nvs_page.cpp 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "nvs_page.hpp"
  15. #if defined(ESP_PLATFORM)
  16. #include <esp32/rom/crc.h>
  17. #else
  18. #include "crc.h"
  19. #endif
  20. #include <cstdio>
  21. #include <cstring>
  22. #include "nvs_ops.hpp"
  23. namespace nvs
  24. {
  25. uint32_t Page::Header::calculateCrc32()
  26. {
  27. return crc32_le(0xffffffff,
  28. reinterpret_cast<uint8_t*>(this) + offsetof(Header, mSeqNumber),
  29. offsetof(Header, mCrc32) - offsetof(Header, mSeqNumber));
  30. }
  31. esp_err_t Page::load(uint32_t sectorNumber)
  32. {
  33. mBaseAddress = sectorNumber * SEC_SIZE;
  34. mUsedEntryCount = 0;
  35. mErasedEntryCount = 0;
  36. Header header;
  37. auto rc = spi_flash_read(mBaseAddress, &header, sizeof(header));
  38. if (rc != ESP_OK) {
  39. mState = PageState::INVALID;
  40. return rc;
  41. }
  42. if (header.mState == PageState::UNINITIALIZED) {
  43. mState = header.mState;
  44. // check if the whole page is really empty
  45. // reading the whole page takes ~40 times less than erasing it
  46. const int BLOCK_SIZE = 128;
  47. uint32_t* block = new uint32_t[BLOCK_SIZE];
  48. for (uint32_t i = 0; i < SPI_FLASH_SEC_SIZE; i += 4 * BLOCK_SIZE) {
  49. rc = spi_flash_read(mBaseAddress + i, block, 4 * BLOCK_SIZE);
  50. if (rc != ESP_OK) {
  51. mState = PageState::INVALID;
  52. delete[] block;
  53. return rc;
  54. }
  55. if (std::any_of(block, block + BLOCK_SIZE, [](uint32_t val) -> bool { return val != 0xffffffff; })) {
  56. // page isn't as empty after all, mark it as corrupted
  57. mState = PageState::CORRUPT;
  58. break;
  59. }
  60. }
  61. delete[] block;
  62. } else if (header.mCrc32 != header.calculateCrc32()) {
  63. header.mState = PageState::CORRUPT;
  64. } else {
  65. mState = header.mState;
  66. mSeqNumber = header.mSeqNumber;
  67. if(header.mVersion < NVS_VERSION) {
  68. return ESP_ERR_NVS_NEW_VERSION_FOUND;
  69. } else {
  70. mVersion = header.mVersion;
  71. }
  72. }
  73. switch (mState) {
  74. case PageState::UNINITIALIZED:
  75. break;
  76. case PageState::FULL:
  77. case PageState::ACTIVE:
  78. case PageState::FREEING:
  79. mLoadEntryTable();
  80. break;
  81. default:
  82. mState = PageState::CORRUPT;
  83. break;
  84. }
  85. return ESP_OK;
  86. }
  87. esp_err_t Page::writeEntry(const Item& item)
  88. {
  89. esp_err_t err;
  90. err = nvs_flash_write(getEntryAddress(mNextFreeEntry), &item, sizeof(item));
  91. if (err != ESP_OK) {
  92. mState = PageState::INVALID;
  93. return err;
  94. }
  95. err = alterEntryState(mNextFreeEntry, EntryState::WRITTEN);
  96. if (err != ESP_OK) {
  97. return err;
  98. }
  99. if (mFirstUsedEntry == INVALID_ENTRY) {
  100. mFirstUsedEntry = mNextFreeEntry;
  101. }
  102. ++mUsedEntryCount;
  103. ++mNextFreeEntry;
  104. return ESP_OK;
  105. }
  106. esp_err_t Page::writeEntryData(const uint8_t* data, size_t size)
  107. {
  108. assert(size % ENTRY_SIZE == 0);
  109. assert(mNextFreeEntry != INVALID_ENTRY);
  110. assert(mFirstUsedEntry != INVALID_ENTRY);
  111. const uint16_t count = size / ENTRY_SIZE;
  112. const uint8_t* buf = data;
  113. #ifdef ESP_PLATFORM
  114. /* On the ESP32, data can come from DROM, which is not accessible by spi_flash_write
  115. * function. To work around this, we copy the data to heap if it came from DROM.
  116. * Hopefully this won't happen very often in practice. For data from DRAM, we should
  117. * still be able to write it to flash directly.
  118. * TODO: figure out how to make this platform-specific check nicer (probably by introducing
  119. * a platform-specific flash layer).
  120. */
  121. if ((uint32_t) data < 0x3ff00000) {
  122. buf = (uint8_t*) malloc(size);
  123. if (!buf) {
  124. return ESP_ERR_NO_MEM;
  125. }
  126. memcpy((void*)buf, data, size);
  127. }
  128. #endif //ESP_PLATFORM
  129. auto rc = nvs_flash_write(getEntryAddress(mNextFreeEntry), buf, size);
  130. #ifdef ESP_PLATFORM
  131. if (buf != data) {
  132. free((void*)buf);
  133. }
  134. #endif //ESP_PLATFORM
  135. if (rc != ESP_OK) {
  136. mState = PageState::INVALID;
  137. return rc;
  138. }
  139. auto err = alterEntryRangeState(mNextFreeEntry, mNextFreeEntry + count, EntryState::WRITTEN);
  140. if (err != ESP_OK) {
  141. return err;
  142. }
  143. mUsedEntryCount += count;
  144. mNextFreeEntry += count;
  145. return ESP_OK;
  146. }
  147. esp_err_t Page::writeItem(uint8_t nsIndex, ItemType datatype, const char* key, const void* data, size_t dataSize, uint8_t chunkIdx)
  148. {
  149. Item item;
  150. esp_err_t err;
  151. if (mState == PageState::INVALID) {
  152. return ESP_ERR_NVS_INVALID_STATE;
  153. }
  154. if (mState == PageState::UNINITIALIZED) {
  155. err = initialize();
  156. if (err != ESP_OK) {
  157. return err;
  158. }
  159. }
  160. if (mState == PageState::FULL) {
  161. return ESP_ERR_NVS_PAGE_FULL;
  162. }
  163. const size_t keySize = strlen(key);
  164. if (keySize > Item::MAX_KEY_LENGTH) {
  165. return ESP_ERR_NVS_KEY_TOO_LONG;
  166. }
  167. if (dataSize > Page::CHUNK_MAX_SIZE) {
  168. return ESP_ERR_NVS_VALUE_TOO_LONG;
  169. }
  170. size_t totalSize = ENTRY_SIZE;
  171. size_t entriesCount = 1;
  172. if (isVariableLengthType(datatype)) {
  173. size_t roundedSize = (dataSize + ENTRY_SIZE - 1) & ~(ENTRY_SIZE - 1);
  174. totalSize += roundedSize;
  175. entriesCount += roundedSize / ENTRY_SIZE;
  176. }
  177. // primitive types should fit into one entry
  178. assert(totalSize == ENTRY_SIZE ||
  179. isVariableLengthType(datatype));
  180. if (mNextFreeEntry == INVALID_ENTRY || mNextFreeEntry + entriesCount > ENTRY_COUNT) {
  181. // page will not fit this amount of data
  182. return ESP_ERR_NVS_PAGE_FULL;
  183. }
  184. // write first item
  185. size_t span = (totalSize + ENTRY_SIZE - 1) / ENTRY_SIZE;
  186. item = Item(nsIndex, datatype, span, key, chunkIdx);
  187. mHashList.insert(item, mNextFreeEntry);
  188. if (!isVariableLengthType(datatype)) {
  189. memcpy(item.data, data, dataSize);
  190. item.crc32 = item.calculateCrc32();
  191. err = writeEntry(item);
  192. if (err != ESP_OK) {
  193. return err;
  194. }
  195. } else {
  196. const uint8_t* src = reinterpret_cast<const uint8_t*>(data);
  197. item.varLength.dataCrc32 = Item::calculateCrc32(src, dataSize);
  198. item.varLength.dataSize = dataSize;
  199. item.varLength.reserved = 0xffff;
  200. item.crc32 = item.calculateCrc32();
  201. err = writeEntry(item);
  202. if (err != ESP_OK) {
  203. return err;
  204. }
  205. size_t left = dataSize / ENTRY_SIZE * ENTRY_SIZE;
  206. if (left > 0) {
  207. err = writeEntryData(static_cast<const uint8_t*>(data), left);
  208. if (err != ESP_OK) {
  209. return err;
  210. }
  211. }
  212. size_t tail = dataSize - left;
  213. if (tail > 0) {
  214. std::fill_n(item.rawData, ENTRY_SIZE, 0xff);
  215. memcpy(item.rawData, static_cast<const uint8_t*>(data) + left, tail);
  216. err = writeEntry(item);
  217. if (err != ESP_OK) {
  218. return err;
  219. }
  220. }
  221. }
  222. return ESP_OK;
  223. }
  224. esp_err_t Page::readItem(uint8_t nsIndex, ItemType datatype, const char* key, void* data, size_t dataSize, uint8_t chunkIdx, VerOffset chunkStart)
  225. {
  226. size_t index = 0;
  227. Item item;
  228. if (mState == PageState::INVALID) {
  229. return ESP_ERR_NVS_INVALID_STATE;
  230. }
  231. esp_err_t rc = findItem(nsIndex, datatype, key, index, item, chunkIdx, chunkStart);
  232. if (rc != ESP_OK) {
  233. return rc;
  234. }
  235. if (!isVariableLengthType(datatype)) {
  236. if (dataSize != getAlignmentForType(datatype)) {
  237. return ESP_ERR_NVS_TYPE_MISMATCH;
  238. }
  239. memcpy(data, item.data, dataSize);
  240. return ESP_OK;
  241. }
  242. if (dataSize < static_cast<size_t>(item.varLength.dataSize)) {
  243. return ESP_ERR_NVS_INVALID_LENGTH;
  244. }
  245. uint8_t* dst = reinterpret_cast<uint8_t*>(data);
  246. size_t left = item.varLength.dataSize;
  247. for (size_t i = index + 1; i < index + item.span; ++i) {
  248. Item ditem;
  249. rc = readEntry(i, ditem);
  250. if (rc != ESP_OK) {
  251. return rc;
  252. }
  253. size_t willCopy = ENTRY_SIZE;
  254. willCopy = (left < willCopy)?left:willCopy;
  255. memcpy(dst, ditem.rawData, willCopy);
  256. left -= willCopy;
  257. dst += willCopy;
  258. }
  259. if (Item::calculateCrc32(reinterpret_cast<uint8_t*>(data), item.varLength.dataSize) != item.varLength.dataCrc32) {
  260. rc = eraseEntryAndSpan(index);
  261. if (rc != ESP_OK) {
  262. return rc;
  263. }
  264. return ESP_ERR_NVS_NOT_FOUND;
  265. }
  266. return ESP_OK;
  267. }
  268. esp_err_t Page::cmpItem(uint8_t nsIndex, ItemType datatype, const char* key, const void* data, size_t dataSize, uint8_t chunkIdx, VerOffset chunkStart)
  269. {
  270. size_t index = 0;
  271. Item item;
  272. if (mState == PageState::INVALID) {
  273. return ESP_ERR_NVS_INVALID_STATE;
  274. }
  275. esp_err_t rc = findItem(nsIndex, datatype, key, index, item, chunkIdx, chunkStart);
  276. if (rc != ESP_OK) {
  277. return rc;
  278. }
  279. if (!isVariableLengthType(datatype)) {
  280. if (dataSize != getAlignmentForType(datatype)) {
  281. return ESP_ERR_NVS_TYPE_MISMATCH;
  282. }
  283. if (memcmp(data, item.data, dataSize)) {
  284. return ESP_ERR_NVS_CONTENT_DIFFERS;
  285. }
  286. return ESP_OK;
  287. }
  288. if (dataSize < static_cast<size_t>(item.varLength.dataSize)) {
  289. return ESP_ERR_NVS_INVALID_LENGTH;
  290. }
  291. const uint8_t* dst = reinterpret_cast<const uint8_t*>(data);
  292. size_t left = item.varLength.dataSize;
  293. for (size_t i = index + 1; i < index + item.span; ++i) {
  294. Item ditem;
  295. rc = readEntry(i, ditem);
  296. if (rc != ESP_OK) {
  297. return rc;
  298. }
  299. size_t willCopy = ENTRY_SIZE;
  300. willCopy = (left < willCopy)?left:willCopy;
  301. if (memcmp(dst, ditem.rawData, willCopy)) {
  302. return ESP_ERR_NVS_CONTENT_DIFFERS;
  303. }
  304. left -= willCopy;
  305. dst += willCopy;
  306. }
  307. if (Item::calculateCrc32(reinterpret_cast<const uint8_t*>(data), item.varLength.dataSize) != item.varLength.dataCrc32) {
  308. return ESP_ERR_NVS_NOT_FOUND;
  309. }
  310. return ESP_OK;
  311. }
  312. esp_err_t Page::eraseItem(uint8_t nsIndex, ItemType datatype, const char* key, uint8_t chunkIdx, VerOffset chunkStart)
  313. {
  314. size_t index = 0;
  315. Item item;
  316. esp_err_t rc = findItem(nsIndex, datatype, key, index, item, chunkIdx, chunkStart);
  317. if (rc != ESP_OK) {
  318. return rc;
  319. }
  320. return eraseEntryAndSpan(index);
  321. }
  322. esp_err_t Page::findItem(uint8_t nsIndex, ItemType datatype, const char* key, uint8_t chunkIdx, VerOffset chunkStart)
  323. {
  324. size_t index = 0;
  325. Item item;
  326. return findItem(nsIndex, datatype, key, index, item, chunkIdx, chunkStart);
  327. }
  328. esp_err_t Page::eraseEntryAndSpan(size_t index)
  329. {
  330. auto state = mEntryTable.get(index);
  331. assert(state == EntryState::WRITTEN || state == EntryState::EMPTY);
  332. size_t span = 1;
  333. if (state == EntryState::WRITTEN) {
  334. Item item;
  335. auto rc = readEntry(index, item);
  336. if (rc != ESP_OK) {
  337. return rc;
  338. }
  339. if (item.calculateCrc32() != item.crc32) {
  340. mHashList.erase(index, false);
  341. rc = alterEntryState(index, EntryState::ERASED);
  342. --mUsedEntryCount;
  343. ++mErasedEntryCount;
  344. if (rc != ESP_OK) {
  345. return rc;
  346. }
  347. } else {
  348. mHashList.erase(index);
  349. span = item.span;
  350. for (ptrdiff_t i = index + span - 1; i >= static_cast<ptrdiff_t>(index); --i) {
  351. if (mEntryTable.get(i) == EntryState::WRITTEN) {
  352. --mUsedEntryCount;
  353. }
  354. ++mErasedEntryCount;
  355. }
  356. if (span == 1) {
  357. rc = alterEntryState(index, EntryState::ERASED);
  358. } else {
  359. rc = alterEntryRangeState(index, index + span, EntryState::ERASED);
  360. }
  361. if (rc != ESP_OK) {
  362. return rc;
  363. }
  364. }
  365. } else {
  366. auto rc = alterEntryState(index, EntryState::ERASED);
  367. if (rc != ESP_OK) {
  368. return rc;
  369. }
  370. }
  371. if (index == mFirstUsedEntry) {
  372. updateFirstUsedEntry(index, span);
  373. }
  374. if (index + span > mNextFreeEntry) {
  375. mNextFreeEntry = index + span;
  376. }
  377. return ESP_OK;
  378. }
  379. void Page::updateFirstUsedEntry(size_t index, size_t span)
  380. {
  381. assert(index == mFirstUsedEntry);
  382. mFirstUsedEntry = INVALID_ENTRY;
  383. size_t end = mNextFreeEntry;
  384. if (end > ENTRY_COUNT) {
  385. end = ENTRY_COUNT;
  386. }
  387. for (size_t i = index + span; i < end; ++i) {
  388. if (mEntryTable.get(i) == EntryState::WRITTEN) {
  389. mFirstUsedEntry = i;
  390. break;
  391. }
  392. }
  393. }
  394. esp_err_t Page::copyItems(Page& other)
  395. {
  396. if (mFirstUsedEntry == INVALID_ENTRY) {
  397. return ESP_ERR_NVS_NOT_FOUND;
  398. }
  399. if (other.mState == PageState::UNINITIALIZED) {
  400. auto err = other.initialize();
  401. if (err != ESP_OK) {
  402. return err;
  403. }
  404. }
  405. Item entry;
  406. size_t readEntryIndex = mFirstUsedEntry;
  407. while (readEntryIndex < ENTRY_COUNT) {
  408. if (mEntryTable.get(readEntryIndex) != EntryState::WRITTEN) {
  409. assert(readEntryIndex != mFirstUsedEntry);
  410. readEntryIndex++;
  411. continue;
  412. }
  413. auto err = readEntry(readEntryIndex, entry);
  414. if (err != ESP_OK) {
  415. return err;
  416. }
  417. other.mHashList.insert(entry, other.mNextFreeEntry);
  418. err = other.writeEntry(entry);
  419. if (err != ESP_OK) {
  420. return err;
  421. }
  422. size_t span = entry.span;
  423. size_t end = readEntryIndex + span;
  424. assert(end <= ENTRY_COUNT);
  425. for (size_t i = readEntryIndex + 1; i < end; ++i) {
  426. readEntry(i, entry);
  427. err = other.writeEntry(entry);
  428. if (err != ESP_OK) {
  429. return err;
  430. }
  431. }
  432. readEntryIndex = end;
  433. }
  434. return ESP_OK;
  435. }
  436. esp_err_t Page::mLoadEntryTable()
  437. {
  438. // for states where we actually care about data in the page, read entry state table
  439. if (mState == PageState::ACTIVE ||
  440. mState == PageState::FULL ||
  441. mState == PageState::FREEING) {
  442. auto rc = spi_flash_read(mBaseAddress + ENTRY_TABLE_OFFSET, mEntryTable.data(),
  443. mEntryTable.byteSize());
  444. if (rc != ESP_OK) {
  445. mState = PageState::INVALID;
  446. return rc;
  447. }
  448. }
  449. mErasedEntryCount = 0;
  450. mUsedEntryCount = 0;
  451. for (size_t i = 0; i < ENTRY_COUNT; ++i) {
  452. auto s = mEntryTable.get(i);
  453. if (s == EntryState::WRITTEN) {
  454. if (mFirstUsedEntry == INVALID_ENTRY) {
  455. mFirstUsedEntry = i;
  456. }
  457. ++mUsedEntryCount;
  458. } else if (s == EntryState::ERASED) {
  459. ++mErasedEntryCount;
  460. }
  461. }
  462. // for PageState::ACTIVE, we may have more data written to this page
  463. // as such, we need to figure out where the first unused entry is
  464. if (mState == PageState::ACTIVE) {
  465. for (size_t i = 0; i < ENTRY_COUNT; ++i) {
  466. if (mEntryTable.get(i) == EntryState::EMPTY) {
  467. mNextFreeEntry = i;
  468. break;
  469. }
  470. }
  471. // however, if power failed after some data was written into the entry.
  472. // but before the entry state table was altered, the entry locacted via
  473. // entry state table may actually be half-written.
  474. // this is easy to check by reading EntryHeader (i.e. first word)
  475. while (mNextFreeEntry < ENTRY_COUNT) {
  476. uint32_t entryAddress = getEntryAddress(mNextFreeEntry);
  477. uint32_t header;
  478. auto rc = spi_flash_read(entryAddress, &header, sizeof(header));
  479. if (rc != ESP_OK) {
  480. mState = PageState::INVALID;
  481. return rc;
  482. }
  483. if (header != 0xffffffff) {
  484. auto oldState = mEntryTable.get(mNextFreeEntry);
  485. auto err = alterEntryState(mNextFreeEntry, EntryState::ERASED);
  486. if (err != ESP_OK) {
  487. mState = PageState::INVALID;
  488. return err;
  489. }
  490. ++mNextFreeEntry;
  491. if (oldState == EntryState::WRITTEN) {
  492. --mUsedEntryCount;
  493. }
  494. ++mErasedEntryCount;
  495. }
  496. else {
  497. break;
  498. }
  499. }
  500. // check that all variable-length items are written or erased fully
  501. Item item;
  502. size_t lastItemIndex = INVALID_ENTRY;
  503. size_t end = mNextFreeEntry;
  504. if (end > ENTRY_COUNT) {
  505. end = ENTRY_COUNT;
  506. }
  507. size_t span;
  508. for (size_t i = 0; i < end; i += span) {
  509. span = 1;
  510. if (mEntryTable.get(i) == EntryState::ERASED) {
  511. lastItemIndex = INVALID_ENTRY;
  512. continue;
  513. }
  514. lastItemIndex = i;
  515. auto err = readEntry(i, item);
  516. if (err != ESP_OK) {
  517. mState = PageState::INVALID;
  518. return err;
  519. }
  520. if (item.crc32 != item.calculateCrc32()) {
  521. err = eraseEntryAndSpan(i);
  522. if (err != ESP_OK) {
  523. mState = PageState::INVALID;
  524. return err;
  525. }
  526. continue;
  527. }
  528. mHashList.insert(item, i);
  529. // search for potential duplicate item
  530. size_t duplicateIndex = mHashList.find(0, item);
  531. if (isVariableLengthType(item.datatype)) {
  532. span = item.span;
  533. bool needErase = false;
  534. for (size_t j = i; j < i + span; ++j) {
  535. if (mEntryTable.get(j) != EntryState::WRITTEN) {
  536. needErase = true;
  537. lastItemIndex = INVALID_ENTRY;
  538. break;
  539. }
  540. }
  541. if (needErase) {
  542. eraseEntryAndSpan(i);
  543. continue;
  544. }
  545. }
  546. /* Note that logic for duplicate detections works fine even
  547. * when old-format blob is present along with new-format blob-index
  548. * for same key on active page. Since datatype is not used in hash calculation,
  549. * old-format blob will be removed.*/
  550. if (duplicateIndex < i) {
  551. eraseEntryAndSpan(duplicateIndex);
  552. }
  553. }
  554. // check that last item is not duplicate
  555. if (lastItemIndex != INVALID_ENTRY) {
  556. size_t findItemIndex = 0;
  557. Item dupItem;
  558. if (findItem(item.nsIndex, item.datatype, item.key, findItemIndex, dupItem) == ESP_OK) {
  559. if (findItemIndex < lastItemIndex) {
  560. auto err = eraseEntryAndSpan(findItemIndex);
  561. if (err != ESP_OK) {
  562. mState = PageState::INVALID;
  563. return err;
  564. }
  565. }
  566. }
  567. }
  568. } else if (mState == PageState::FULL || mState == PageState::FREEING) {
  569. // We have already filled mHashList for page in active state.
  570. // Do the same for the case when page is in full or freeing state.
  571. Item item;
  572. for (size_t i = mFirstUsedEntry; i < ENTRY_COUNT; ++i) {
  573. if (mEntryTable.get(i) != EntryState::WRITTEN) {
  574. continue;
  575. }
  576. auto err = readEntry(i, item);
  577. if (err != ESP_OK) {
  578. mState = PageState::INVALID;
  579. return err;
  580. }
  581. if (item.crc32 != item.calculateCrc32()) {
  582. err = eraseEntryAndSpan(i);
  583. if (err != ESP_OK) {
  584. mState = PageState::INVALID;
  585. return err;
  586. }
  587. continue;
  588. }
  589. assert(item.span > 0);
  590. mHashList.insert(item, i);
  591. size_t span = item.span;
  592. if (isVariableLengthType(item.datatype)) {
  593. for (size_t j = i + 1; j < i + span; ++j) {
  594. if (mEntryTable.get(j) != EntryState::WRITTEN) {
  595. eraseEntryAndSpan(i);
  596. break;
  597. }
  598. }
  599. }
  600. i += span - 1;
  601. }
  602. }
  603. return ESP_OK;
  604. }
  605. esp_err_t Page::initialize()
  606. {
  607. assert(mState == PageState::UNINITIALIZED);
  608. mState = PageState::ACTIVE;
  609. Header header;
  610. header.mState = mState;
  611. header.mSeqNumber = mSeqNumber;
  612. header.mVersion = mVersion;
  613. header.mCrc32 = header.calculateCrc32();
  614. auto rc = spi_flash_write(mBaseAddress, &header, sizeof(header));
  615. if (rc != ESP_OK) {
  616. mState = PageState::INVALID;
  617. return rc;
  618. }
  619. mNextFreeEntry = 0;
  620. std::fill_n(mEntryTable.data(), mEntryTable.byteSize() / sizeof(uint32_t), 0xffffffff);
  621. return ESP_OK;
  622. }
  623. esp_err_t Page::alterEntryState(size_t index, EntryState state)
  624. {
  625. assert(index < ENTRY_COUNT);
  626. mEntryTable.set(index, state);
  627. size_t wordToWrite = mEntryTable.getWordIndex(index);
  628. uint32_t word = mEntryTable.data()[wordToWrite];
  629. auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordToWrite) * 4,
  630. &word, sizeof(word));
  631. if (rc != ESP_OK) {
  632. mState = PageState::INVALID;
  633. return rc;
  634. }
  635. return ESP_OK;
  636. }
  637. esp_err_t Page::alterEntryRangeState(size_t begin, size_t end, EntryState state)
  638. {
  639. assert(end <= ENTRY_COUNT);
  640. assert(end > begin);
  641. size_t wordIndex = mEntryTable.getWordIndex(end - 1);
  642. for (ptrdiff_t i = end - 1; i >= static_cast<ptrdiff_t>(begin); --i) {
  643. mEntryTable.set(i, state);
  644. size_t nextWordIndex;
  645. if (i == static_cast<ptrdiff_t>(begin)) {
  646. nextWordIndex = (size_t) -1;
  647. } else {
  648. nextWordIndex = mEntryTable.getWordIndex(i - 1);
  649. }
  650. if (nextWordIndex != wordIndex) {
  651. uint32_t word = mEntryTable.data()[wordIndex];
  652. auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordIndex) * 4,
  653. &word, 4);
  654. if (rc != ESP_OK) {
  655. return rc;
  656. }
  657. }
  658. wordIndex = nextWordIndex;
  659. }
  660. return ESP_OK;
  661. }
  662. esp_err_t Page::alterPageState(PageState state)
  663. {
  664. uint32_t state_val = static_cast<uint32_t>(state);
  665. auto rc = spi_flash_write(mBaseAddress, &state_val, sizeof(state));
  666. if (rc != ESP_OK) {
  667. mState = PageState::INVALID;
  668. return rc;
  669. }
  670. mState = (PageState) state;
  671. return ESP_OK;
  672. }
  673. esp_err_t Page::readEntry(size_t index, Item& dst) const
  674. {
  675. auto rc = nvs_flash_read(getEntryAddress(index), &dst, sizeof(dst));
  676. if (rc != ESP_OK) {
  677. return rc;
  678. }
  679. return ESP_OK;
  680. }
  681. esp_err_t Page::findItem(uint8_t nsIndex, ItemType datatype, const char* key, size_t &itemIndex, Item& item, uint8_t chunkIdx, VerOffset chunkStart)
  682. {
  683. if (mState == PageState::CORRUPT || mState == PageState::INVALID || mState == PageState::UNINITIALIZED) {
  684. return ESP_ERR_NVS_NOT_FOUND;
  685. }
  686. size_t findBeginIndex = itemIndex;
  687. if (findBeginIndex >= ENTRY_COUNT) {
  688. return ESP_ERR_NVS_NOT_FOUND;
  689. }
  690. size_t start = mFirstUsedEntry;
  691. if (findBeginIndex > mFirstUsedEntry && findBeginIndex < ENTRY_COUNT) {
  692. start = findBeginIndex;
  693. }
  694. size_t end = mNextFreeEntry;
  695. if (end > ENTRY_COUNT) {
  696. end = ENTRY_COUNT;
  697. }
  698. if (nsIndex != NS_ANY && datatype != ItemType::ANY && key != NULL) {
  699. size_t cachedIndex = mHashList.find(start, Item(nsIndex, datatype, 0, key, chunkIdx));
  700. if (cachedIndex < ENTRY_COUNT) {
  701. start = cachedIndex;
  702. } else {
  703. return ESP_ERR_NVS_NOT_FOUND;
  704. }
  705. }
  706. size_t next;
  707. for (size_t i = start; i < end; i = next) {
  708. next = i + 1;
  709. if (mEntryTable.get(i) != EntryState::WRITTEN) {
  710. continue;
  711. }
  712. auto rc = readEntry(i, item);
  713. if (rc != ESP_OK) {
  714. mState = PageState::INVALID;
  715. return rc;
  716. }
  717. auto crc32 = item.calculateCrc32();
  718. if (item.crc32 != crc32) {
  719. rc = eraseEntryAndSpan(i);
  720. if (rc != ESP_OK) {
  721. mState = PageState::INVALID;
  722. return rc;
  723. }
  724. continue;
  725. }
  726. if (isVariableLengthType(item.datatype)) {
  727. next = i + item.span;
  728. }
  729. if (nsIndex != NS_ANY && item.nsIndex != nsIndex) {
  730. continue;
  731. }
  732. if (key != nullptr && strncmp(key, item.key, Item::MAX_KEY_LENGTH) != 0) {
  733. continue;
  734. }
  735. /* For blob data, chunkIndex should match*/
  736. if (chunkIdx != CHUNK_ANY
  737. && datatype == ItemType::BLOB_DATA
  738. && item.chunkIndex != chunkIdx) {
  739. continue;
  740. }
  741. /* Blob-index will match the <ns,key> with blob data.
  742. * Skip data chunks when searching for blob index*/
  743. if (datatype == ItemType::BLOB_IDX
  744. && item.chunkIndex != CHUNK_ANY) {
  745. continue;
  746. }
  747. /* Match the version for blob-index*/
  748. if (datatype == ItemType::BLOB_IDX
  749. && chunkStart != VerOffset::VER_ANY
  750. && item.blobIndex.chunkStart != chunkStart) {
  751. continue;
  752. }
  753. if (datatype != ItemType::ANY && item.datatype != datatype) {
  754. if (key == nullptr && nsIndex == NS_ANY && chunkIdx == CHUNK_ANY) {
  755. continue; // continue for bruteforce search on blob indices.
  756. }
  757. itemIndex = i;
  758. return ESP_ERR_NVS_TYPE_MISMATCH;
  759. }
  760. itemIndex = i;
  761. return ESP_OK;
  762. }
  763. return ESP_ERR_NVS_NOT_FOUND;
  764. }
  765. esp_err_t Page::getSeqNumber(uint32_t& seqNumber) const
  766. {
  767. if (mState != PageState::UNINITIALIZED && mState != PageState::INVALID && mState != PageState::CORRUPT) {
  768. seqNumber = mSeqNumber;
  769. return ESP_OK;
  770. }
  771. return ESP_ERR_NVS_NOT_INITIALIZED;
  772. }
  773. esp_err_t Page::setSeqNumber(uint32_t seqNumber)
  774. {
  775. if (mState != PageState::UNINITIALIZED) {
  776. return ESP_ERR_NVS_INVALID_STATE;
  777. }
  778. mSeqNumber = seqNumber;
  779. return ESP_OK;
  780. }
  781. esp_err_t Page::setVersion(uint8_t ver)
  782. {
  783. if (mState != PageState::UNINITIALIZED) {
  784. return ESP_ERR_NVS_INVALID_STATE;
  785. }
  786. mVersion = ver;
  787. return ESP_OK;
  788. }
  789. esp_err_t Page::erase()
  790. {
  791. auto sector = mBaseAddress / SPI_FLASH_SEC_SIZE;
  792. auto rc = spi_flash_erase_sector(sector);
  793. if (rc != ESP_OK) {
  794. mState = PageState::INVALID;
  795. return rc;
  796. }
  797. mUsedEntryCount = 0;
  798. mErasedEntryCount = 0;
  799. mFirstUsedEntry = INVALID_ENTRY;
  800. mNextFreeEntry = INVALID_ENTRY;
  801. mState = PageState::UNINITIALIZED;
  802. mHashList.clear();
  803. return ESP_OK;
  804. }
  805. esp_err_t Page::markFreeing()
  806. {
  807. if (mState != PageState::FULL && mState != PageState::ACTIVE) {
  808. return ESP_ERR_NVS_INVALID_STATE;
  809. }
  810. return alterPageState(PageState::FREEING);
  811. }
  812. esp_err_t Page::markFull()
  813. {
  814. if (mState != PageState::ACTIVE) {
  815. return ESP_ERR_NVS_INVALID_STATE;
  816. }
  817. return alterPageState(PageState::FULL);
  818. }
  819. size_t Page::getVarDataTailroom() const
  820. {
  821. if (mState == PageState::UNINITIALIZED) {
  822. return CHUNK_MAX_SIZE;
  823. } else if (mState == PageState::FULL) {
  824. return 0;
  825. }
  826. /* Skip one entry for header*/
  827. return ((mNextFreeEntry < (ENTRY_COUNT-1)) ? ((ENTRY_COUNT - mNextFreeEntry - 1) * ENTRY_SIZE): 0);
  828. }
  829. const char* Page::pageStateToName(PageState ps)
  830. {
  831. switch (ps) {
  832. case PageState::CORRUPT:
  833. return "CORRUPT";
  834. case PageState::ACTIVE:
  835. return "ACTIVE";
  836. case PageState::FREEING:
  837. return "FREEING";
  838. case PageState::FULL:
  839. return "FULL";
  840. case PageState::INVALID:
  841. return "INVALID";
  842. case PageState::UNINITIALIZED:
  843. return "UNINITIALIZED";
  844. default:
  845. assert(0 && "invalid state value");
  846. return "";
  847. }
  848. }
  849. void Page::debugDump() const
  850. {
  851. printf("state=%x (%s) addr=%x seq=%d\nfirstUsed=%d nextFree=%d used=%d erased=%d\n", (uint32_t) mState, pageStateToName(mState), mBaseAddress, mSeqNumber, static_cast<int>(mFirstUsedEntry), static_cast<int>(mNextFreeEntry), mUsedEntryCount, mErasedEntryCount);
  852. size_t skip = 0;
  853. for (size_t i = 0; i < ENTRY_COUNT; ++i) {
  854. printf("%3d: ", static_cast<int>(i));
  855. EntryState state = mEntryTable.get(i);
  856. if (state == EntryState::EMPTY) {
  857. printf("E\n");
  858. } else if (state == EntryState::ERASED) {
  859. printf("X\n");
  860. } else if (state == EntryState::WRITTEN) {
  861. Item item;
  862. readEntry(i, item);
  863. if (skip == 0) {
  864. printf("W ns=%2u type=%2u span=%3u key=\"%s\" chunkIdx=%d len=%d\n", item.nsIndex, static_cast<unsigned>(item.datatype), item.span, item.key, item.chunkIndex, (item.span != 1)?((int)item.varLength.dataSize):-1);
  865. if (item.span > 0 && item.span <= ENTRY_COUNT - i) {
  866. skip = item.span - 1;
  867. } else {
  868. skip = 0;
  869. }
  870. } else {
  871. printf("D\n");
  872. skip--;
  873. }
  874. }
  875. }
  876. }
  877. esp_err_t Page::calcEntries(nvs_stats_t &nvsStats)
  878. {
  879. assert(mState != PageState::FREEING);
  880. nvsStats.total_entries += ENTRY_COUNT;
  881. switch (mState) {
  882. case PageState::UNINITIALIZED:
  883. case PageState::CORRUPT:
  884. nvsStats.free_entries += ENTRY_COUNT;
  885. break;
  886. case PageState::FULL:
  887. case PageState::ACTIVE:
  888. nvsStats.used_entries += mUsedEntryCount;
  889. nvsStats.free_entries += ENTRY_COUNT - mUsedEntryCount; // it's equivalent free + erase entries.
  890. break;
  891. case PageState::INVALID:
  892. return ESP_ERR_INVALID_STATE;
  893. break;
  894. default:
  895. assert(false && "Unhandled state");
  896. break;
  897. }
  898. return ESP_OK;
  899. }
  900. } // namespace nvs