timer && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  220. group = timer->group;
  221. int group_id = group->group_id;
  222. int timer_id = timer->timer_id;
  223. #if CONFIG_GPTIMER_ISR_IRAM_SAFE
  224. if (cbs->on_alarm) {
  225. ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_alarm), ESP_ERR_INVALID_ARG, TAG, "on_alarm callback not in IRAM");
  226. }
  227. if (user_data) {
  228. ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
  229. }
  230. #endif
  231. // lazy install interrupt service
  232. if (!timer->intr) {
  233. ESP_RETURN_ON_FALSE(timer->fsm == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state");
  234. // if user wants to control the interrupt allocation more precisely, we can expose more flags in `gptimer_config_t`
  235. int isr_flags = timer->flags.intr_shared ? ESP_INTR_FLAG_SHARED | GPTIMER_INTR_ALLOC_FLAGS : GPTIMER_INTR_ALLOC_FLAGS;
  236. ESP_RETURN_ON_ERROR(esp_intr_alloc_intrstatus(timer_group_periph_signals.groups[group_id].timer_irq_id[timer_id], isr_flags,
  237. (uint32_t)timer_ll_get_intr_status_reg(timer->hal.dev), TIMER_LL_EVENT_ALARM(timer_id),
  238. gptimer_default_isr, timer, &timer->intr), TAG, "install interrupt service failed");
  239. }
  240. // enable/disable GPTimer interrupt events
  241. portENTER_CRITICAL(&group->spinlock);
  242. timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id), cbs->on_alarm != NULL); // enable timer interrupt
  243. portEXIT_CRITICAL(&group->spinlock);
  244. timer->on_alarm = cbs->on_alarm;
  245. timer->user_ctx = user_data;
  246. return ESP_OK;
  247. }
  248. esp_err_t gptimer_set_alarm_action(gptimer_handle_t timer, const gptimer_alarm_config_t *config)
  249. {
  250. ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  251. if (config) {
  252. // When auto_reload is enabled, alarm_count should not be equal to reload_count
  253. bool valid_auto_reload = !config->flags.auto_reload_on_alarm || config->alarm_count != config->reload_count;
  254. ESP_RETURN_ON_FALSE_ISR(valid_auto_reload, ESP_ERR_INVALID_ARG, TAG, "reload count can't equal to alarm count");
  255. portENTER_CRITICAL_SAFE(&timer->spinlock);
  256. timer->reload_count = config->reload_count;
  257. timer->alarm_count = config->alarm_count;
  258. timer->flags.auto_reload_on_alarm = config->flags.auto_reload_on_alarm;
  259. timer->flags.alarm_en = true;
  260. timer_ll_set_reload_value(timer->hal.dev, timer->timer_id, config->reload_count);
  261. timer_ll_set_alarm_value(timer->hal.dev, timer->timer_id, config->alarm_count);
  262. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  263. } else {
  264. portENTER_CRITICAL_SAFE(&timer->spinlock);
  265. timer->flags.auto_reload_on_alarm = false;
  266. timer->flags.alarm_en = false;
  267. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  268. }
  269. portENTER_CRITICAL_SAFE(&timer->spinlock);
  270. timer_ll_enable_auto_reload(timer->hal.dev, timer->timer_id, timer->flags.auto_reload_on_alarm);
  271. timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en);
  272. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  273. return ESP_OK;
  274. }
  275. esp_err_t gptimer_enable(gptimer_handle_t timer)
  276. {
  277. ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  278. ESP_RETURN_ON_FALSE(timer->fsm == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state");
  279. // acquire power manager lock
  280. if (timer->pm_lock) {
  281. ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(timer->pm_lock), TAG, "acquire pm_lock failed");
  282. }
  283. // enable interrupt service
  284. if (timer->intr) {
  285. ESP_RETURN_ON_ERROR(esp_intr_enable(timer->intr), TAG, "enable interrupt service failed");
  286. }
  287. timer->fsm = GPTIMER_FSM_ENABLE;
  288. return ESP_OK;
  289. }
  290. esp_err_t gptimer_disable(gptimer_handle_t timer)
  291. {
  292. ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  293. ESP_RETURN_ON_FALSE(timer->fsm == GPTIMER_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "timer not in enable state");
  294. // disable interrupt service
  295. if (timer->intr) {
  296. ESP_RETURN_ON_ERROR(esp_intr_disable(timer->intr), TAG, "disable interrupt service failed");
  297. }
  298. // release power manager lock
  299. if (timer->pm_lock) {
  300. ESP_RETURN_ON_ERROR(esp_pm_lock_release(timer->pm_lock), TAG, "release pm_lock failed");
  301. }
  302. timer->fsm = GPTIMER_FSM_INIT;
  303. return ESP_OK;
  304. }
  305. esp_err_t gptimer_start(gptimer_handle_t timer)
  306. {
  307. ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  308. ESP_RETURN_ON_FALSE_ISR(timer->fsm == GPTIMER_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "timer not enabled yet");
  309. portENTER_CRITICAL_SAFE(&timer->spinlock);
  310. timer_ll_enable_counter(timer->hal.dev, timer->timer_id, true);
  311. timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en);
  312. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  313. return ESP_OK;
  314. }
  315. esp_err_t gptimer_stop(gptimer_handle_t timer)
  316. {
  317. ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  318. ESP_RETURN_ON_FALSE_ISR(timer->fsm == GPTIMER_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "timer not enabled yet");
  319. // disable counter, alarm, auto-reload
  320. portENTER_CRITICAL_SAFE(&timer->spinlock);
  321. timer_ll_enable_counter(timer->hal.dev, timer->timer_id, false);
  322. timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, false);
  323. portEXIT_CRITICAL_SAFE(&timer->spinlock);
  324. return ESP_OK;
  325. }
  326. static gptimer_group_t *gptimer_acquire_group_handle(int group_id)
  327. {
  328. bool new_group = false;
  329. gptimer_group_t *group = NULL;
  330. // prevent install timer group concurrently
  331. _lock_acquire(&s_platform.mutex);
  332. if (!s_platform.groups[group_id]) {
  333. group = heap_caps_calloc(1, sizeof(gptimer_group_t), GPTIMER_MEM_ALLOC_CAPS);
  334. if (group) {
  335. new_group = true;
  336. s_platform.groups[group_id] = group;
  337. // initialize timer group members
  338. group->group_id = group_id;
  339. group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
  340. // enable APB access timer registers
  341. periph_module_enable(timer_group_periph_signals.groups[group_id].module);
  342. }
  343. } else {
  344. group = s_platform.groups[group_id];
  345. }
  346. if (group) {
  347. // someone acquired the group handle means we have a new object that refer to this group
  348. s_platform.group_ref_counts[group_id]++;
  349. }
  350. _lock_release(&s_platform.mutex);
  351. if (new_group) {
  352. ESP_LOGD(TAG, "new group (%d) @%p", group_id, group);
  353. }
  354. return group;
  355. }
  356. static void gptimer_release_group_handle(gptimer_group_t *group)
  357. {
  358. int group_id = group->group_id;
  359. bool do_deinitialize = false;
  360. _lock_acquire(&s_platform.mutex);
  361. s_platform.group_ref_counts[group_id]--;
  362. if (s_platform.group_ref_counts[group_id] == 0) {
  363. assert(s_platform.groups[group_id]);
  364. do_deinitialize = true;
  365. s_platform.groups[group_id] = NULL;
  366. // Theoretically we need to disable the peripheral clock for the timer group
  367. // However, next time when we enable the peripheral again, the registers will be reset to default value, including the watchdog registers inside the group
  368. // Then the watchdog will go into reset state, e.g. the flash boot watchdog is enabled again and reset the system very soon
  369. // periph_module_disable(timer_group_periph_signals.groups[group_id].module);
  370. }
  371. _lock_release(&s_platform.mutex);
  372. if (do_deinitialize) {
  373. free(group);
  374. ESP_LOGD(TAG, "del group (%d)", group_id);
  375. }
  376. }
  377. static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz)
  378. {
  379. unsigned int counter_src_hz = 0;
  380. esp_err_t ret = ESP_OK;
  381. int timer_id = timer->timer_id;
  382. // [clk_tree] TODO: replace the following switch table by clk_tree API
  383. switch (src_clk) {
  384. #if SOC_TIMER_GROUP_SUPPORT_APB
  385. case GPTIMER_CLK_SRC_APB:
  386. counter_src_hz = esp_clk_apb_freq();
  387. #if CONFIG_PM_ENABLE
  388. sprintf(timer->pm_lock_name, "gptimer_%d_%d", timer->group->group_id, timer_id); // e.g. gptimer_0_0
  389. ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, timer->pm_lock_name, &timer->pm_lock);
  390. ESP_RETURN_ON_ERROR(ret, TAG, "create APB_FREQ_MAX lock failed");
  391. ESP_LOGD(TAG, "install APB_FREQ_MAX lock for timer (%d,%d)", timer->group->group_id, timer_id);
  392. #endif
  393. break;
  394. #endif // SOC_TIMER_GROUP_SUPPORT_APB
  395. #if SOC_TIMER_GROUP_SUPPORT_PLL_F40M
  396. case GPTIMER_CLK_SRC_PLL_F40M:
  397. counter_src_hz = 40 * 1000 * 1000;
  398. #if CONFIG_PM_ENABLE
  399. sprintf(timer->pm_lock_name, "gptimer_%d_%d", timer->group->group_id, timer_id); // e.g. gptimer_0_0
  400. // PLL_F40M will be turned off when DFS switches CPU clock source to XTAL
  401. ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, timer->pm_lock_name, &timer->pm_lock);
  402. ESP_RETURN_ON_ERROR(ret, TAG, "create APB_FREQ_MAX lock failed");
  403. ESP_LOGD(TAG, "install APB_FREQ_MAX lock for timer (%d,%d)", timer->group->group_id, timer_id);
  404. #endif
  405. break;
  406. #endif // SOC_TIMER_GROUP_SUPPORT_PLL_F40M
  407. #if SOC_TIMER_GROUP_SUPPORT_AHB
  408. case GPTIMER_CLK_SRC_AHB:
  409. // TODO: decide which kind of PM lock we should use for such clock
  410. counter_src_hz = 48 * 1000 * 1000;
  411. break;
  412. #endif // SOC_TIMER_GROUP_SUPPORT_AHB
  413. #if SOC_TIMER_GROUP_SUPPORT_XTAL
  414. case GPTIMER_CLK_SRC_XTAL:
  415. counter_src_hz = esp_clk_xtal_freq();
  416. break;
  417. #endif // SOC_TIMER_GROUP_SUPPORT_XTAL
  418. default:
  419. ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "clock source %d is not support", src_clk);
  420. break;
  421. }
  422. timer_ll_set_clock_source(timer->hal.dev, timer_id, src_clk);
  423. timer->clk_src = src_clk;
  424. unsigned int prescale = counter_src_hz / resolution_hz; // potential resolution loss here
  425. timer_ll_set_clock_prescale(timer->hal.dev, timer_id, prescale);
  426. timer->resolution_hz = counter_src_hz / prescale; // this is the real resolution
  427. if (timer->resolution_hz != resolution_hz) {
  428. ESP_LOGW(TAG, "resolution lost, expect %"PRIu32", real %"PRIu32, resolution_hz, timer->resolution_hz);
  429. }
  430. return ret;
  431. }
  432. // Put the default ISR handler in the IRAM for better performance
  433. IRAM_ATTR static void gptimer_default_isr(void *args)
  434. {
  435. bool need_yield = false;
  436. gptimer_t *timer = (gptimer_t *)args;
  437. gptimer_group_t *group = timer->group;
  438. gptimer_alarm_cb_t on_alarm_cb = timer->on_alarm;
  439. uint32_t intr_status = timer_ll_get_intr_status(timer->hal.dev);
  440. if (intr_status & TIMER_LL_EVENT_ALARM(timer->timer_id)) {
  441. // Note: when alarm event happens, the alarm will be disabled automatically by hardware
  442. gptimer_alarm_event_data_t edata = {
  443. .count_value = timer_hal_capture_and_get_counter_value(&timer->hal),
  444. .alarm_value = timer->alarm_count,
  445. };
  446. portENTER_CRITICAL_ISR(&group->spinlock);
  447. timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id));
  448. // for auto-reload, we need to re-enable the alarm manually
  449. if (timer->flags.auto_reload_on_alarm) {
  450. timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, true);
  451. }
  452. portEXIT_CRITICAL_ISR(&group->spinlock);
  453. if (on_alarm_cb) {
  454. if (on_alarm_cb(timer, &edata, timer->user_ctx)) {
  455. need_yield = true;
  456. }
  457. }
  458. }
  459. if (need_yield) {
  460. portYIELD_FROM_ISR();
  461. }
  462. }
  463. ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  464. ///// The Following APIs are for internal use only (e.g. unit test) /////////////////////////////////////////////////
  465. ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  466. esp_err_t gptimer_get_intr_handle(gptimer_handle_t timer, intr_handle_t *ret_intr_handle)
  467. {
  468. ESP_RETURN_ON_FALSE(timer && ret_intr_handle, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  469. *ret_intr_handle = timer->intr;
  470. return ESP_OK;
  471. }
  472. esp_err_t gptimer_get_pm_lock(gptimer_handle_t timer, esp_pm_lock_handle_t *ret_pm_lock)
  473. {
  474. ESP_RETURN_ON_FALSE(timer && ret_pm_lock, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
  475. *ret_pm_lock = timer->pm_lock;
  476. return ESP_OK;
  477. }