uart.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #define XOFF (char)0x13
  32. #define XON (char)0x11
  33. static const char* UART_TAG = "uart";
  34. #define UART_CHECK(a, str, ret_val) \
  35. if (!(a)) { \
  36. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  37. return (ret_val); \
  38. }
  39. #define UART_EMPTY_THRESH_DEFAULT (10)
  40. #define UART_FULL_THRESH_DEFAULT (120)
  41. #define UART_TOUT_THRESH_DEFAULT (10)
  42. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  43. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  44. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  45. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  46. typedef struct {
  47. uart_event_type_t type; /*!< UART TX data type */
  48. struct {
  49. int brk_len;
  50. size_t size;
  51. uint8_t data[0];
  52. } tx_data;
  53. } uart_tx_data_t;
  54. typedef struct {
  55. uart_port_t uart_num; /*!< UART port number*/
  56. int queue_size; /*!< UART event queue size*/
  57. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  58. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  59. //rx parameters
  60. int rx_buffered_len; /*!< UART cached data length */
  61. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  62. int rx_buf_size; /*!< RX ring buffer size */
  63. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  64. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  65. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  66. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  67. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  68. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  69. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  70. //tx parameters
  71. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  72. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  73. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  74. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  75. int tx_buf_size; /*!< TX ring buffer size */
  76. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  77. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  78. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  79. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  80. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  81. uint32_t tx_len_cur;
  82. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  83. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  84. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  85. } uart_obj_t;
  86. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  87. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  88. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  89. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  90. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  91. {
  92. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  93. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  94. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  95. UART[uart_num]->conf0.bit_num = data_bit;
  96. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  97. return ESP_OK;
  98. }
  99. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  100. {
  101. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  102. *(data_bit) = UART[uart_num]->conf0.bit_num;
  103. return ESP_OK;
  104. }
  105. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  106. {
  107. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  108. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  109. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  110. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  111. if (stop_bit == UART_STOP_BITS_2) {
  112. stop_bit = UART_STOP_BITS_1;
  113. UART[uart_num]->rs485_conf.dl1_en = 1;
  114. } else {
  115. UART[uart_num]->rs485_conf.dl1_en = 0;
  116. }
  117. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  118. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  119. return ESP_OK;
  120. }
  121. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  122. {
  123. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  124. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  125. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  126. (*stop_bit) = UART_STOP_BITS_2;
  127. } else {
  128. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  129. }
  130. return ESP_OK;
  131. }
  132. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  133. {
  134. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  135. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  136. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  137. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  138. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. int val = UART[uart_num]->conf0.val;
  145. if(val & UART_PARITY_EN_M) {
  146. if(val & UART_PARITY_M) {
  147. (*parity_mode) = UART_PARITY_ODD;
  148. } else {
  149. (*parity_mode) = UART_PARITY_EVEN;
  150. }
  151. } else {
  152. (*parity_mode) = UART_PARITY_DISABLE;
  153. }
  154. return ESP_OK;
  155. }
  156. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  157. {
  158. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  159. esp_err_t ret = ESP_OK;
  160. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  161. int uart_clk_freq;
  162. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  163. /* this UART has been configured to use REF_TICK */
  164. uart_clk_freq = REF_CLK_FREQ;
  165. } else {
  166. uart_clk_freq = esp_clk_apb_freq();
  167. }
  168. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  169. if (clk_div < 16) {
  170. /* baud rate is too high for this clock frequency */
  171. ret = ESP_ERR_INVALID_ARG;
  172. } else {
  173. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  174. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  175. }
  176. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  177. return ret;
  178. }
  179. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  180. {
  181. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  182. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  183. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  184. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  185. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  186. return ESP_OK;
  187. }
  188. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  189. {
  190. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  191. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  192. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  193. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  194. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  195. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  196. return ESP_OK;
  197. }
  198. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  199. {
  200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  201. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  202. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  203. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  204. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  205. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  206. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  207. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  208. UART[uart_num]->swfc_conf.xon_char = XON;
  209. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  210. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  211. return ESP_OK;
  212. }
  213. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  214. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  215. {
  216. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  217. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  218. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  219. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  220. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  221. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  222. UART[uart_num]->conf1.rx_flow_en = 1;
  223. } else {
  224. UART[uart_num]->conf1.rx_flow_en = 0;
  225. }
  226. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  227. UART[uart_num]->conf0.tx_flow_en = 1;
  228. } else {
  229. UART[uart_num]->conf0.tx_flow_en = 0;
  230. }
  231. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  232. return ESP_OK;
  233. }
  234. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  235. {
  236. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  237. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  238. if(UART[uart_num]->conf1.rx_flow_en) {
  239. val |= UART_HW_FLOWCTRL_RTS;
  240. }
  241. if(UART[uart_num]->conf0.tx_flow_en) {
  242. val |= UART_HW_FLOWCTRL_CTS;
  243. }
  244. (*flow_ctrl) = val;
  245. return ESP_OK;
  246. }
  247. static esp_err_t uart_reset_fifo(uart_port_t uart_num)
  248. {
  249. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  250. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  251. UART[uart_num]->conf0.rxfifo_rst = 1;
  252. UART[uart_num]->conf0.rxfifo_rst = 0;
  253. UART[uart_num]->conf0.txfifo_rst = 1;
  254. UART[uart_num]->conf0.txfifo_rst = 0;
  255. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  256. return ESP_OK;
  257. }
  258. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  259. {
  260. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  261. //intr_clr register is write-only
  262. UART[uart_num]->int_clr.val = clr_mask;
  263. return ESP_OK;
  264. }
  265. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  266. {
  267. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  268. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  269. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  270. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  271. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  272. return ESP_OK;
  273. }
  274. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  275. {
  276. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  277. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  278. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  279. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  280. return ESP_OK;
  281. }
  282. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  283. {
  284. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  285. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  286. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  287. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  288. UART[uart_num]->at_cmd_char.data = pattern_chr;
  289. UART[uart_num]->at_cmd_char.char_num = chr_num;
  290. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  291. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  292. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  293. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  294. }
  295. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  296. {
  297. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  298. }
  299. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  300. {
  301. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  302. }
  303. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  304. {
  305. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  306. }
  307. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  308. {
  309. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  310. }
  311. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  312. {
  313. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  314. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  315. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  316. UART[uart_num]->int_clr.txfifo_empty = 1;
  317. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  318. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  319. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  320. return ESP_OK;
  321. }
  322. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  323. {
  324. int ret;
  325. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  326. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  327. switch(uart_num) {
  328. case UART_NUM_1:
  329. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  330. break;
  331. case UART_NUM_2:
  332. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  333. break;
  334. case UART_NUM_0:
  335. default:
  336. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  337. break;
  338. }
  339. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  340. return ret;
  341. }
  342. esp_err_t uart_isr_free(uart_port_t uart_num)
  343. {
  344. esp_err_t ret;
  345. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  346. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  347. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  348. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  349. p_uart_obj[uart_num]->intr_handle=NULL;
  350. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  351. return ret;
  352. }
  353. //internal signal can be output to multiple GPIO pads
  354. //only one GPIO pad can connect with input signal
  355. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  356. {
  357. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  358. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  359. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  360. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  361. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  362. int tx_sig, rx_sig, rts_sig, cts_sig;
  363. switch(uart_num) {
  364. case UART_NUM_0:
  365. tx_sig = U0TXD_OUT_IDX;
  366. rx_sig = U0RXD_IN_IDX;
  367. rts_sig = U0RTS_OUT_IDX;
  368. cts_sig = U0CTS_IN_IDX;
  369. break;
  370. case UART_NUM_1:
  371. tx_sig = U1TXD_OUT_IDX;
  372. rx_sig = U1RXD_IN_IDX;
  373. rts_sig = U1RTS_OUT_IDX;
  374. cts_sig = U1CTS_IN_IDX;
  375. break;
  376. case UART_NUM_2:
  377. tx_sig = U2TXD_OUT_IDX;
  378. rx_sig = U2RXD_IN_IDX;
  379. rts_sig = U2RTS_OUT_IDX;
  380. cts_sig = U2CTS_IN_IDX;
  381. break;
  382. case UART_NUM_MAX:
  383. default:
  384. tx_sig = U0TXD_OUT_IDX;
  385. rx_sig = U0RXD_IN_IDX;
  386. rts_sig = U0RTS_OUT_IDX;
  387. cts_sig = U0CTS_IN_IDX;
  388. break;
  389. }
  390. if(tx_io_num >= 0) {
  391. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  392. gpio_set_level(tx_io_num, 1);
  393. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  394. }
  395. if(rx_io_num >= 0) {
  396. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  397. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  398. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  399. gpio_matrix_in(rx_io_num, rx_sig, 0);
  400. }
  401. if(rts_io_num >= 0) {
  402. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  403. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  404. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  405. }
  406. if(cts_io_num >= 0) {
  407. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  408. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  409. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  410. gpio_matrix_in(cts_io_num, cts_sig, 0);
  411. }
  412. return ESP_OK;
  413. }
  414. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  415. {
  416. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  417. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  418. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  419. UART[uart_num]->conf0.sw_rts = level & 0x1;
  420. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  421. return ESP_OK;
  422. }
  423. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  424. {
  425. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  426. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  427. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  428. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  429. return ESP_OK;
  430. }
  431. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  432. {
  433. esp_err_t r;
  434. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  435. UART_CHECK((uart_config), "param null", ESP_FAIL);
  436. if(uart_num == UART_NUM_0) {
  437. periph_module_enable(PERIPH_UART0_MODULE);
  438. } else if(uart_num == UART_NUM_1) {
  439. periph_module_enable(PERIPH_UART1_MODULE);
  440. } else if(uart_num == UART_NUM_2) {
  441. periph_module_enable(PERIPH_UART2_MODULE);
  442. }
  443. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  444. if (r != ESP_OK) return r;
  445. UART[uart_num]->conf0.val =
  446. (uart_config->parity << UART_PARITY_S)
  447. | (uart_config->data_bits << UART_BIT_NUM_S)
  448. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  449. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  450. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  451. if (r != ESP_OK) return r;
  452. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  453. return r;
  454. }
  455. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  456. {
  457. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  458. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  459. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  460. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  461. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  462. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  463. UART[uart_num]->conf1.rx_tout_en = 1;
  464. } else {
  465. UART[uart_num]->conf1.rx_tout_en = 0;
  466. }
  467. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  468. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  469. }
  470. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  471. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  472. }
  473. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  474. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  475. return ESP_OK;
  476. }
  477. //internal isr handler for default driver code.
  478. static void uart_rx_intr_handler_default(void *param)
  479. {
  480. uart_obj_t *p_uart = (uart_obj_t*) param;
  481. uint8_t uart_num = p_uart->uart_num;
  482. uart_dev_t* uart_reg = UART[uart_num];
  483. uint8_t buf_idx = 0;
  484. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  485. int rx_fifo_len = 0;
  486. uart_event_t uart_event;
  487. portBASE_TYPE HPTaskAwoken = 0;
  488. while(uart_intr_status != 0x0) {
  489. buf_idx = 0;
  490. uart_event.type = UART_EVENT_MAX;
  491. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  492. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  493. uart_reg->int_ena.txfifo_empty = 0;
  494. uart_reg->int_clr.txfifo_empty = 1;
  495. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  496. if(p_uart->tx_waiting_brk) {
  497. continue;
  498. }
  499. //TX semaphore will only be used when tx_buf_size is zero.
  500. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  501. p_uart->tx_waiting_fifo = false;
  502. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  503. if(HPTaskAwoken == pdTRUE) {
  504. portYIELD_FROM_ISR() ;
  505. }
  506. }
  507. else {
  508. //We don't use TX ring buffer, because the size is zero.
  509. if(p_uart->tx_buf_size == 0) {
  510. continue;
  511. }
  512. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  513. bool en_tx_flg = false;
  514. //We need to put a loop here, in case all the buffer items are very short.
  515. //That would cause a watch_dog reset because empty interrupt happens so often.
  516. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  517. while(tx_fifo_rem) {
  518. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  519. size_t size;
  520. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  521. if(p_uart->tx_head) {
  522. //The first item is the data description
  523. //Get the first item to get the data information
  524. if(p_uart->tx_len_tot == 0) {
  525. p_uart->tx_ptr = NULL;
  526. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  527. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  528. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  529. p_uart->tx_brk_flg = 1;
  530. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  531. }
  532. //We have saved the data description from the 1st item, return buffer.
  533. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  534. if(HPTaskAwoken == pdTRUE) {
  535. portYIELD_FROM_ISR() ;
  536. }
  537. }else if(p_uart->tx_ptr == NULL) {
  538. //Update the TX item pointer, we will need this to return item to buffer.
  539. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  540. en_tx_flg = true;
  541. p_uart->tx_len_cur = size;
  542. }
  543. }
  544. else {
  545. //Can not get data from ring buffer, return;
  546. break;
  547. }
  548. }
  549. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  550. //To fill the TX FIFO.
  551. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  552. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  553. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  554. }
  555. p_uart->tx_len_tot -= send_len;
  556. p_uart->tx_len_cur -= send_len;
  557. tx_fifo_rem -= send_len;
  558. if(p_uart->tx_len_cur == 0) {
  559. //Return item to ring buffer.
  560. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  561. if(HPTaskAwoken == pdTRUE) {
  562. portYIELD_FROM_ISR() ;
  563. }
  564. p_uart->tx_head = NULL;
  565. p_uart->tx_ptr = NULL;
  566. //Sending item done, now we need to send break if there is a record.
  567. //Set TX break signal after FIFO is empty
  568. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  569. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  570. uart_reg->int_ena.tx_brk_done = 0;
  571. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  572. uart_reg->conf0.txd_brk = 1;
  573. uart_reg->int_clr.tx_brk_done = 1;
  574. uart_reg->int_ena.tx_brk_done = 1;
  575. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  576. p_uart->tx_waiting_brk = 1;
  577. } else {
  578. //enable TX empty interrupt
  579. en_tx_flg = true;
  580. }
  581. } else {
  582. //enable TX empty interrupt
  583. en_tx_flg = true;
  584. }
  585. }
  586. }
  587. if(en_tx_flg) {
  588. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  589. uart_reg->int_clr.txfifo_empty = 1;
  590. uart_reg->int_ena.txfifo_empty = 1;
  591. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  592. }
  593. }
  594. }
  595. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  596. if(p_uart->rx_buffer_full_flg == false) {
  597. //Get the buffer from the FIFO
  598. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  599. p_uart->rx_stash_len = rx_fifo_len;
  600. //We have to read out all data in RX FIFO to clear the interrupt signal
  601. while(buf_idx < rx_fifo_len) {
  602. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  603. }
  604. //After Copying the Data From FIFO ,Clear intr_status
  605. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  606. uart_reg->int_clr.rxfifo_tout = 1;
  607. uart_reg->int_clr.rxfifo_full = 1;
  608. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  609. uart_event.size = rx_fifo_len;
  610. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  611. //Mainly for applications that uses flow control or small ring buffer.
  612. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  613. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  614. uart_reg->int_ena.rxfifo_full = 0;
  615. uart_reg->int_ena.rxfifo_tout = 0;
  616. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  617. p_uart->rx_buffer_full_flg = true;
  618. uart_event.type = UART_BUFFER_FULL;
  619. } else {
  620. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  621. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  622. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  623. uart_event.type = UART_DATA;
  624. }
  625. if(HPTaskAwoken == pdTRUE) {
  626. portYIELD_FROM_ISR() ;
  627. }
  628. } else {
  629. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  630. uart_reg->int_ena.rxfifo_full = 0;
  631. uart_reg->int_ena.rxfifo_tout = 0;
  632. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  633. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  634. uart_event.type = UART_BUFFER_FULL;
  635. }
  636. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  637. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  638. uart_reg->conf0.rxfifo_rst = 1;
  639. uart_reg->conf0.rxfifo_rst = 0;
  640. uart_reg->int_clr.rxfifo_ovf = 1;
  641. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  642. uart_event.type = UART_FIFO_OVF;
  643. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  644. uart_reg->int_clr.brk_det = 1;
  645. uart_event.type = UART_BREAK;
  646. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  647. uart_reg->int_clr.frm_err = 1;
  648. uart_event.type = UART_FRAME_ERR;
  649. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  650. uart_reg->int_clr.parity_err = 1;
  651. uart_event.type = UART_PARITY_ERR;
  652. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  653. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  654. uart_reg->conf0.txd_brk = 0;
  655. uart_reg->int_ena.tx_brk_done = 0;
  656. uart_reg->int_clr.tx_brk_done = 1;
  657. if(p_uart->tx_brk_flg == 1) {
  658. uart_reg->int_ena.txfifo_empty = 1;
  659. }
  660. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  661. if(p_uart->tx_brk_flg == 1) {
  662. p_uart->tx_brk_flg = 0;
  663. p_uart->tx_waiting_brk = 0;
  664. } else {
  665. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  666. if(HPTaskAwoken == pdTRUE) {
  667. portYIELD_FROM_ISR() ;
  668. }
  669. }
  670. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  671. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  672. uart_reg->int_ena.tx_brk_idle_done = 0;
  673. uart_reg->int_clr.tx_brk_idle_done = 1;
  674. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  675. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  676. uart_reg->int_clr.at_cmd_char_det = 1;
  677. uart_event.type = UART_PATTERN_DET;
  678. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  679. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  680. uart_reg->int_ena.tx_done = 0;
  681. uart_reg->int_clr.tx_done = 1;
  682. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  683. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  684. if(HPTaskAwoken == pdTRUE) {
  685. portYIELD_FROM_ISR() ;
  686. }
  687. } else {
  688. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  689. uart_event.type = UART_EVENT_MAX;
  690. }
  691. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  692. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  693. if(HPTaskAwoken == pdTRUE) {
  694. portYIELD_FROM_ISR() ;
  695. }
  696. }
  697. uart_intr_status = uart_reg->int_st.val;
  698. }
  699. }
  700. /**************************************************************/
  701. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  702. {
  703. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  704. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  705. BaseType_t res;
  706. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  707. //Take tx_mux
  708. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  709. if(res == pdFALSE) {
  710. return ESP_ERR_TIMEOUT;
  711. }
  712. ticks_to_wait = ticks_end - xTaskGetTickCount();
  713. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  714. ticks_to_wait = ticks_end - xTaskGetTickCount();
  715. if(UART[uart_num]->status.txfifo_cnt == 0) {
  716. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  717. return ESP_OK;
  718. }
  719. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  720. //take 2nd tx_done_sem, wait given from ISR
  721. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  722. if(res == pdFALSE) {
  723. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  724. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  725. return ESP_ERR_TIMEOUT;
  726. }
  727. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  728. return ESP_OK;
  729. }
  730. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  731. {
  732. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  733. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  734. UART[uart_num]->conf0.txd_brk = 1;
  735. UART[uart_num]->int_clr.tx_brk_done = 1;
  736. UART[uart_num]->int_ena.tx_brk_done = 1;
  737. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  738. return ESP_OK;
  739. }
  740. //Fill UART tx_fifo and return a number,
  741. //This function by itself is not thread-safe, always call from within a muxed section.
  742. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  743. {
  744. uint8_t i = 0;
  745. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  746. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  747. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  748. for(i = 0; i < copy_cnt; i++) {
  749. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  750. }
  751. return copy_cnt;
  752. }
  753. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  754. {
  755. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  756. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  757. UART_CHECK(buffer, "buffer null", (-1));
  758. if(len == 0) {
  759. return 0;
  760. }
  761. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  762. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  763. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  764. return tx_len;
  765. }
  766. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  767. {
  768. if(size == 0) {
  769. return 0;
  770. }
  771. size_t original_size = size;
  772. //lock for uart_tx
  773. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  774. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  775. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  776. int offset = 0;
  777. uart_tx_data_t evt;
  778. evt.tx_data.size = size;
  779. evt.tx_data.brk_len = brk_len;
  780. if(brk_en) {
  781. evt.type = UART_DATA_BREAK;
  782. } else {
  783. evt.type = UART_DATA;
  784. }
  785. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  786. while(size > 0) {
  787. int send_size = size > max_size / 2 ? max_size / 2 : size;
  788. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  789. size -= send_size;
  790. offset += send_size;
  791. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  792. }
  793. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  794. } else {
  795. while(size) {
  796. //semaphore for tx_fifo available
  797. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  798. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  799. if(sent < size) {
  800. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  801. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  802. }
  803. size -= sent;
  804. src += sent;
  805. }
  806. }
  807. if(brk_en) {
  808. uart_set_break(uart_num, brk_len);
  809. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  810. }
  811. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  812. }
  813. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  814. return original_size;
  815. }
  816. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  817. {
  818. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  819. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  820. UART_CHECK(src, "buffer null", (-1));
  821. return uart_tx_all(uart_num, src, size, 0, 0);
  822. }
  823. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  824. {
  825. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  826. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  827. UART_CHECK((size > 0), "uart size error", (-1));
  828. UART_CHECK((src), "uart data null", (-1));
  829. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  830. return uart_tx_all(uart_num, src, size, 1, brk_len);
  831. }
  832. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  833. {
  834. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  835. UART_CHECK((buf), "uart data null", (-1));
  836. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  837. uint8_t* data = NULL;
  838. size_t size;
  839. size_t copy_len = 0;
  840. int len_tmp;
  841. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  842. return -1;
  843. }
  844. while(length) {
  845. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  846. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  847. if(data) {
  848. p_uart_obj[uart_num]->rx_head_ptr = data;
  849. p_uart_obj[uart_num]->rx_ptr = data;
  850. p_uart_obj[uart_num]->rx_cur_remain = size;
  851. } else {
  852. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  853. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  854. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  855. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  856. return copy_len;
  857. }
  858. }
  859. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  860. len_tmp = length;
  861. } else {
  862. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  863. }
  864. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  865. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  866. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  867. copy_len += len_tmp;
  868. length -= len_tmp;
  869. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  870. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  871. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  872. p_uart_obj[uart_num]->rx_ptr = NULL;
  873. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  874. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  875. if(res == pdTRUE) {
  876. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  877. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  878. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  879. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  880. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  881. }
  882. }
  883. }
  884. }
  885. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  886. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  887. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  888. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  889. return copy_len;
  890. }
  891. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  892. {
  893. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  894. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  895. *size = p_uart_obj[uart_num]->rx_buffered_len;
  896. return ESP_OK;
  897. }
  898. esp_err_t uart_flush(uart_port_t uart_num)
  899. {
  900. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  901. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  902. uart_obj_t* p_uart = p_uart_obj[uart_num];
  903. uint8_t* data;
  904. size_t size;
  905. //rx sem protect the ring buffer read related functions
  906. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  907. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  908. while(true) {
  909. if(p_uart->rx_head_ptr) {
  910. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  911. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  912. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  913. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  914. p_uart->rx_ptr = NULL;
  915. p_uart->rx_cur_remain = 0;
  916. p_uart->rx_head_ptr = NULL;
  917. }
  918. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  919. if(data == NULL) {
  920. break;
  921. }
  922. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  923. p_uart_obj[uart_num]->rx_buffered_len -= size;
  924. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  925. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  926. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  927. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  928. if(res == pdTRUE) {
  929. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  930. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  931. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  932. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  933. }
  934. }
  935. }
  936. p_uart->rx_ptr = NULL;
  937. p_uart->rx_cur_remain = 0;
  938. p_uart->rx_head_ptr = NULL;
  939. uart_reset_fifo(uart_num);
  940. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  941. xSemaphoreGive(p_uart->rx_mux);
  942. return ESP_OK;
  943. }
  944. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  945. {
  946. esp_err_t r;
  947. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  948. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  949. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  950. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  951. if(p_uart_obj[uart_num] == NULL) {
  952. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  953. if(p_uart_obj[uart_num] == NULL) {
  954. ESP_LOGE(UART_TAG, "UART driver malloc error");
  955. return ESP_FAIL;
  956. }
  957. p_uart_obj[uart_num]->uart_num = uart_num;
  958. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  959. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  960. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  961. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  962. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  963. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  964. p_uart_obj[uart_num]->queue_size = queue_size;
  965. p_uart_obj[uart_num]->tx_ptr = NULL;
  966. p_uart_obj[uart_num]->tx_head = NULL;
  967. p_uart_obj[uart_num]->tx_len_tot = 0;
  968. p_uart_obj[uart_num]->tx_brk_flg = 0;
  969. p_uart_obj[uart_num]->tx_brk_len = 0;
  970. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  971. p_uart_obj[uart_num]->rx_buffered_len = 0;
  972. if(uart_queue) {
  973. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  974. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  975. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  976. } else {
  977. p_uart_obj[uart_num]->xQueueUart = NULL;
  978. }
  979. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  980. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  981. p_uart_obj[uart_num]->rx_ptr = NULL;
  982. p_uart_obj[uart_num]->rx_cur_remain = 0;
  983. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  984. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  985. if(tx_buffer_size > 0) {
  986. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  987. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  988. } else {
  989. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  990. p_uart_obj[uart_num]->tx_buf_size = 0;
  991. }
  992. } else {
  993. ESP_LOGE(UART_TAG, "UART driver already installed");
  994. return ESP_FAIL;
  995. }
  996. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  997. if (r!=ESP_OK) goto err;
  998. uart_intr_config_t uart_intr = {
  999. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1000. | UART_RXFIFO_TOUT_INT_ENA_M
  1001. | UART_FRM_ERR_INT_ENA_M
  1002. | UART_RXFIFO_OVF_INT_ENA_M
  1003. | UART_BRK_DET_INT_ENA_M
  1004. | UART_PARITY_ERR_INT_ENA_M,
  1005. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1006. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1007. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1008. };
  1009. r=uart_intr_config(uart_num, &uart_intr);
  1010. if (r!=ESP_OK) goto err;
  1011. return r;
  1012. err:
  1013. uart_driver_delete(uart_num);
  1014. return r;
  1015. }
  1016. //Make sure no other tasks are still using UART before you call this function
  1017. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1018. {
  1019. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1020. if(p_uart_obj[uart_num] == NULL) {
  1021. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1022. return ESP_OK;
  1023. }
  1024. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1025. uart_disable_rx_intr(uart_num);
  1026. uart_disable_tx_intr(uart_num);
  1027. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1028. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1029. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1030. }
  1031. if(p_uart_obj[uart_num]->tx_done_sem) {
  1032. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1033. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1034. }
  1035. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1036. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1037. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1038. }
  1039. if(p_uart_obj[uart_num]->tx_mux) {
  1040. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1041. p_uart_obj[uart_num]->tx_mux = NULL;
  1042. }
  1043. if(p_uart_obj[uart_num]->rx_mux) {
  1044. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1045. p_uart_obj[uart_num]->rx_mux = NULL;
  1046. }
  1047. if(p_uart_obj[uart_num]->xQueueUart) {
  1048. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1049. p_uart_obj[uart_num]->xQueueUart = NULL;
  1050. }
  1051. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1052. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1053. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1054. }
  1055. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1056. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1057. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1058. }
  1059. free(p_uart_obj[uart_num]);
  1060. p_uart_obj[uart_num] = NULL;
  1061. return ESP_OK;
  1062. }