adc_hal.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. // Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <sys/param.h>
  15. #include "soc/soc_caps.h"
  16. #include "hal/adc_hal.h"
  17. #include "hal/adc_hal_conf.h"
  18. #include "hal/assert.h"
  19. #include "sdkconfig.h"
  20. #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
  21. #include "soc/gdma_channel.h"
  22. #include "soc/soc.h"
  23. #include "esp_rom_sys.h"
  24. typedef enum {
  25. ADC_EVENT_ADC1_DONE = BIT(0),
  26. ADC_EVENT_ADC2_DONE = BIT(1),
  27. } adc_hal_event_t;
  28. #endif
  29. void adc_hal_init(void)
  30. {
  31. // Set internal FSM wait time, fixed value.
  32. adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
  33. SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
  34. adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
  35. adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
  36. adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
  37. adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
  38. adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
  39. }
  40. #if SOC_ADC_ARBITER_SUPPORTED
  41. void adc_hal_arbiter_config(adc_arbiter_t *config)
  42. {
  43. adc_ll_set_arbiter_work_mode(config->mode);
  44. adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri);
  45. }
  46. #endif
  47. /*---------------------------------------------------------------
  48. ADC calibration setting
  49. ---------------------------------------------------------------*/
  50. #if SOC_ADC_HW_CALIBRATION_V1
  51. void adc_hal_calibration_init(adc_ll_num_t adc_n)
  52. {
  53. adc_ll_calibration_init(adc_n);
  54. }
  55. static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
  56. void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
  57. {
  58. if (param != s_previous_init_code[adc_n]) {
  59. adc_ll_set_calibration_param(adc_n, param);
  60. s_previous_init_code[adc_n] = param;
  61. }
  62. }
  63. #if CONFIG_IDF_TARGET_ESP32S2
  64. static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
  65. {
  66. adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller
  67. /* Enable/disable internal connect GND (for calibration). */
  68. if (internal_gnd) {
  69. adc_ll_rtc_disable_channel(adc_n);
  70. adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
  71. } else {
  72. adc_ll_rtc_enable_channel(adc_n, channel);
  73. adc_ll_set_atten(adc_n, channel, atten);
  74. }
  75. }
  76. static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
  77. {
  78. adc_ll_rtc_start_convert(adc_n, channel);
  79. while (adc_ll_rtc_convert_is_done(adc_n) != true);
  80. return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
  81. }
  82. #elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
  83. static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
  84. {
  85. adc_ll_onetime_sample_enable(ADC_NUM_1, false);
  86. adc_ll_onetime_sample_enable(ADC_NUM_2, false);
  87. /* Enable/disable internal connect GND (for calibration). */
  88. if (internal_gnd) {
  89. const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1) ? 0xF : 0x1;
  90. adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
  91. } else {
  92. adc_ll_onetime_set_channel(adc_n, channel);
  93. }
  94. adc_ll_onetime_set_atten(atten);
  95. adc_ll_onetime_sample_enable(adc_n, true);
  96. }
  97. static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
  98. {
  99. adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
  100. adc_ll_onetime_start(false);
  101. esp_rom_delay_us(5);
  102. adc_ll_onetime_start(true);
  103. while (!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
  104. uint32_t read_val = -1;
  105. if (adc_n == ADC_NUM_1) {
  106. read_val = adc_ll_adc1_read();
  107. } else if (adc_n == ADC_NUM_2) {
  108. read_val = adc_ll_adc2_read();
  109. if (adc_ll_analysis_raw_data(adc_n, read_val)) {
  110. return -1;
  111. }
  112. }
  113. return read_val;
  114. }
  115. #endif //CONFIG_IDF_TARGET_*
  116. #define ADC_HAL_CAL_TIMES (10)
  117. #define ADC_HAL_CAL_OFFSET_RANGE (4096)
  118. uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
  119. {
  120. if (adc_n == ADC_NUM_2) {
  121. adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
  122. adc_hal_arbiter_config(&config);
  123. }
  124. cal_setup(adc_n, channel, atten, internal_gnd);
  125. adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
  126. uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
  127. uint32_t code_sum = 0;
  128. uint32_t code_h = 0;
  129. uint32_t code_l = 0;
  130. uint32_t chk_code = 0;
  131. for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
  132. code_h = ADC_HAL_CAL_OFFSET_RANGE;
  133. code_l = 0;
  134. chk_code = (code_h + code_l) / 2;
  135. adc_ll_set_calibration_param(adc_n, chk_code);
  136. uint32_t self_cal = read_cal_channel(adc_n, channel);
  137. while (code_h - code_l > 1) {
  138. if (self_cal == 0) {
  139. code_h = chk_code;
  140. } else {
  141. code_l = chk_code;
  142. }
  143. chk_code = (code_h + code_l) / 2;
  144. adc_ll_set_calibration_param(adc_n, chk_code);
  145. self_cal = read_cal_channel(adc_n, channel);
  146. if ((code_h - code_l == 1)) {
  147. chk_code += 1;
  148. adc_ll_set_calibration_param(adc_n, chk_code);
  149. self_cal = read_cal_channel(adc_n, channel);
  150. }
  151. }
  152. code_list[rpt] = chk_code;
  153. code_sum += chk_code;
  154. }
  155. code_l = code_list[0];
  156. code_h = code_list[0];
  157. for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
  158. code_l = MIN(code_l, code_list[i]);
  159. code_h = MAX(code_h, code_list[i]);
  160. }
  161. chk_code = code_h + code_l;
  162. uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
  163. ? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
  164. : (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
  165. adc_ll_calibration_finish(adc_n);
  166. return ret;
  167. }
  168. #endif //SOC_ADC_HW_CALIBRATION_V1
  169. #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
  170. //This feature is currently supported on ESP32C3, will be supported on other chips soon
  171. /*---------------------------------------------------------------
  172. DMA setting
  173. ---------------------------------------------------------------*/
  174. void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
  175. {
  176. hal->dev = &GDMA;
  177. hal->desc_dummy_head.next = hal->rx_desc;
  178. hal->desc_max_num = config->desc_max_num;
  179. hal->dma_chan = config->dma_chan;
  180. hal->eof_num = config->eof_num;
  181. }
  182. void adc_hal_digi_init(adc_hal_context_t *hal)
  183. {
  184. gdma_ll_rx_clear_interrupt_status(hal->dev, hal->dma_chan, UINT32_MAX);
  185. gdma_ll_rx_enable_interrupt(hal->dev, hal->dma_chan, GDMA_LL_EVENT_RX_SUC_EOF, true);
  186. adc_ll_digi_dma_set_eof_num(hal->eof_num);
  187. adc_ll_onetime_sample_enable(ADC_NUM_1, false);
  188. adc_ll_onetime_sample_enable(ADC_NUM_2, false);
  189. }
  190. void adc_hal_fifo_reset(adc_hal_context_t *hal)
  191. {
  192. adc_ll_digi_reset();
  193. gdma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
  194. }
  195. static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
  196. {
  197. HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
  198. HAL_ASSERT((size % 4) == 0);
  199. uint32_t n = 0;
  200. while (num--) {
  201. desc[n].dw0.size = size;
  202. desc[n].dw0.suc_eof = 0;
  203. desc[n].dw0.owner = 1;
  204. desc[n].buffer = data_buf;
  205. desc[n].next = &desc[n + 1];
  206. data_buf += size;
  207. n++;
  208. }
  209. desc[n - 1].next = NULL;
  210. }
  211. void adc_hal_digi_rxdma_start(adc_hal_context_t *hal, uint8_t *data_buf)
  212. {
  213. //reset the current descriptor address
  214. hal->cur_desc_ptr = &hal->desc_dummy_head;
  215. adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num);
  216. gdma_ll_rx_set_desc_addr(hal->dev, hal->dma_chan, (uint32_t)hal->rx_desc);
  217. gdma_ll_rx_start(hal->dev, hal->dma_chan);
  218. }
  219. void adc_hal_digi_start(adc_hal_context_t *hal)
  220. {
  221. //the ADC data will be sent to the DMA
  222. adc_ll_digi_dma_enable();
  223. //enable sar adc timer
  224. adc_ll_digi_trigger_enable();
  225. }
  226. adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
  227. {
  228. HAL_ASSERT(hal->cur_desc_ptr);
  229. if (!hal->cur_desc_ptr->next) {
  230. return ADC_HAL_DMA_DESC_NULL;
  231. }
  232. if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
  233. return ADC_HAL_DMA_DESC_WAITING;
  234. }
  235. hal->cur_desc_ptr = hal->cur_desc_ptr->next;
  236. *cur_desc = hal->cur_desc_ptr;
  237. return ADC_HAL_DMA_DESC_VALID;
  238. }
  239. void adc_hal_digi_rxdma_stop(adc_hal_context_t *hal)
  240. {
  241. gdma_ll_rx_stop(hal->dev, hal->dma_chan);
  242. }
  243. void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
  244. {
  245. gdma_ll_rx_clear_interrupt_status(hal->dev, hal->dma_chan, mask);
  246. }
  247. void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
  248. {
  249. gdma_ll_rx_enable_interrupt(hal->dev, hal->dma_chan, mask, false);
  250. }
  251. void adc_hal_digi_stop(adc_hal_context_t *hal)
  252. {
  253. //Set to 0: the ADC data won't be sent to the DMA
  254. adc_ll_digi_dma_disable();
  255. //disable sar adc timer
  256. adc_ll_digi_trigger_disable();
  257. }
  258. /*---------------------------------------------------------------
  259. Single Read
  260. ---------------------------------------------------------------*/
  261. //--------------------INTR-------------------------------//
  262. static adc_ll_intr_t get_event_intr(adc_hal_event_t event)
  263. {
  264. adc_ll_intr_t intr_mask = 0;
  265. if (event & ADC_EVENT_ADC1_DONE) {
  266. intr_mask |= ADC_LL_INTR_ADC1_DONE;
  267. }
  268. if (event & ADC_EVENT_ADC2_DONE) {
  269. intr_mask |= ADC_LL_INTR_ADC2_DONE;
  270. }
  271. return intr_mask;
  272. }
  273. static void adc_hal_intr_clear(adc_hal_event_t event)
  274. {
  275. adc_ll_intr_clear(get_event_intr(event));
  276. }
  277. static bool adc_hal_intr_get_raw(adc_hal_event_t event)
  278. {
  279. return adc_ll_intr_get_raw(get_event_intr(event));
  280. }
  281. //--------------------Single Read-------------------------------//
  282. static void adc_hal_onetime_start(void)
  283. {
  284. /**
  285. * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
  286. * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
  287. * clock cycle.
  288. *
  289. * This limitation will be removed in hardware future versions.
  290. *
  291. */
  292. uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
  293. //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
  294. uint32_t delay = (1000 * 1000) / digi_clk + 1;
  295. //3 ADC digital controller clock cycle
  296. delay = delay * 3;
  297. //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
  298. if (digi_clk >= APB_CLK_FREQ / 8) {
  299. delay = 0;
  300. }
  301. adc_ll_onetime_start(false);
  302. esp_rom_delay_us(delay);
  303. adc_ll_onetime_start(true);
  304. //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
  305. }
  306. static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
  307. {
  308. if (adc_n == ADC_NUM_1) {
  309. *out_raw = adc_ll_adc1_read();
  310. } else if (adc_n == ADC_NUM_2) {
  311. *out_raw = adc_ll_adc2_read();
  312. if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
  313. return ESP_ERR_INVALID_STATE;
  314. }
  315. }
  316. return ESP_OK;
  317. }
  318. esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
  319. {
  320. esp_err_t ret;
  321. adc_hal_event_t event;
  322. if (adc_n == ADC_NUM_1) {
  323. event = ADC_EVENT_ADC1_DONE;
  324. } else {
  325. event = ADC_EVENT_ADC2_DONE;
  326. }
  327. adc_hal_intr_clear(event);
  328. adc_ll_onetime_sample_enable(ADC_NUM_1, false);
  329. adc_ll_onetime_sample_enable(ADC_NUM_2, false);
  330. adc_ll_onetime_sample_enable(adc_n, true);
  331. adc_ll_onetime_set_channel(adc_n, channel);
  332. //Trigger single read.
  333. adc_hal_onetime_start();
  334. while (!adc_hal_intr_get_raw(event));
  335. ret = adc_hal_single_read(adc_n, out_raw);
  336. //HW workaround: when enabling periph clock, this should be false
  337. adc_ll_onetime_sample_enable(adc_n, false);
  338. return ret;
  339. }
  340. #else // !CONFIG_IDF_TARGET_ESP32C3 && !CONFIG_IDF_TARGET_ESP32H2
  341. esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
  342. {
  343. adc_ll_rtc_enable_channel(adc_n, channel);
  344. adc_ll_rtc_start_convert(adc_n, channel);
  345. while (adc_ll_rtc_convert_is_done(adc_n) != true);
  346. *out_raw = adc_ll_rtc_get_convert_value(adc_n);
  347. if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) {
  348. return ESP_ERR_INVALID_STATE;
  349. }
  350. return ESP_OK;
  351. }
  352. #endif //#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C3