| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901 |
- // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <string.h>
- #include <stdint.h>
- #include <limits.h>
- #include <sys/param.h>
- #include "esp_attr.h"
- #include "esp_log.h"
- #include "rom/cache.h"
- #include "rom/efuse.h"
- #include "rom/ets_sys.h"
- #include "rom/spi_flash.h"
- #include "rom/crc.h"
- #include "rom/rtc.h"
- #include "rom/uart.h"
- #include "rom/gpio.h"
- #include "rom/secure_boot.h"
- #include "soc/soc.h"
- #include "soc/cpu.h"
- #include "soc/rtc.h"
- #include "soc/dport_reg.h"
- #include "soc/io_mux_reg.h"
- #include "soc/efuse_reg.h"
- #include "soc/rtc_cntl_reg.h"
- #include "soc/timer_group_reg.h"
- #include "soc/gpio_reg.h"
- #include "soc/gpio_sig_map.h"
- #include "sdkconfig.h"
- #include "esp_image_format.h"
- #include "esp_secure_boot.h"
- #include "esp_flash_encrypt.h"
- #include "esp_flash_partitions.h"
- #include "bootloader_flash.h"
- #include "bootloader_random.h"
- #include "bootloader_config.h"
- #include "flash_qio_mode.h"
- extern int _bss_start;
- extern int _bss_end;
- extern int _data_start;
- extern int _data_end;
- static const char* TAG = "boot";
- /* Reduce literal size for some generic string literals */
- #define MAP_MSG "Mapping segment %d as %s"
- #define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped."
- void bootloader_main();
- static void unpack_load_app(const esp_image_metadata_t *data);
- static void print_flash_info(const esp_image_header_t* pfhdr);
- static void set_cache_and_start_app(uint32_t drom_addr,
- uint32_t drom_load_addr,
- uint32_t drom_size,
- uint32_t irom_addr,
- uint32_t irom_load_addr,
- uint32_t irom_size,
- uint32_t entry_addr);
- static void update_flash_config(const esp_image_header_t* pfhdr);
- static void clock_configure(void);
- static void uart_console_configure(void);
- static void wdt_reset_check(void);
- /*
- * We arrive here after the ROM bootloader finished loading this second stage bootloader from flash.
- * The hardware is mostly uninitialized, flash cache is down and the app CPU is in reset.
- * We do have a stack, so we can do the initialization in C.
- */
- void call_start_cpu0()
- {
- cpu_configure_region_protection();
- /* Sanity check that static RAM is after the stack */
- #ifndef NDEBUG
- {
- int *sp = get_sp();
- assert(&_bss_start <= &_bss_end);
- assert(&_data_start <= &_data_end);
- assert(sp < &_bss_start);
- assert(sp < &_data_start);
- }
- #endif
- //Clear bss
- memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
- /* completely reset MMU for both CPUs
- (in case serial bootloader was running) */
- Cache_Read_Disable(0);
- Cache_Read_Disable(1);
- Cache_Flush(0);
- Cache_Flush(1);
- mmu_init(0);
- DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
- mmu_init(1);
- DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
- /* (above steps probably unnecessary for most serial bootloader
- usage, all that's absolutely needed is that we unmask DROM0
- cache on the following two lines - normal ROM boot exits with
- DROM0 cache unmasked, but serial bootloader exits with it
- masked. However can't hurt to be thorough and reset
- everything.)
- The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are
- necessary to work around a hardware bug.
- */
- DPORT_REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0);
- DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0);
- bootloader_main();
- }
- /** @brief Load partition table
- *
- * Parse partition table, get useful data such as location of
- * OTA data partition, factory app partition, and test app partition.
- *
- * @param bs bootloader state structure used to save read data
- * @return return true if the partition table was succesfully loaded and MD5 checksum is valid.
- */
- bool load_partition_table(bootloader_state_t* bs)
- {
- const esp_partition_info_t *partitions;
- const int ESP_PARTITION_TABLE_DATA_LEN = 0xC00; /* length of actual data (signature is appended to this) */
- char *partition_usage;
- esp_err_t err;
- int num_partitions;
- #ifdef CONFIG_SECURE_BOOT_ENABLED
- if(esp_secure_boot_enabled()) {
- ESP_LOGI(TAG, "Verifying partition table signature...");
- err = esp_secure_boot_verify_signature(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
- if (err != ESP_OK) {
- ESP_LOGE(TAG, "Failed to verify partition table signature.");
- return false;
- }
- ESP_LOGD(TAG, "Partition table signature verified");
- }
- #endif
- partitions = bootloader_mmap(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
- if (!partitions) {
- ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
- return false;
- }
- ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_ADDR, (intptr_t)partitions);
- err = esp_partition_table_basic_verify(partitions, true, &num_partitions);
- if (err != ESP_OK) {
- ESP_LOGE(TAG, "Failed to verify partition table");
- return false;
- }
- ESP_LOGI(TAG, "Partition Table:");
- ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
- for(int i = 0; i < num_partitions; i++) {
- const esp_partition_info_t *partition = &partitions[i];
- ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
- ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
- partition_usage = "unknown";
- /* valid partition table */
- switch(partition->type) {
- case PART_TYPE_APP: /* app partition */
- switch(partition->subtype) {
- case PART_SUBTYPE_FACTORY: /* factory binary */
- bs->factory = partition->pos;
- partition_usage = "factory app";
- break;
- case PART_SUBTYPE_TEST: /* test binary */
- bs->test = partition->pos;
- partition_usage = "test app";
- break;
- default:
- /* OTA binary */
- if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
- bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
- ++bs->app_count;
- partition_usage = "OTA app";
- }
- else {
- partition_usage = "Unknown app";
- }
- break;
- }
- break; /* PART_TYPE_APP */
- case PART_TYPE_DATA: /* data partition */
- switch(partition->subtype) {
- case PART_SUBTYPE_DATA_OTA: /* ota data */
- bs->ota_info = partition->pos;
- partition_usage = "OTA data";
- break;
- case PART_SUBTYPE_DATA_RF:
- partition_usage = "RF data";
- break;
- case PART_SUBTYPE_DATA_WIFI:
- partition_usage = "WiFi data";
- break;
- default:
- partition_usage = "Unknown data";
- break;
- }
- break; /* PARTITION_USAGE_DATA */
- default: /* other partition type */
- break;
- }
- /* print partition type info */
- ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
- partition->type, partition->subtype,
- partition->pos.offset, partition->pos.size);
- }
- bootloader_munmap(partitions);
- ESP_LOGI(TAG,"End of partition table");
- return true;
- }
- static uint32_t ota_select_crc(const esp_ota_select_entry_t *s)
- {
- return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
- }
- static bool ota_select_valid(const esp_ota_select_entry_t *s)
- {
- return s->ota_seq != UINT32_MAX && s->crc == ota_select_crc(s);
- }
- /* indexes used by index_to_partition are the OTA index
- number, or these special constants */
- #define FACTORY_INDEX (-1)
- #define TEST_APP_INDEX (-2)
- #define INVALID_INDEX (-99)
- /* Given a partition index, return the partition position data from the bootloader_state_t structure */
- static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index)
- {
- if (index == FACTORY_INDEX) {
- return bs->factory;
- }
- if (index == TEST_APP_INDEX) {
- return bs->test;
- }
- if (index >= 0 && index < MAX_OTA_SLOTS && index < bs->app_count) {
- return bs->ota[index];
- }
- esp_partition_pos_t invalid = { 0 };
- return invalid;
- }
- static void log_invalid_app_partition(int index)
- {
- const char *not_bootable = " is not bootable"; /* save a few string literal bytes */
- switch(index) {
- case FACTORY_INDEX:
- ESP_LOGE(TAG, "Factory app partition%s", not_bootable);
- break;
- case TEST_APP_INDEX:
- ESP_LOGE(TAG, "Factory test app partition%s", not_bootable);
- break;
- default:
- ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable);
- break;
- }
- }
- /* Return the index of the selected boot partition.
- This is the preferred boot partition, as determined by the partition table &
- any OTA sequence number found in OTA data.
- This partition will only be booted if it contains a valid app image, otherwise load_boot_image() will search
- for a valid partition using this selection as the starting point.
- */
- static int get_selected_boot_partition(const bootloader_state_t *bs)
- {
- esp_ota_select_entry_t sa,sb;
- const esp_ota_select_entry_t *ota_select_map;
- if (bs->ota_info.offset != 0) {
- // partition table has OTA data partition
- if (bs->ota_info.size < 2 * SPI_SEC_SIZE) {
- ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", bs->ota_info.size, sizeof(esp_ota_select_entry_t));
- return INVALID_INDEX; // can't proceed
- }
- ESP_LOGD(TAG, "OTA data offset 0x%x", bs->ota_info.offset);
- ota_select_map = bootloader_mmap(bs->ota_info.offset, bs->ota_info.size);
- if (!ota_select_map) {
- ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs->ota_info.offset, bs->ota_info.size);
- return INVALID_INDEX; // can't proceed
- }
- memcpy(&sa, ota_select_map, sizeof(esp_ota_select_entry_t));
- memcpy(&sb, (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
- bootloader_munmap(ota_select_map);
- ESP_LOGD(TAG, "OTA sequence values A 0x%08x B 0x%08x", sa.ota_seq, sb.ota_seq);
- if(sa.ota_seq == UINT32_MAX && sb.ota_seq == UINT32_MAX) {
- ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF)");
- if (bs->factory.offset != 0) {
- ESP_LOGI(TAG, "Defaulting to factory image");
- return FACTORY_INDEX;
- } else {
- ESP_LOGI(TAG, "No factory image, trying OTA 0");
- return 0;
- }
- } else {
- bool ota_valid = false;
- const char *ota_msg;
- int ota_seq; // Raw OTA sequence number. May be more than # of OTA slots
- if(ota_select_valid(&sa) && ota_select_valid(&sb)) {
- ota_valid = true;
- ota_msg = "Both OTA values";
- ota_seq = MAX(sa.ota_seq, sb.ota_seq) - 1;
- } else if(ota_select_valid(&sa)) {
- ota_valid = true;
- ota_msg = "Only OTA sequence A is";
- ota_seq = sa.ota_seq - 1;
- } else if(ota_select_valid(&sb)) {
- ota_valid = true;
- ota_msg = "Only OTA sequence B is";
- ota_seq = sb.ota_seq - 1;
- }
- if (ota_valid) {
- int ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection
- ESP_LOGD(TAG, "%s valid. Mapping seq %d -> OTA slot %d", ota_msg, ota_seq, ota_slot);
- return ota_slot;
- } else if (bs->factory.offset != 0) {
- ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
- return FACTORY_INDEX;
- } else {
- ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions");
- return FACTORY_INDEX;
- }
- }
- }
- // otherwise, start from factory app partition and let the search logic
- // proceed from there
- return FACTORY_INDEX;
- }
- /* Return true if a partition has a valid app image that was successfully loaded */
- static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data)
- {
- if (partition->size == 0) {
- ESP_LOGD(TAG, "Can't boot from zero-length partition");
- return false;
- }
- if (esp_image_load(ESP_IMAGE_LOAD, partition, data) == ESP_OK) {
- ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x",
- partition->offset);
- return true;
- }
- return false;
- }
- #define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x"
- /* Load the app for booting. Start from partition 'start_index', if not bootable then work backwards to FACTORY_INDEX
- * (ie try any OTA slots in descending order and then the factory partition).
- *
- * If still nothing, start from 'start_index + 1' and work up to highest numbered OTA partition.
- *
- * If still nothing, try TEST_APP_INDEX
- *
- * Returns true on success, false if there's no bootable app in the partition table.
- */
- static bool load_boot_image(const bootloader_state_t *bs, int start_index, esp_image_metadata_t *result)
- {
- int index = start_index;
- esp_partition_pos_t part;
- /* work backwards from start_index, down to the factory app */
- for(index = start_index; index >= FACTORY_INDEX; index--) {
- part = index_to_partition(bs, index);
- if (part.size == 0) {
- continue;
- }
- ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
- if (try_load_partition(&part, result)) {
- return true;
- }
- log_invalid_app_partition(index);
- }
- /* failing that work forwards from start_index, try valid OTA slots */
- for(index = start_index + 1; index < bs->app_count; index++) {
- part = index_to_partition(bs, index);
- if (part.size == 0) {
- continue;
- }
- ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
- if (try_load_partition(&part, result)) {
- return true;
- }
- log_invalid_app_partition(index);
- }
- if (try_load_partition(&bs->test, result)) {
- ESP_LOGW(TAG, "Falling back to test app as only bootable partition");
- return true;
- }
- ESP_LOGE(TAG, "No bootable app partitions in the partition table");
- bzero(result, sizeof(esp_image_metadata_t));
- return false;
- }
- /**
- * @function : bootloader_main
- * @description: entry function of 2nd bootloader
- *
- * @inputs: void
- */
- void bootloader_main()
- {
- clock_configure();
- uart_console_configure();
- wdt_reset_check();
- ESP_LOGI(TAG, "ESP-IDF %s 2nd stage bootloader", IDF_VER);
- #if defined(CONFIG_SECURE_BOOT_ENABLED) || defined(CONFIG_FLASH_ENCRYPTION_ENABLED)
- esp_err_t err;
- #endif
- esp_image_header_t fhdr;
- bootloader_state_t bs = { 0 };
- ESP_LOGI(TAG, "compile time " __TIME__ );
- ets_set_appcpu_boot_addr(0);
- /* disable watch dog here */
- REG_CLR_BIT( RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
- REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN );
- #ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
- const uint32_t spiconfig = ets_efuse_get_spiconfig();
- if(spiconfig != EFUSE_SPICONFIG_SPI_DEFAULTS && spiconfig != EFUSE_SPICONFIG_HSPI_DEFAULTS) {
- ESP_LOGE(TAG, "SPI flash pins are overridden. \"Enable SPI flash ROM driver patched functions\" must be enabled in menuconfig");
- return;
- }
- #endif
- esp_rom_spiflash_unlock();
- ESP_LOGI(TAG, "Enabling RNG early entropy source...");
- bootloader_random_enable();
- #if CONFIG_FLASHMODE_QIO || CONFIG_FLASHMODE_QOUT
- bootloader_enable_qio_mode();
- #endif
- if (bootloader_flash_read(ESP_BOOTLOADER_OFFSET, &fhdr,
- sizeof(esp_image_header_t), true) != ESP_OK) {
- ESP_LOGE(TAG, "failed to load bootloader header!");
- return;
- }
- print_flash_info(&fhdr);
- update_flash_config(&fhdr);
- if (!load_partition_table(&bs)) {
- ESP_LOGE(TAG, "load partition table error!");
- return;
- }
- int boot_index = get_selected_boot_partition(&bs);
- if (boot_index == INVALID_INDEX) {
- return; // Unrecoverable failure (not due to corrupt ota data or bad partition contents)
- }
- // Start from the default, look for the first bootable partition
- esp_image_metadata_t image_data;
- if (!load_boot_image(&bs, boot_index, &image_data)) {
- return;
- }
- #ifdef CONFIG_SECURE_BOOT_ENABLED
- /* Generate secure digest from this bootloader to protect future
- modifications */
- ESP_LOGI(TAG, "Checking secure boot...");
- err = esp_secure_boot_permanently_enable();
- if (err != ESP_OK) {
- ESP_LOGE(TAG, "Bootloader digest generation failed (%d). SECURE BOOT IS NOT ENABLED.", err);
- /* Allow booting to continue, as the failure is probably
- due to user-configured EFUSEs for testing...
- */
- }
- #endif
- #ifdef CONFIG_FLASH_ENCRYPTION_ENABLED
- /* encrypt flash */
- ESP_LOGI(TAG, "Checking flash encryption...");
- bool flash_encryption_enabled = esp_flash_encryption_enabled();
- err = esp_flash_encrypt_check_and_update();
- if (err != ESP_OK) {
- ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
- return;
- }
- if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
- /* Flash encryption was just enabled for the first time,
- so issue a system reset to ensure flash encryption
- cache resets properly */
- ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
- REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
- return;
- }
- #endif
- ESP_LOGI(TAG, "Disabling RNG early entropy source...");
- bootloader_random_disable();
- // copy loaded segments to RAM, set up caches for mapped segments, and start application
- unpack_load_app(&image_data);
- }
- static void unpack_load_app(const esp_image_metadata_t* data)
- {
- uint32_t drom_addr = 0;
- uint32_t drom_load_addr = 0;
- uint32_t drom_size = 0;
- uint32_t irom_addr = 0;
- uint32_t irom_load_addr = 0;
- uint32_t irom_size = 0;
- // Find DROM & IROM addresses, to configure cache mappings
- for (int i = 0; i < data->image.segment_count; i++) {
- const esp_image_segment_header_t *header = &data->segments[i];
- if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) {
- if (drom_addr != 0) {
- ESP_LOGE(TAG, MAP_ERR_MSG, "DROM");
- } else {
- ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM");
- }
- drom_addr = data->segment_data[i];
- drom_load_addr = header->load_addr;
- drom_size = header->data_len;
- }
- if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) {
- if (irom_addr != 0) {
- ESP_LOGE(TAG, MAP_ERR_MSG, "IROM");
- } else {
- ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM");
- }
- irom_addr = data->segment_data[i];
- irom_load_addr = header->load_addr;
- irom_size = header->data_len;
- }
- }
- ESP_LOGD(TAG, "calling set_cache_and_start_app");
- set_cache_and_start_app(drom_addr,
- drom_load_addr,
- drom_size,
- irom_addr,
- irom_load_addr,
- irom_size,
- data->image.entry_addr);
- }
- static void set_cache_and_start_app(
- uint32_t drom_addr,
- uint32_t drom_load_addr,
- uint32_t drom_size,
- uint32_t irom_addr,
- uint32_t irom_load_addr,
- uint32_t irom_size,
- uint32_t entry_addr)
- {
- ESP_LOGD(TAG, "configure drom and irom and start");
- Cache_Read_Disable( 0 );
- Cache_Flush( 0 );
- /* Clear the MMU entries that are already set up,
- so the new app only has the mappings it creates.
- */
- for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) {
- DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
- }
- uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k
- ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
- int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
- ESP_LOGV(TAG, "rc=%d", rc );
- rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
- ESP_LOGV(TAG, "rc=%d", rc );
- uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k
- ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
- rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
- ESP_LOGV(TAG, "rc=%d", rc );
- rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
- ESP_LOGV(TAG, "rc=%d", rc );
- DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
- DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 );
- Cache_Read_Enable( 0 );
- // Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
- ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
- typedef void (*entry_t)(void);
- entry_t entry = ((entry_t) entry_addr);
- // TODO: we have used quite a bit of stack at this point.
- // use "movsp" instruction to reset stack back to where ROM stack starts.
- (*entry)();
- }
- static void update_flash_config(const esp_image_header_t* pfhdr)
- {
- uint32_t size;
- switch(pfhdr->spi_size) {
- case ESP_IMAGE_FLASH_SIZE_1MB:
- size = 1;
- break;
- case ESP_IMAGE_FLASH_SIZE_2MB:
- size = 2;
- break;
- case ESP_IMAGE_FLASH_SIZE_4MB:
- size = 4;
- break;
- case ESP_IMAGE_FLASH_SIZE_8MB:
- size = 8;
- break;
- case ESP_IMAGE_FLASH_SIZE_16MB:
- size = 16;
- break;
- default:
- size = 2;
- }
- Cache_Read_Disable( 0 );
- // Set flash chip size
- esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff);
- // TODO: set mode
- // TODO: set frequency
- Cache_Flush(0);
- Cache_Read_Enable( 0 );
- }
- static void print_flash_info(const esp_image_header_t* phdr)
- {
- #if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE)
- ESP_LOGD(TAG, "magic %02x", phdr->magic );
- ESP_LOGD(TAG, "segments %02x", phdr->segment_count );
- ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode );
- ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed );
- ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size );
- const char* str;
- switch ( phdr->spi_speed ) {
- case ESP_IMAGE_SPI_SPEED_40M:
- str = "40MHz";
- break;
- case ESP_IMAGE_SPI_SPEED_26M:
- str = "26.7MHz";
- break;
- case ESP_IMAGE_SPI_SPEED_20M:
- str = "20MHz";
- break;
- case ESP_IMAGE_SPI_SPEED_80M:
- str = "80MHz";
- break;
- default:
- str = "20MHz";
- break;
- }
- ESP_LOGI(TAG, "SPI Speed : %s", str );
- /* SPI mode could have been set to QIO during boot already,
- so test the SPI registers not the flash header */
- uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0));
- if (spi_ctrl & SPI_FREAD_QIO) {
- str = "QIO";
- } else if (spi_ctrl & SPI_FREAD_QUAD) {
- str = "QOUT";
- } else if (spi_ctrl & SPI_FREAD_DIO) {
- str = "DIO";
- } else if (spi_ctrl & SPI_FREAD_DUAL) {
- str = "DOUT";
- } else if (spi_ctrl & SPI_FASTRD_MODE) {
- str = "FAST READ";
- } else {
- str = "SLOW READ";
- }
- ESP_LOGI(TAG, "SPI Mode : %s", str );
- switch ( phdr->spi_size ) {
- case ESP_IMAGE_FLASH_SIZE_1MB:
- str = "1MB";
- break;
- case ESP_IMAGE_FLASH_SIZE_2MB:
- str = "2MB";
- break;
- case ESP_IMAGE_FLASH_SIZE_4MB:
- str = "4MB";
- break;
- case ESP_IMAGE_FLASH_SIZE_8MB:
- str = "8MB";
- break;
- case ESP_IMAGE_FLASH_SIZE_16MB:
- str = "16MB";
- break;
- default:
- str = "2MB";
- break;
- }
- ESP_LOGI(TAG, "SPI Flash Size : %s", str );
- #endif
- }
- static void clock_configure(void)
- {
- /* Set CPU to 80MHz. Keep other clocks unmodified. */
- rtc_cpu_freq_t cpu_freq = RTC_CPU_FREQ_80M;
- /* On ESP32 rev 0, switching to 80MHz if clock was previously set to
- * 240 MHz may cause the chip to lock up (see section 3.5 of the errata
- * document). For rev. 0, switch to 240 instead if it was chosen in
- * menuconfig.
- */
- uint32_t chip_ver_reg = REG_READ(EFUSE_BLK0_RDATA3_REG);
- if ((chip_ver_reg & EFUSE_RD_CHIP_VER_REV1_M) == 0 &&
- CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ == 240) {
- cpu_freq = RTC_CPU_FREQ_240M;
- }
- rtc_clk_config_t clk_cfg = RTC_CLK_CONFIG_DEFAULT();
- clk_cfg.xtal_freq = CONFIG_ESP32_XTAL_FREQ;
- clk_cfg.cpu_freq = cpu_freq;
- clk_cfg.slow_freq = rtc_clk_slow_freq_get();
- clk_cfg.fast_freq = rtc_clk_fast_freq_get();
- rtc_clk_init(clk_cfg);
- /* As a slight optimization, if 32k XTAL was enabled in sdkconfig, we enable
- * it here. Usually it needs some time to start up, so we amortize at least
- * part of the start up time by enabling 32k XTAL early.
- * App startup code will wait until the oscillator has started up.
- */
- #ifdef CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
- if (!rtc_clk_32k_enabled()) {
- rtc_clk_32k_bootstrap();
- }
- #endif
- }
- static void uart_console_configure(void)
- {
- #if CONFIG_CONSOLE_UART_NONE
- ets_install_putc1(NULL);
- ets_install_putc2(NULL);
- #else // CONFIG_CONSOLE_UART_NONE
- const int uart_num = CONFIG_CONSOLE_UART_NUM;
- uartAttach();
- ets_install_uart_printf();
- // ROM bootloader may have put a lot of text into UART0 FIFO.
- // Wait for it to be printed.
- uart_tx_wait_idle(0);
- #if CONFIG_CONSOLE_UART_CUSTOM
- // Some constants to make the following code less upper-case
- const int uart_tx_gpio = CONFIG_CONSOLE_UART_TX_GPIO;
- const int uart_rx_gpio = CONFIG_CONSOLE_UART_RX_GPIO;
- // Switch to the new UART (this just changes UART number used for
- // ets_printf in ROM code).
- uart_tx_switch(uart_num);
- // If console is attached to UART1 or if non-default pins are used,
- // need to reconfigure pins using GPIO matrix
- if (uart_num != 0 || uart_tx_gpio != 1 || uart_rx_gpio != 3) {
- // Change pin mode for GPIO1/3 from UART to GPIO
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_GPIO3);
- PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_GPIO1);
- // Route GPIO signals to/from pins
- // (arrays should be optimized away by the compiler)
- const uint32_t tx_idx_list[3] = { U0TXD_OUT_IDX, U1TXD_OUT_IDX, U2TXD_OUT_IDX };
- const uint32_t rx_idx_list[3] = { U0RXD_IN_IDX, U1RXD_IN_IDX, U2RXD_IN_IDX };
- const uint32_t tx_idx = tx_idx_list[uart_num];
- const uint32_t rx_idx = rx_idx_list[uart_num];
- gpio_matrix_out(uart_tx_gpio, tx_idx, 0, 0);
- gpio_matrix_in(uart_rx_gpio, rx_idx, 0);
- }
- #endif // CONFIG_CONSOLE_UART_CUSTOM
- // Set configured UART console baud rate
- const int uart_baud = CONFIG_CONSOLE_UART_BAUDRATE;
- uart_div_modify(uart_num, (rtc_clk_apb_freq_get() << 4) / uart_baud);
- #endif // CONFIG_CONSOLE_UART_NONE
- }
- static void wdt_reset_cpu0_info_enable(void)
- {
- //We do not reset core1 info here because it didn't work before cpu1 was up. So we put it into call_start_cpu1.
- DPORT_REG_SET_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_PDEBUG_ENABLE | DPORT_PRO_CPU_RECORD_ENABLE);
- DPORT_REG_CLR_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_RECORD_ENABLE);
- }
- static void wdt_reset_info_dump(int cpu)
- {
- uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0,
- lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0;
- char *cpu_name = cpu ? "APP" : "PRO";
- if (cpu == 0) {
- stat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_STATUS_REG);
- pid = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PID_REG);
- inst = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGINST_REG);
- dstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGSTATUS_REG);
- data = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGDATA_REG);
- pc = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGPC_REG);
- lsstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0STAT_REG);
- lsaddr = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0ADDR_REG);
- lsdata = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0DATA_REG);
- } else {
- stat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_STATUS_REG);
- pid = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PID_REG);
- inst = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGINST_REG);
- dstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGSTATUS_REG);
- data = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGDATA_REG);
- pc = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGPC_REG);
- lsstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0STAT_REG);
- lsaddr = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0ADDR_REG);
- lsdata = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0DATA_REG);
- }
- if (DPORT_RECORD_PDEBUGINST_SZ(inst) == 0 &&
- DPORT_RECORD_PDEBUGSTATUS_BBCAUSE(dstat) == DPORT_RECORD_PDEBUGSTATUS_BBCAUSE_WAITI) {
- ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x (waiti mode)", cpu_name, pc);
- } else {
- ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x", cpu_name, pc);
- }
- ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr);
- ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata);
- }
- static void wdt_reset_check(void)
- {
- int wdt_rst = 0;
- RESET_REASON rst_reas[2];
- rst_reas[0] = rtc_get_reset_reason(0);
- rst_reas[1] = rtc_get_reset_reason(1);
- if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET ||
- rst_reas[0] == TGWDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) {
- ESP_LOGW(TAG, "PRO CPU has been reset by WDT.");
- wdt_rst = 1;
- }
- if (rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET || rst_reas[1] == TG1WDT_SYS_RESET ||
- rst_reas[1] == TGWDT_CPU_RESET || rst_reas[1] == RTCWDT_CPU_RESET) {
- ESP_LOGW(TAG, "APP CPU has been reset by WDT.");
- wdt_rst = 1;
- }
- if (wdt_rst) {
- // if reset by WDT dump info from trace port
- wdt_reset_info_dump(0);
- wdt_reset_info_dump(1);
- }
- wdt_reset_cpu0_info_enable();
- }
- void __assert_func(const char *file, int line, const char *func, const char *expr)
- {
- ESP_LOGE(TAG, "Assert failed in %s, %s:%d (%s)", func, file, line, expr);
- while(1) {}
- }
|