uart.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "esp_attr.h"
  9. #include "esp_intr_alloc.h"
  10. #include "esp_log.h"
  11. #include "esp_err.h"
  12. #include "esp_check.h"
  13. #include "malloc.h"
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/semphr.h"
  16. #include "freertos/ringbuf.h"
  17. #include "hal/uart_hal.h"
  18. #include "hal/gpio_hal.h"
  19. #include "soc/uart_periph.h"
  20. #include "soc/rtc_cntl_reg.h"
  21. #include "driver/uart.h"
  22. #include "driver/gpio.h"
  23. #include "driver/uart_select.h"
  24. #include "driver/periph_ctrl.h"
  25. #include "sdkconfig.h"
  26. #include "esp_rom_gpio.h"
  27. #if CONFIG_IDF_TARGET_ESP32
  28. #include "esp32/clk.h"
  29. #elif CONFIG_IDF_TARGET_ESP32S2
  30. #include "esp32s2/clk.h"
  31. #elif CONFIG_IDF_TARGET_ESP32S3
  32. #include "esp32s3/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32C3
  34. #include "esp32c3/clk.h"
  35. #elif CONFIG_IDF_TARGET_ESP32H2
  36. #include "esp32h2/clk.h"
  37. #endif
  38. #ifdef CONFIG_UART_ISR_IN_IRAM
  39. #define UART_ISR_ATTR IRAM_ATTR
  40. #else
  41. #define UART_ISR_ATTR
  42. #endif
  43. #define XOFF (0x13)
  44. #define XON (0x11)
  45. static const char* UART_TAG = "uart";
  46. #define UART_EMPTY_THRESH_DEFAULT (10)
  47. #define UART_FULL_THRESH_DEFAULT (120)
  48. #define UART_TOUT_THRESH_DEFAULT (10)
  49. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  50. #define UART_TX_IDLE_NUM_DEFAULT (0)
  51. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  52. #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
  53. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  54. | (UART_INTR_RXFIFO_TOUT) \
  55. | (UART_INTR_RXFIFO_OVF) \
  56. | (UART_INTR_BRK_DET) \
  57. | (UART_INTR_PARITY_ERR))
  58. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  59. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  60. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  61. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  62. // Check actual UART mode set
  63. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  64. #define UART_CONTEX_INIT_DEF(uart_num) {\
  65. .hal.dev = UART_LL_GET_HW(uart_num),\
  66. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  67. .hw_enabled = false,\
  68. }
  69. #if SOC_UART_SUPPORT_RTC_CLK
  70. #define RTC_ENABLED(uart_num) (BIT(uart_num))
  71. #endif
  72. typedef struct {
  73. uart_event_type_t type; /*!< UART TX data type */
  74. struct {
  75. int brk_len;
  76. size_t size;
  77. uint8_t data[0];
  78. } tx_data;
  79. } uart_tx_data_t;
  80. typedef struct {
  81. int wr;
  82. int rd;
  83. int len;
  84. int* data;
  85. } uart_pat_rb_t;
  86. typedef struct {
  87. uart_port_t uart_num; /*!< UART port number*/
  88. int queue_size; /*!< UART event queue size*/
  89. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  90. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  91. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  92. bool coll_det_flg; /*!< UART collision detection flag */
  93. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  94. //rx parameters
  95. int rx_buffered_len; /*!< UART cached data length */
  96. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  97. int rx_buf_size; /*!< RX ring buffer size */
  98. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  99. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  100. uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  101. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  102. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  103. uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  104. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  105. uart_pat_rb_t rx_pattern_pos;
  106. //tx parameters
  107. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  108. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  109. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  110. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  111. int tx_buf_size; /*!< TX ring buffer size */
  112. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  113. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  114. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  115. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  116. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  117. uint32_t tx_len_cur;
  118. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  119. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  120. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  121. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  122. } uart_obj_t;
  123. typedef struct {
  124. uart_hal_context_t hal; /*!< UART hal context*/
  125. portMUX_TYPE spinlock;
  126. bool hw_enabled;
  127. } uart_context_t;
  128. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  129. static uart_context_t uart_context[UART_NUM_MAX] = {
  130. UART_CONTEX_INIT_DEF(UART_NUM_0),
  131. UART_CONTEX_INIT_DEF(UART_NUM_1),
  132. #if UART_NUM_MAX > 2
  133. UART_CONTEX_INIT_DEF(UART_NUM_2),
  134. #endif
  135. };
  136. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  137. #if SOC_UART_SUPPORT_RTC_CLK
  138. static uint8_t rtc_enabled = 0;
  139. static portMUX_TYPE rtc_num_spinlock = portMUX_INITIALIZER_UNLOCKED;
  140. static void rtc_clk_enable(uart_port_t uart_num)
  141. {
  142. portENTER_CRITICAL(&rtc_num_spinlock);
  143. if (!(rtc_enabled & RTC_ENABLED(uart_num))) {
  144. rtc_enabled |= RTC_ENABLED(uart_num);
  145. }
  146. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  147. portEXIT_CRITICAL(&rtc_num_spinlock);
  148. }
  149. static void rtc_clk_disable(uart_port_t uart_num)
  150. {
  151. assert(rtc_enabled & RTC_ENABLED(uart_num));
  152. portENTER_CRITICAL(&rtc_num_spinlock);
  153. rtc_enabled &= ~RTC_ENABLED(uart_num);
  154. if (rtc_enabled == 0) {
  155. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  156. }
  157. portEXIT_CRITICAL(&rtc_num_spinlock);
  158. }
  159. #endif
  160. static void uart_module_enable(uart_port_t uart_num)
  161. {
  162. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  163. if (uart_context[uart_num].hw_enabled != true) {
  164. periph_module_enable(uart_periph_signal[uart_num].module);
  165. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  166. // Workaround for ESP32C3: enable core reset
  167. // before enabling uart module clock
  168. // to prevent uart output garbage value.
  169. #if SOC_UART_REQUIRE_CORE_RESET
  170. uart_hal_set_reset_core(&(uart_context[uart_num].hal), true);
  171. periph_module_reset(uart_periph_signal[uart_num].module);
  172. uart_hal_set_reset_core(&(uart_context[uart_num].hal), false);
  173. #else
  174. periph_module_reset(uart_periph_signal[uart_num].module);
  175. #endif
  176. }
  177. uart_context[uart_num].hw_enabled = true;
  178. }
  179. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  180. }
  181. static void uart_module_disable(uart_port_t uart_num)
  182. {
  183. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  184. if (uart_context[uart_num].hw_enabled != false) {
  185. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  186. periph_module_disable(uart_periph_signal[uart_num].module);
  187. }
  188. uart_context[uart_num].hw_enabled = false;
  189. }
  190. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  191. }
  192. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  193. {
  194. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  195. ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  196. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  197. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  198. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  199. return ESP_OK;
  200. }
  201. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  202. {
  203. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  204. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  205. return ESP_OK;
  206. }
  207. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  208. {
  209. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  210. ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error");
  211. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  212. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  213. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  214. return ESP_OK;
  215. }
  216. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  217. {
  218. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  219. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  220. return ESP_OK;
  221. }
  222. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  223. {
  224. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  225. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  226. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  227. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  228. return ESP_OK;
  229. }
  230. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  231. {
  232. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  233. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  234. return ESP_OK;
  235. }
  236. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  237. {
  238. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  239. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  240. uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate);
  241. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  242. return ESP_OK;
  243. }
  244. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  245. {
  246. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  247. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  248. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  249. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  250. return ESP_OK;
  251. }
  252. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  253. {
  254. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  255. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  256. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  257. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  258. return ESP_OK;
  259. }
  260. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  261. {
  262. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  263. ESP_RETURN_ON_FALSE((rx_thresh_xon < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
  264. ESP_RETURN_ON_FALSE((rx_thresh_xoff < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xoff thresh error");
  265. uart_sw_flowctrl_t sw_flow_ctl = {
  266. .xon_char = XON,
  267. .xoff_char = XOFF,
  268. .xon_thrd = rx_thresh_xon,
  269. .xoff_thrd = rx_thresh_xoff,
  270. };
  271. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  272. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  273. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  274. return ESP_OK;
  275. }
  276. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  277. {
  278. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  279. ESP_RETURN_ON_FALSE((rx_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  280. ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  281. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  282. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  283. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  284. return ESP_OK;
  285. }
  286. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  287. {
  288. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  289. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  290. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  291. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  292. return ESP_OK;
  293. }
  294. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  295. {
  296. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  297. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  298. return ESP_OK;
  299. }
  300. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  301. {
  302. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  303. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  304. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  305. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  306. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  307. return ESP_OK;
  308. }
  309. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  310. {
  311. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  312. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  313. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  314. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  315. return ESP_OK;
  316. }
  317. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  318. {
  319. int* pdata = NULL;
  320. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  321. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  322. pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  323. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  324. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  325. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  326. }
  327. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  328. free(pdata);
  329. return ESP_OK;
  330. }
  331. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  332. {
  333. esp_err_t ret = ESP_OK;
  334. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  335. int next = p_pos->wr + 1;
  336. if (next >= p_pos->len) {
  337. next = 0;
  338. }
  339. if (next == p_pos->rd) {
  340. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  341. ret = ESP_FAIL;
  342. } else {
  343. p_pos->data[p_pos->wr] = pos;
  344. p_pos->wr = next;
  345. ret = ESP_OK;
  346. }
  347. return ret;
  348. }
  349. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  350. {
  351. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  352. return ESP_ERR_INVALID_STATE;
  353. } else {
  354. esp_err_t ret = ESP_OK;
  355. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  356. if (p_pos->rd == p_pos->wr) {
  357. ret = ESP_FAIL;
  358. } else {
  359. p_pos->rd++;
  360. }
  361. if (p_pos->rd >= p_pos->len) {
  362. p_pos->rd = 0;
  363. }
  364. return ret;
  365. }
  366. }
  367. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  368. {
  369. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  370. int rd = p_pos->rd;
  371. while(rd != p_pos->wr) {
  372. p_pos->data[rd] -= diff_len;
  373. int rd_rec = rd;
  374. rd ++;
  375. if (rd >= p_pos->len) {
  376. rd = 0;
  377. }
  378. if (p_pos->data[rd_rec] < 0) {
  379. p_pos->rd = rd;
  380. }
  381. }
  382. return ESP_OK;
  383. }
  384. int uart_pattern_pop_pos(uart_port_t uart_num)
  385. {
  386. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  387. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  388. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  389. int pos = -1;
  390. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  391. pos = pat_pos->data[pat_pos->rd];
  392. uart_pattern_dequeue(uart_num);
  393. }
  394. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  395. return pos;
  396. }
  397. int uart_pattern_get_pos(uart_port_t uart_num)
  398. {
  399. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  400. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  401. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  402. int pos = -1;
  403. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  404. pos = pat_pos->data[pat_pos->rd];
  405. }
  406. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  407. return pos;
  408. }
  409. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  410. {
  411. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  412. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  413. int* pdata = (int*) malloc(queue_length * sizeof(int));
  414. if(pdata == NULL) {
  415. return ESP_ERR_NO_MEM;
  416. }
  417. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  418. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  419. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  420. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  421. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  422. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  423. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  424. free(ptmp);
  425. return ESP_OK;
  426. }
  427. #if CONFIG_IDF_TARGET_ESP32
  428. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  429. {
  430. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  431. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  432. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  433. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  434. uart_at_cmd_t at_cmd = {0};
  435. at_cmd.cmd_char = pattern_chr;
  436. at_cmd.char_num = chr_num;
  437. at_cmd.gap_tout = chr_tout;
  438. at_cmd.pre_idle = pre_idle;
  439. at_cmd.post_idle = post_idle;
  440. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  441. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  442. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  443. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  444. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  445. return ESP_OK;
  446. }
  447. #endif
  448. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  449. {
  450. ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error");
  451. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  452. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  453. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  454. uart_at_cmd_t at_cmd = {0};
  455. at_cmd.cmd_char = pattern_chr;
  456. at_cmd.char_num = chr_num;
  457. #if CONFIG_IDF_TARGET_ESP32
  458. int apb_clk_freq = 0;
  459. uint32_t uart_baud = 0;
  460. uint32_t uart_div = 0;
  461. uart_get_baudrate(uart_num, &uart_baud);
  462. apb_clk_freq = esp_clk_apb_freq();
  463. uart_div = apb_clk_freq / uart_baud;
  464. at_cmd.gap_tout = chr_tout * uart_div;
  465. at_cmd.pre_idle = pre_idle * uart_div;
  466. at_cmd.post_idle = post_idle * uart_div;
  467. #else
  468. at_cmd.gap_tout = chr_tout;
  469. at_cmd.pre_idle = pre_idle;
  470. at_cmd.post_idle = post_idle;
  471. #endif
  472. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  473. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  474. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  475. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  476. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  477. return ESP_OK;
  478. }
  479. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  480. {
  481. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  482. }
  483. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  484. {
  485. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  486. }
  487. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  488. {
  489. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  490. }
  491. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  492. {
  493. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  494. }
  495. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  496. {
  497. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  498. ESP_RETURN_ON_FALSE((thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "empty intr threshold error");
  499. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  500. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  501. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  502. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  503. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  504. return ESP_OK;
  505. }
  506. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  507. {
  508. int ret;
  509. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  510. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  511. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  512. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  513. return ret;
  514. }
  515. esp_err_t uart_isr_free(uart_port_t uart_num)
  516. {
  517. esp_err_t ret;
  518. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  519. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  520. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]->intr_handle != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error");
  521. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  522. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  523. p_uart_obj[uart_num]->intr_handle=NULL;
  524. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  525. return ret;
  526. }
  527. static bool uart_try_set_iomux_pin(uart_port_t uart_num, int io_num, uint32_t idx)
  528. {
  529. /* Store a pointer to the default pin, to optimize access to its fields. */
  530. const uart_periph_sig_t* upin = &uart_periph_signal[uart_num].pins[idx];
  531. /* In theory, if default_gpio is -1, iomux_func should also be -1, but
  532. * let's be safe and test both. */
  533. if (upin->iomux_func == -1 || upin->default_gpio == -1 || upin->default_gpio != io_num) {
  534. return false;
  535. }
  536. /* Assign the correct funct to the GPIO. */
  537. assert (upin->iomux_func != -1);
  538. gpio_iomux_out(io_num, upin->iomux_func, false);
  539. /* If the pin is input, we also have to redirect the signal,
  540. * in order to bypasse the GPIO matrix. */
  541. if (upin->input) {
  542. gpio_iomux_in(io_num, upin->signal);
  543. }
  544. return true;
  545. }
  546. //internal signal can be output to multiple GPIO pads
  547. //only one GPIO pad can connect with input signal
  548. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  549. {
  550. ESP_RETURN_ON_FALSE((uart_num >= 0), ESP_FAIL, UART_TAG, "uart_num error");
  551. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  552. ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error");
  553. ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error");
  554. ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error");
  555. ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error");
  556. /* In the following statements, if the io_num is negative, no need to configure anything. */
  557. if (tx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, tx_io_num, SOC_UART_TX_PIN_IDX)) {
  558. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  559. gpio_set_level(tx_io_num, 1);
  560. esp_rom_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0);
  561. }
  562. if (rx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rx_io_num, SOC_UART_RX_PIN_IDX)) {
  563. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  564. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  565. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  566. esp_rom_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0);
  567. }
  568. if (rts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rts_io_num, SOC_UART_RTS_PIN_IDX)) {
  569. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  570. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  571. esp_rom_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
  572. }
  573. if (cts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, cts_io_num, SOC_UART_CTS_PIN_IDX)) {
  574. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  575. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  576. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  577. esp_rom_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0);
  578. }
  579. return ESP_OK;
  580. }
  581. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  582. {
  583. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  584. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control");
  585. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  586. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  587. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  588. return ESP_OK;
  589. }
  590. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  591. {
  592. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  593. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  594. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  595. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  596. return ESP_OK;
  597. }
  598. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  599. {
  600. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  601. ESP_RETURN_ON_FALSE((idle_num <= UART_TX_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart idle num error");
  602. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  603. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  604. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  605. return ESP_OK;
  606. }
  607. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  608. {
  609. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  610. ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null");
  611. ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  612. ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  613. ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  614. uart_module_enable(uart_num);
  615. #if SOC_UART_SUPPORT_RTC_CLK
  616. if (uart_config->source_clk == UART_SCLK_RTC) {
  617. rtc_clk_enable(uart_num);
  618. }
  619. #endif
  620. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  621. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  622. uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_config->source_clk);
  623. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate);
  624. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  625. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  626. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  627. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  628. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  629. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  630. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  631. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  632. return ESP_OK;
  633. }
  634. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  635. {
  636. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  637. ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null");
  638. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  639. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  640. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  641. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  642. } else {
  643. //Disable rx_tout intr
  644. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  645. }
  646. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  647. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  648. }
  649. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  650. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  651. }
  652. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  653. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  654. return ESP_OK;
  655. }
  656. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  657. {
  658. int cnt = 0;
  659. int len = length;
  660. while (len >= 0) {
  661. if (buf[len] == pat_chr) {
  662. cnt++;
  663. } else {
  664. cnt = 0;
  665. }
  666. if (cnt >= pat_num) {
  667. break;
  668. }
  669. len --;
  670. }
  671. return len;
  672. }
  673. //internal isr handler for default driver code.
  674. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  675. {
  676. uart_obj_t *p_uart = (uart_obj_t*) param;
  677. uint8_t uart_num = p_uart->uart_num;
  678. int rx_fifo_len = 0;
  679. uint32_t uart_intr_status = 0;
  680. uart_event_t uart_event;
  681. portBASE_TYPE HPTaskAwoken = 0;
  682. static uint8_t pat_flg = 0;
  683. while(1) {
  684. // The `continue statement` may cause the interrupt to loop infinitely
  685. // we exit the interrupt here
  686. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  687. //Exit form while loop
  688. if(uart_intr_status == 0){
  689. break;
  690. }
  691. uart_event.type = UART_EVENT_MAX;
  692. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  693. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  694. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  695. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  696. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  697. if(p_uart->tx_waiting_brk) {
  698. continue;
  699. }
  700. //TX semaphore will only be used when tx_buf_size is zero.
  701. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  702. p_uart->tx_waiting_fifo = false;
  703. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  704. } else {
  705. //We don't use TX ring buffer, because the size is zero.
  706. if(p_uart->tx_buf_size == 0) {
  707. continue;
  708. }
  709. bool en_tx_flg = false;
  710. uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  711. //We need to put a loop here, in case all the buffer items are very short.
  712. //That would cause a watch_dog reset because empty interrupt happens so often.
  713. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  714. while(tx_fifo_rem) {
  715. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  716. size_t size;
  717. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  718. if(p_uart->tx_head) {
  719. //The first item is the data description
  720. //Get the first item to get the data information
  721. if(p_uart->tx_len_tot == 0) {
  722. p_uart->tx_ptr = NULL;
  723. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  724. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  725. p_uart->tx_brk_flg = 1;
  726. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  727. }
  728. //We have saved the data description from the 1st item, return buffer.
  729. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  730. } else if(p_uart->tx_ptr == NULL) {
  731. //Update the TX item pointer, we will need this to return item to buffer.
  732. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  733. en_tx_flg = true;
  734. p_uart->tx_len_cur = size;
  735. }
  736. } else {
  737. //Can not get data from ring buffer, return;
  738. break;
  739. }
  740. }
  741. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  742. //To fill the TX FIFO.
  743. uint32_t send_len = 0;
  744. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  745. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  746. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  747. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  748. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  749. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  750. }
  751. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  752. (const uint8_t *)p_uart->tx_ptr,
  753. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  754. &send_len);
  755. p_uart->tx_ptr += send_len;
  756. p_uart->tx_len_tot -= send_len;
  757. p_uart->tx_len_cur -= send_len;
  758. tx_fifo_rem -= send_len;
  759. if (p_uart->tx_len_cur == 0) {
  760. //Return item to ring buffer.
  761. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  762. p_uart->tx_head = NULL;
  763. p_uart->tx_ptr = NULL;
  764. //Sending item done, now we need to send break if there is a record.
  765. //Set TX break signal after FIFO is empty
  766. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  767. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  768. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  769. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  770. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  771. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  772. p_uart->tx_waiting_brk = 1;
  773. //do not enable TX empty interrupt
  774. en_tx_flg = false;
  775. } else {
  776. //enable TX empty interrupt
  777. en_tx_flg = true;
  778. }
  779. } else {
  780. //enable TX empty interrupt
  781. en_tx_flg = true;
  782. }
  783. }
  784. }
  785. if (en_tx_flg) {
  786. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  787. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  788. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  789. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  790. }
  791. }
  792. }
  793. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  794. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  795. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  796. ) {
  797. if(pat_flg == 1) {
  798. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  799. pat_flg = 0;
  800. }
  801. if (p_uart->rx_buffer_full_flg == false) {
  802. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  803. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  804. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  805. }
  806. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  807. uint8_t pat_chr = 0;
  808. uint8_t pat_num = 0;
  809. int pat_idx = -1;
  810. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  811. //Get the buffer from the FIFO
  812. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  813. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  814. uart_event.type = UART_PATTERN_DET;
  815. uart_event.size = rx_fifo_len;
  816. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  817. } else {
  818. //After Copying the Data From FIFO ,Clear intr_status
  819. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  820. uart_event.type = UART_DATA;
  821. uart_event.size = rx_fifo_len;
  822. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  823. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  824. if (p_uart->uart_select_notif_callback) {
  825. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  826. }
  827. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  828. }
  829. p_uart->rx_stash_len = rx_fifo_len;
  830. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  831. //Mainly for applications that uses flow control or small ring buffer.
  832. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  833. p_uart->rx_buffer_full_flg = true;
  834. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  835. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  836. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  837. if (uart_event.type == UART_PATTERN_DET) {
  838. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  839. if (rx_fifo_len < pat_num) {
  840. //some of the characters are read out in last interrupt
  841. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  842. } else {
  843. uart_pattern_enqueue(uart_num,
  844. pat_idx <= -1 ?
  845. //can not find the pattern in buffer,
  846. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  847. // find the pattern in buffer
  848. p_uart->rx_buffered_len + pat_idx);
  849. }
  850. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  851. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  852. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  853. }
  854. }
  855. uart_event.type = UART_BUFFER_FULL;
  856. } else {
  857. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  858. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  859. if (rx_fifo_len < pat_num) {
  860. //some of the characters are read out in last interrupt
  861. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  862. } else if(pat_idx >= 0) {
  863. // find the pattern in stash buffer.
  864. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  865. }
  866. }
  867. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  868. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  869. }
  870. } else {
  871. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  872. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  873. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  874. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  875. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  876. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  877. uart_event.type = UART_PATTERN_DET;
  878. uart_event.size = rx_fifo_len;
  879. pat_flg = 1;
  880. }
  881. }
  882. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  883. // When fifo overflows, we reset the fifo.
  884. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  885. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  886. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  887. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  888. if (p_uart->uart_select_notif_callback) {
  889. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  890. }
  891. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  892. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  893. uart_event.type = UART_FIFO_OVF;
  894. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  895. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  896. uart_event.type = UART_BREAK;
  897. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  898. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  899. if (p_uart->uart_select_notif_callback) {
  900. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  901. }
  902. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  903. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  904. uart_event.type = UART_FRAME_ERR;
  905. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  906. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  907. if (p_uart->uart_select_notif_callback) {
  908. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  909. }
  910. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  911. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  912. uart_event.type = UART_PARITY_ERR;
  913. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  914. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  915. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  916. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  917. if(p_uart->tx_brk_flg == 1) {
  918. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  919. }
  920. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  921. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  922. if(p_uart->tx_brk_flg == 1) {
  923. p_uart->tx_brk_flg = 0;
  924. p_uart->tx_waiting_brk = 0;
  925. } else {
  926. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  927. }
  928. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  929. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  930. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  931. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  932. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  933. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  934. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  935. uart_event.type = UART_PATTERN_DET;
  936. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  937. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  938. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  939. // RS485 collision or frame error interrupt triggered
  940. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  941. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  942. // Set collision detection flag
  943. p_uart_obj[uart_num]->coll_det_flg = true;
  944. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  945. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  946. uart_event.type = UART_EVENT_MAX;
  947. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  948. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  949. // The TX_DONE interrupt is triggered but transmit is active
  950. // then postpone interrupt processing for next interrupt
  951. uart_event.type = UART_EVENT_MAX;
  952. } else {
  953. // Workaround for RS485: If the RS485 half duplex mode is active
  954. // and transmitter is in idle state then reset received buffer and reset RTS pin
  955. // skip this behavior for other UART modes
  956. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  957. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  958. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  959. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  960. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  961. }
  962. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  963. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  964. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  965. }
  966. } else {
  967. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  968. uart_event.type = UART_EVENT_MAX;
  969. }
  970. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  971. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  972. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  973. }
  974. }
  975. }
  976. if(HPTaskAwoken == pdTRUE) {
  977. portYIELD_FROM_ISR();
  978. }
  979. }
  980. /**************************************************************/
  981. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  982. {
  983. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  984. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  985. BaseType_t res;
  986. portTickType ticks_start = xTaskGetTickCount();
  987. //Take tx_mux
  988. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  989. if(res == pdFALSE) {
  990. return ESP_ERR_TIMEOUT;
  991. }
  992. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  993. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  994. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  995. return ESP_OK;
  996. }
  997. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  998. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  999. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1000. TickType_t ticks_end = xTaskGetTickCount();
  1001. if (ticks_end - ticks_start > ticks_to_wait) {
  1002. ticks_to_wait = 0;
  1003. } else {
  1004. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1005. }
  1006. //take 2nd tx_done_sem, wait given from ISR
  1007. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1008. if(res == pdFALSE) {
  1009. // The TX_DONE interrupt will be disabled in ISR
  1010. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1011. return ESP_ERR_TIMEOUT;
  1012. }
  1013. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1014. return ESP_OK;
  1015. }
  1016. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1017. {
  1018. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1019. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1020. ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null");
  1021. if(len == 0) {
  1022. return 0;
  1023. }
  1024. int tx_len = 0;
  1025. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1026. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1027. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1028. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1029. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1030. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1031. }
  1032. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  1033. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1034. return tx_len;
  1035. }
  1036. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1037. {
  1038. if(size == 0) {
  1039. return 0;
  1040. }
  1041. size_t original_size = size;
  1042. //lock for uart_tx
  1043. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1044. p_uart_obj[uart_num]->coll_det_flg = false;
  1045. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1046. size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1047. int offset = 0;
  1048. uart_tx_data_t evt;
  1049. evt.tx_data.size = size;
  1050. evt.tx_data.brk_len = brk_len;
  1051. if(brk_en) {
  1052. evt.type = UART_DATA_BREAK;
  1053. } else {
  1054. evt.type = UART_DATA;
  1055. }
  1056. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1057. while(size > 0) {
  1058. size_t send_size = size > max_size / 2 ? max_size / 2 : size;
  1059. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1060. size -= send_size;
  1061. offset += send_size;
  1062. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1063. }
  1064. } else {
  1065. while(size) {
  1066. //semaphore for tx_fifo available
  1067. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1068. uint32_t sent = 0;
  1069. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1070. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1071. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1072. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1073. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1074. }
  1075. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1076. if(sent < size) {
  1077. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1078. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1079. }
  1080. size -= sent;
  1081. src += sent;
  1082. }
  1083. }
  1084. if(brk_en) {
  1085. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1086. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1087. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1088. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1089. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1090. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1091. }
  1092. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1093. }
  1094. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1095. return original_size;
  1096. }
  1097. int uart_write_bytes(uart_port_t uart_num, const void* src, size_t size)
  1098. {
  1099. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1100. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error");
  1101. ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null");
  1102. return uart_tx_all(uart_num, src, size, 0, 0);
  1103. }
  1104. int uart_write_bytes_with_break(uart_port_t uart_num, const void* src, size_t size, int brk_len)
  1105. {
  1106. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1107. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1108. ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error");
  1109. ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null");
  1110. ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error");
  1111. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1112. }
  1113. static bool uart_check_buf_full(uart_port_t uart_num)
  1114. {
  1115. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1116. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1117. if(res == pdTRUE) {
  1118. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1119. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1120. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1121. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1122. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1123. return true;
  1124. }
  1125. }
  1126. return false;
  1127. }
  1128. int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t ticks_to_wait)
  1129. {
  1130. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1131. ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null");
  1132. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1133. uint8_t* data = NULL;
  1134. size_t size;
  1135. size_t copy_len = 0;
  1136. int len_tmp;
  1137. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1138. return -1;
  1139. }
  1140. while(length) {
  1141. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1142. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1143. if(data) {
  1144. p_uart_obj[uart_num]->rx_head_ptr = data;
  1145. p_uart_obj[uart_num]->rx_ptr = data;
  1146. p_uart_obj[uart_num]->rx_cur_remain = size;
  1147. } else {
  1148. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1149. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1150. //to solve the possible asynchronous issues.
  1151. if(uart_check_buf_full(uart_num)) {
  1152. //This condition will never be true if `uart_read_bytes`
  1153. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1154. continue;
  1155. } else {
  1156. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1157. return copy_len;
  1158. }
  1159. }
  1160. }
  1161. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1162. len_tmp = length;
  1163. } else {
  1164. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1165. }
  1166. memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1167. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1168. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1169. uart_pattern_queue_update(uart_num, len_tmp);
  1170. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1171. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1172. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1173. copy_len += len_tmp;
  1174. length -= len_tmp;
  1175. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1176. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1177. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1178. p_uart_obj[uart_num]->rx_ptr = NULL;
  1179. uart_check_buf_full(uart_num);
  1180. }
  1181. }
  1182. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1183. return copy_len;
  1184. }
  1185. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1186. {
  1187. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1188. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1189. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1190. return ESP_OK;
  1191. }
  1192. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1193. static esp_err_t uart_disable_intr_mask_and_return_prev(uart_port_t uart_num, uint32_t disable_mask, uint32_t* prev_mask)
  1194. {
  1195. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1196. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1197. *prev_mask = uart_hal_get_intr_ena_status(&uart_context[uart_num].hal) & disable_mask;
  1198. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  1199. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1200. return ESP_OK;
  1201. }
  1202. esp_err_t uart_flush_input(uart_port_t uart_num)
  1203. {
  1204. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1205. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1206. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1207. uint8_t* data;
  1208. size_t size;
  1209. uint32_t prev_mask;
  1210. //rx sem protect the ring buffer read related functions
  1211. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1212. uart_disable_intr_mask_and_return_prev(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT, &prev_mask);
  1213. while(true) {
  1214. if(p_uart->rx_head_ptr) {
  1215. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1216. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1217. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1218. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1219. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1220. p_uart->rx_ptr = NULL;
  1221. p_uart->rx_cur_remain = 0;
  1222. p_uart->rx_head_ptr = NULL;
  1223. }
  1224. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1225. if(data == NULL) {
  1226. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1227. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1228. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1229. }
  1230. //We also need to clear the `rx_buffer_full_flg` here.
  1231. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1232. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1233. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1234. break;
  1235. }
  1236. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1237. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1238. uart_pattern_queue_update(uart_num, size);
  1239. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1240. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1241. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1242. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1243. if(res == pdTRUE) {
  1244. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1245. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1246. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1247. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1248. }
  1249. }
  1250. }
  1251. p_uart->rx_ptr = NULL;
  1252. p_uart->rx_cur_remain = 0;
  1253. p_uart->rx_head_ptr = NULL;
  1254. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1255. uart_enable_intr_mask(uart_num, prev_mask);
  1256. xSemaphoreGive(p_uart->rx_mux);
  1257. return ESP_OK;
  1258. }
  1259. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1260. {
  1261. esp_err_t r;
  1262. #ifdef CONFIG_ESP_GDBSTUB_ENABLED
  1263. ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig.");
  1264. #endif // CONFIG_ESP_GDBSTUB_ENABLED
  1265. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1266. ESP_RETURN_ON_FALSE((rx_buffer_size > SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "uart rx buffer length error");
  1267. ESP_RETURN_ON_FALSE((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error");
  1268. #if CONFIG_UART_ISR_IN_IRAM
  1269. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1270. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1271. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1272. }
  1273. #else
  1274. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1275. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1276. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1277. }
  1278. #endif
  1279. if(p_uart_obj[uart_num] == NULL) {
  1280. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1281. if(p_uart_obj[uart_num] == NULL) {
  1282. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1283. return ESP_FAIL;
  1284. }
  1285. p_uart_obj[uart_num]->uart_num = uart_num;
  1286. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1287. p_uart_obj[uart_num]->coll_det_flg = false;
  1288. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1289. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1290. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1291. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1292. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1293. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1294. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1295. p_uart_obj[uart_num]->queue_size = queue_size;
  1296. p_uart_obj[uart_num]->tx_ptr = NULL;
  1297. p_uart_obj[uart_num]->tx_head = NULL;
  1298. p_uart_obj[uart_num]->tx_len_tot = 0;
  1299. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1300. p_uart_obj[uart_num]->tx_brk_len = 0;
  1301. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1302. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1303. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1304. if(uart_queue) {
  1305. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1306. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1307. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1308. } else {
  1309. p_uart_obj[uart_num]->xQueueUart = NULL;
  1310. }
  1311. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1312. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1313. p_uart_obj[uart_num]->rx_ptr = NULL;
  1314. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1315. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1316. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1317. if(tx_buffer_size > 0) {
  1318. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1319. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1320. } else {
  1321. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1322. p_uart_obj[uart_num]->tx_buf_size = 0;
  1323. }
  1324. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1325. } else {
  1326. ESP_LOGE(UART_TAG, "UART driver already installed");
  1327. return ESP_FAIL;
  1328. }
  1329. uart_intr_config_t uart_intr = {
  1330. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1331. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1332. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1333. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1334. };
  1335. uart_module_enable(uart_num);
  1336. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1337. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1338. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1339. if (r!=ESP_OK) goto err;
  1340. r=uart_intr_config(uart_num, &uart_intr);
  1341. if (r!=ESP_OK) goto err;
  1342. return r;
  1343. err:
  1344. uart_driver_delete(uart_num);
  1345. return r;
  1346. }
  1347. //Make sure no other tasks are still using UART before you call this function
  1348. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1349. {
  1350. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1351. if(p_uart_obj[uart_num] == NULL) {
  1352. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1353. return ESP_OK;
  1354. }
  1355. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1356. uart_disable_rx_intr(uart_num);
  1357. uart_disable_tx_intr(uart_num);
  1358. uart_pattern_link_free(uart_num);
  1359. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1360. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1361. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1362. }
  1363. if(p_uart_obj[uart_num]->tx_done_sem) {
  1364. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1365. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1366. }
  1367. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1368. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1369. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1370. }
  1371. if(p_uart_obj[uart_num]->tx_mux) {
  1372. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1373. p_uart_obj[uart_num]->tx_mux = NULL;
  1374. }
  1375. if(p_uart_obj[uart_num]->rx_mux) {
  1376. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1377. p_uart_obj[uart_num]->rx_mux = NULL;
  1378. }
  1379. if(p_uart_obj[uart_num]->xQueueUart) {
  1380. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1381. p_uart_obj[uart_num]->xQueueUart = NULL;
  1382. }
  1383. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1384. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1385. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1386. }
  1387. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1388. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1389. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1390. }
  1391. heap_caps_free(p_uart_obj[uart_num]);
  1392. p_uart_obj[uart_num] = NULL;
  1393. #if SOC_UART_SUPPORT_RTC_CLK
  1394. uart_sclk_t sclk = 0;
  1395. uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
  1396. if (sclk == UART_SCLK_RTC) {
  1397. rtc_clk_disable(uart_num);
  1398. }
  1399. #endif
  1400. uart_module_disable(uart_num);
  1401. return ESP_OK;
  1402. }
  1403. bool uart_is_driver_installed(uart_port_t uart_num)
  1404. {
  1405. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1406. }
  1407. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1408. {
  1409. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1410. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1411. }
  1412. }
  1413. portMUX_TYPE *uart_get_selectlock(void)
  1414. {
  1415. return &uart_selectlock;
  1416. }
  1417. // Set UART mode
  1418. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1419. {
  1420. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1421. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  1422. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1423. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1424. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG,
  1425. "disable hw flowctrl before using RS485 mode");
  1426. }
  1427. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1428. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1429. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1430. // This mode allows read while transmitting that allows collision detection
  1431. p_uart_obj[uart_num]->coll_det_flg = false;
  1432. // Enable collision detection interrupts
  1433. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1434. | UART_INTR_RXFIFO_FULL
  1435. | UART_INTR_RS485_CLASH
  1436. | UART_INTR_RS485_FRM_ERR
  1437. | UART_INTR_RS485_PARITY_ERR);
  1438. }
  1439. p_uart_obj[uart_num]->uart_mode = mode;
  1440. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1441. return ESP_OK;
  1442. }
  1443. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1444. {
  1445. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1446. ESP_RETURN_ON_FALSE((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1447. "rx fifo full threshold value error");
  1448. if (p_uart_obj[uart_num] == NULL) {
  1449. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1450. return ESP_ERR_INVALID_STATE;
  1451. }
  1452. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1453. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1454. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1455. }
  1456. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1457. return ESP_OK;
  1458. }
  1459. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1460. {
  1461. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1462. ESP_RETURN_ON_FALSE((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1463. "tx fifo empty threshold value error");
  1464. if (p_uart_obj[uart_num] == NULL) {
  1465. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1466. return ESP_ERR_INVALID_STATE;
  1467. }
  1468. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1469. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1470. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1471. }
  1472. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1473. return ESP_OK;
  1474. }
  1475. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1476. {
  1477. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1478. // get maximum timeout threshold
  1479. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1480. if (tout_thresh > tout_max_thresh) {
  1481. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1482. return ESP_ERR_INVALID_ARG;
  1483. }
  1484. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1485. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1486. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1487. return ESP_OK;
  1488. }
  1489. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1490. {
  1491. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1492. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1493. ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer");
  1494. ESP_RETURN_ON_FALSE(
  1495. (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1496. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1497. ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode");
  1498. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1499. return ESP_OK;
  1500. }
  1501. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1502. {
  1503. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1504. ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1505. wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG,
  1506. "wakeup_threshold out of bounds");
  1507. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1508. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1509. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1510. return ESP_OK;
  1511. }
  1512. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1513. {
  1514. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1515. ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL");
  1516. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1517. return ESP_OK;
  1518. }
  1519. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1520. {
  1521. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1522. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1523. return ESP_OK;
  1524. }
  1525. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1526. {
  1527. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1528. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1529. return ESP_OK;
  1530. }
  1531. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1532. {
  1533. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1534. if (rx_tout) {
  1535. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1536. } else {
  1537. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1538. }
  1539. }