uart.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include <sys/param.h>
  8. #include "esp_types.h"
  9. #include "esp_attr.h"
  10. #include "esp_intr_alloc.h"
  11. #include "esp_log.h"
  12. #include "esp_err.h"
  13. #include "esp_check.h"
  14. #include "malloc.h"
  15. #include "freertos/FreeRTOS.h"
  16. #include "freertos/semphr.h"
  17. #include "freertos/ringbuf.h"
  18. #include "esp_private/critical_section.h"
  19. #include "hal/uart_hal.h"
  20. #include "hal/gpio_hal.h"
  21. #include "hal/clk_tree_ll.h"
  22. #include "soc/uart_periph.h"
  23. #include "driver/uart.h"
  24. #include "driver/gpio.h"
  25. #include "driver/rtc_io.h"
  26. #include "driver/uart_select.h"
  27. #include "esp_private/periph_ctrl.h"
  28. #include "esp_private/lp_periph_ctrl.h"
  29. #include "esp_clk_tree.h"
  30. #include "sdkconfig.h"
  31. #include "esp_rom_gpio.h"
  32. #include "clk_ctrl_os.h"
  33. #ifdef CONFIG_UART_ISR_IN_IRAM
  34. #define UART_ISR_ATTR IRAM_ATTR
  35. #define UART_MALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
  36. #else
  37. #define UART_ISR_ATTR
  38. #define UART_MALLOC_CAPS MALLOC_CAP_DEFAULT
  39. #endif
  40. #define XOFF (0x13)
  41. #define XON (0x11)
  42. static const char *UART_TAG = "uart";
  43. #define UART_EMPTY_THRESH_DEFAULT (10)
  44. #define LP_UART_EMPTY_THRESH_DEFAULT (2)
  45. #define UART_FULL_THRESH_DEFAULT (120)
  46. #define LP_UART_FULL_THRESH_DEFAULT (10)
  47. #define UART_TOUT_THRESH_DEFAULT (10)
  48. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  49. #define UART_TX_IDLE_NUM_DEFAULT (0)
  50. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  51. #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
  52. #if (SOC_UART_LP_NUM >= 1)
  53. #define UART_THRESHOLD_NUM(uart_num, field_name) ((uart_num < SOC_UART_HP_NUM) ? field_name : LP_##field_name)
  54. #else
  55. #define UART_THRESHOLD_NUM(uart_num, field_name) (field_name)
  56. #endif
  57. #if SOC_UART_SUPPORT_WAKEUP_INT
  58. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  59. | (UART_INTR_RXFIFO_TOUT) \
  60. | (UART_INTR_RXFIFO_OVF) \
  61. | (UART_INTR_BRK_DET) \
  62. | (UART_INTR_PARITY_ERR)) \
  63. | (UART_INTR_WAKEUP)
  64. #else
  65. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  66. | (UART_INTR_RXFIFO_TOUT) \
  67. | (UART_INTR_RXFIFO_OVF) \
  68. | (UART_INTR_BRK_DET) \
  69. | (UART_INTR_PARITY_ERR))
  70. #endif
  71. #define UART_ENTER_CRITICAL_SAFE(spinlock) esp_os_enter_critical_safe(spinlock)
  72. #define UART_EXIT_CRITICAL_SAFE(spinlock) esp_os_exit_critical_safe(spinlock)
  73. #define UART_ENTER_CRITICAL_ISR(spinlock) esp_os_enter_critical_isr(spinlock)
  74. #define UART_EXIT_CRITICAL_ISR(spinlock) esp_os_exit_critical_isr(spinlock)
  75. #define UART_ENTER_CRITICAL(spinlock) esp_os_enter_critical(spinlock)
  76. #define UART_EXIT_CRITICAL(spinlock) esp_os_exit_critical(spinlock)
  77. // Check actual UART mode set
  78. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  79. #define UART_CONTEX_INIT_DEF(uart_num) {\
  80. .hal.dev = UART_LL_GET_HW(uart_num),\
  81. INIT_CRIT_SECTION_LOCK_IN_STRUCT(spinlock)\
  82. .hw_enabled = false,\
  83. }
  84. typedef struct {
  85. uart_event_type_t type; /*!< UART TX data type */
  86. struct {
  87. int brk_len;
  88. size_t size;
  89. uint8_t data[0];
  90. } tx_data;
  91. } uart_tx_data_t;
  92. typedef struct {
  93. int wr;
  94. int rd;
  95. int len;
  96. int *data;
  97. } uart_pat_rb_t;
  98. typedef struct {
  99. uart_port_t uart_num; /*!< UART port number*/
  100. int event_queue_size; /*!< UART event queue size*/
  101. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  102. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  103. bool coll_det_flg; /*!< UART collision detection flag */
  104. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  105. int rx_buffered_len; /*!< UART cached data length */
  106. int rx_buf_size; /*!< RX ring buffer size */
  107. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  108. uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  109. uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
  110. uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
  111. uint8_t *rx_data_buf; /*!< Data buffer to stash FIFO data*/
  112. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  113. uint32_t rx_int_usr_mask; /*!< RX interrupt status. Valid at any time, regardless of RX buffer status. */
  114. uart_pat_rb_t rx_pattern_pos;
  115. int tx_buf_size; /*!< TX ring buffer size */
  116. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  117. uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  118. uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  119. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  120. uint32_t tx_len_cur;
  121. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  122. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  123. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  124. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  125. QueueHandle_t event_queue; /*!< UART event queue handler*/
  126. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  127. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  128. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  129. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  130. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  131. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  132. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  133. #if CONFIG_UART_ISR_IN_IRAM
  134. void *event_queue_storage;
  135. void *event_queue_struct;
  136. void *rx_ring_buf_storage;
  137. void *rx_ring_buf_struct;
  138. void *tx_ring_buf_storage;
  139. void *tx_ring_buf_struct;
  140. void *rx_mux_struct;
  141. void *tx_mux_struct;
  142. void *tx_fifo_sem_struct;
  143. void *tx_done_sem_struct;
  144. void *tx_brk_sem_struct;
  145. #endif
  146. } uart_obj_t;
  147. typedef struct {
  148. uart_hal_context_t hal; /*!< UART hal context*/
  149. DECLARE_CRIT_SECTION_LOCK_IN_STRUCT(spinlock)
  150. bool hw_enabled;
  151. } uart_context_t;
  152. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  153. static uart_context_t uart_context[UART_NUM_MAX] = {
  154. UART_CONTEX_INIT_DEF(UART_NUM_0),
  155. UART_CONTEX_INIT_DEF(UART_NUM_1),
  156. #if SOC_UART_HP_NUM > 2
  157. UART_CONTEX_INIT_DEF(UART_NUM_2),
  158. #endif
  159. #if (SOC_UART_LP_NUM >= 1)
  160. UART_CONTEX_INIT_DEF(LP_UART_NUM_0),
  161. #endif
  162. };
  163. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  164. static void uart_module_enable(uart_port_t uart_num)
  165. {
  166. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  167. if (uart_context[uart_num].hw_enabled != true) {
  168. if (uart_num < SOC_UART_HP_NUM) {
  169. periph_module_enable(uart_periph_signal[uart_num].module);
  170. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  171. // Workaround for ESP32C3/S3: enable core reset before enabling uart module clock to prevent uart output
  172. // garbage value.
  173. #if SOC_UART_REQUIRE_CORE_RESET
  174. uart_hal_set_reset_core(&(uart_context[uart_num].hal), true);
  175. periph_module_reset(uart_periph_signal[uart_num].module);
  176. uart_hal_set_reset_core(&(uart_context[uart_num].hal), false);
  177. #else
  178. periph_module_reset(uart_periph_signal[uart_num].module);
  179. #endif
  180. }
  181. }
  182. #if (SOC_UART_LP_NUM >= 1)
  183. else {
  184. lp_periph_module_enable(uart_periph_signal[uart_num].lp_module);
  185. lp_periph_module_reset(uart_periph_signal[uart_num].lp_module);
  186. }
  187. #endif
  188. uart_context[uart_num].hw_enabled = true;
  189. }
  190. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  191. }
  192. static void uart_module_disable(uart_port_t uart_num)
  193. {
  194. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  195. if (uart_context[uart_num].hw_enabled != false) {
  196. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM && uart_num < SOC_UART_HP_NUM) {
  197. periph_module_disable(uart_periph_signal[uart_num].module);
  198. }
  199. #if (SOC_UART_LP_NUM >= 1)
  200. else if (uart_num >= SOC_UART_HP_NUM) {
  201. lp_periph_module_disable(uart_periph_signal[uart_num].lp_module);
  202. }
  203. #endif
  204. uart_context[uart_num].hw_enabled = false;
  205. }
  206. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  207. }
  208. esp_err_t uart_get_sclk_freq(uart_sclk_t sclk, uint32_t *out_freq_hz)
  209. {
  210. return esp_clk_tree_src_get_freq_hz((soc_module_clk_t)sclk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, out_freq_hz);
  211. }
  212. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  213. {
  214. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  215. ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  216. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  217. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  218. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  219. return ESP_OK;
  220. }
  221. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
  222. {
  223. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  224. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  225. return ESP_OK;
  226. }
  227. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  228. {
  229. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  230. ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error");
  231. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  232. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  233. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  234. return ESP_OK;
  235. }
  236. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
  237. {
  238. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  239. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  240. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  241. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  242. return ESP_OK;
  243. }
  244. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  245. {
  246. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  247. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  248. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  249. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  250. return ESP_OK;
  251. }
  252. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
  253. {
  254. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  255. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  256. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  257. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  258. return ESP_OK;
  259. }
  260. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  261. {
  262. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  263. soc_module_clk_t src_clk;
  264. uint32_t sclk_freq;
  265. uart_hal_get_sclk(&(uart_context[uart_num].hal), &src_clk);
  266. ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq), UART_TAG, "Invalid src_clk");
  267. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  268. uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate, sclk_freq);
  269. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  270. return ESP_OK;
  271. }
  272. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  273. {
  274. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  275. soc_module_clk_t src_clk;
  276. uint32_t sclk_freq;
  277. uart_hal_get_sclk(&(uart_context[uart_num].hal), &src_clk);
  278. ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq), UART_TAG, "Invalid src_clk");
  279. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  280. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate, sclk_freq);
  281. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  282. return ESP_OK;
  283. }
  284. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  285. {
  286. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  287. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  288. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  289. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  290. return ESP_OK;
  291. }
  292. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  293. {
  294. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  295. ESP_RETURN_ON_FALSE((rx_thresh_xon < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
  296. ESP_RETURN_ON_FALSE((rx_thresh_xoff < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow xoff thresh error");
  297. uart_sw_flowctrl_t sw_flow_ctl = {
  298. .xon_char = XON,
  299. .xoff_char = XOFF,
  300. .xon_thrd = rx_thresh_xon,
  301. .xoff_thrd = rx_thresh_xoff,
  302. };
  303. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  304. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  305. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  306. return ESP_OK;
  307. }
  308. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  309. {
  310. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  311. ESP_RETURN_ON_FALSE((rx_thresh < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow thresh error");
  312. ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  313. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  314. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  315. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  316. return ESP_OK;
  317. }
  318. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
  319. {
  320. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  321. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  322. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  323. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  324. return ESP_OK;
  325. }
  326. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  327. {
  328. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  329. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  330. return ESP_OK;
  331. }
  332. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  333. {
  334. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  335. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  336. /* Keep track of the interrupt toggling. In fact, without such variable,
  337. * once the RX buffer is full and the RX interrupts disabled, it is
  338. * impossible what was the previous state (enabled/disabled) of these
  339. * interrupt masks. Thus, this will be very particularly handy when
  340. * emptying a filled RX buffer. */
  341. p_uart_obj[uart_num]->rx_int_usr_mask |= enable_mask;
  342. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  343. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  344. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  345. return ESP_OK;
  346. }
  347. /**
  348. * @brief Function re-enabling the given interrupts (mask) if and only if
  349. * they have not been disabled by the user.
  350. *
  351. * @param uart_num UART number to perform the operation on
  352. * @param enable_mask Interrupts (flags) to be re-enabled
  353. *
  354. * @return ESP_OK in success, ESP_FAIL if uart_num is incorrect
  355. */
  356. static esp_err_t uart_reenable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  357. {
  358. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  359. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  360. /* Mask will only contain the interrupt flags that needs to be re-enabled
  361. * AND which have NOT been explicitly disabled by the user. */
  362. uint32_t mask = p_uart_obj[uart_num]->rx_int_usr_mask & enable_mask;
  363. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), mask);
  364. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), mask);
  365. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  366. return ESP_OK;
  367. }
  368. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  369. {
  370. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  371. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  372. p_uart_obj[uart_num]->rx_int_usr_mask &= ~disable_mask;
  373. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  374. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  375. return ESP_OK;
  376. }
  377. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  378. {
  379. int *pdata = NULL;
  380. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  381. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  382. pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  383. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  384. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  385. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  386. }
  387. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  388. free(pdata);
  389. return ESP_OK;
  390. }
  391. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  392. {
  393. esp_err_t ret = ESP_OK;
  394. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  395. int next = p_pos->wr + 1;
  396. if (next >= p_pos->len) {
  397. next = 0;
  398. }
  399. if (next == p_pos->rd) {
  400. #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
  401. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  402. #endif
  403. ret = ESP_FAIL;
  404. } else {
  405. p_pos->data[p_pos->wr] = pos;
  406. p_pos->wr = next;
  407. ret = ESP_OK;
  408. }
  409. return ret;
  410. }
  411. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  412. {
  413. if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  414. return ESP_ERR_INVALID_STATE;
  415. } else {
  416. esp_err_t ret = ESP_OK;
  417. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  418. if (p_pos->rd == p_pos->wr) {
  419. ret = ESP_FAIL;
  420. } else {
  421. p_pos->rd++;
  422. }
  423. if (p_pos->rd >= p_pos->len) {
  424. p_pos->rd = 0;
  425. }
  426. return ret;
  427. }
  428. }
  429. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  430. {
  431. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  432. int rd = p_pos->rd;
  433. while (rd != p_pos->wr) {
  434. p_pos->data[rd] -= diff_len;
  435. int rd_rec = rd;
  436. rd ++;
  437. if (rd >= p_pos->len) {
  438. rd = 0;
  439. }
  440. if (p_pos->data[rd_rec] < 0) {
  441. p_pos->rd = rd;
  442. }
  443. }
  444. return ESP_OK;
  445. }
  446. int uart_pattern_pop_pos(uart_port_t uart_num)
  447. {
  448. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  449. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  450. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  451. int pos = -1;
  452. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  453. pos = pat_pos->data[pat_pos->rd];
  454. uart_pattern_dequeue(uart_num);
  455. }
  456. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  457. return pos;
  458. }
  459. int uart_pattern_get_pos(uart_port_t uart_num)
  460. {
  461. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  462. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  463. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  464. int pos = -1;
  465. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  466. pos = pat_pos->data[pat_pos->rd];
  467. }
  468. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  469. return pos;
  470. }
  471. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  472. {
  473. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  474. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  475. int *pdata = (int *) malloc(queue_length * sizeof(int));
  476. if (pdata == NULL) {
  477. return ESP_ERR_NO_MEM;
  478. }
  479. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  480. int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  481. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  482. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  483. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  484. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  485. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  486. free(ptmp);
  487. return ESP_OK;
  488. }
  489. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  490. {
  491. ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error");
  492. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_THRESHOLD_NUM(uart_num, UART_RX_GAP_TOUT_V), ESP_FAIL, UART_TAG, "uart pattern set error\n");
  493. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_THRESHOLD_NUM(uart_num, UART_POST_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart pattern set error\n");
  494. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_THRESHOLD_NUM(uart_num, UART_PRE_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart pattern set error\n");
  495. uart_at_cmd_t at_cmd = {0};
  496. at_cmd.cmd_char = pattern_chr;
  497. at_cmd.char_num = chr_num;
  498. #if CONFIG_IDF_TARGET_ESP32
  499. uint32_t apb_clk_freq = 0;
  500. uint32_t uart_baud = 0;
  501. uint32_t uart_div = 0;
  502. uart_get_baudrate(uart_num, &uart_baud);
  503. esp_clk_tree_src_get_freq_hz((soc_module_clk_t)UART_SCLK_APB, ESP_CLK_TREE_SRC_FREQ_PRECISION_EXACT, &apb_clk_freq);
  504. uart_div = apb_clk_freq / uart_baud;
  505. at_cmd.gap_tout = chr_tout * uart_div;
  506. at_cmd.pre_idle = pre_idle * uart_div;
  507. at_cmd.post_idle = post_idle * uart_div;
  508. #else
  509. at_cmd.gap_tout = chr_tout;
  510. at_cmd.pre_idle = pre_idle;
  511. at_cmd.post_idle = post_idle;
  512. #endif
  513. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  514. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  515. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  516. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  517. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  518. return ESP_OK;
  519. }
  520. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  521. {
  522. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  523. }
  524. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  525. {
  526. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  527. }
  528. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  529. {
  530. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  531. }
  532. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  533. {
  534. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  535. }
  536. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  537. {
  538. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  539. ESP_RETURN_ON_FALSE((thresh < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "empty intr threshold error");
  540. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  541. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  542. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  543. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  544. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  545. return ESP_OK;
  546. }
  547. static bool uart_try_set_iomux_pin(uart_port_t uart_num, int io_num, uint32_t idx)
  548. {
  549. /* Store a pointer to the default pin, to optimize access to its fields. */
  550. const uart_periph_sig_t *upin = &uart_periph_signal[uart_num].pins[idx];
  551. /* In theory, if default_gpio is -1, iomux_func should also be -1, but
  552. * let's be safe and test both. */
  553. if (upin->iomux_func == -1 || upin->default_gpio == -1 || upin->default_gpio != io_num) {
  554. return false;
  555. }
  556. /* Assign the correct funct to the GPIO. */
  557. assert (upin->iomux_func != -1);
  558. if (uart_num < SOC_UART_HP_NUM) {
  559. gpio_iomux_out(io_num, upin->iomux_func, false);
  560. /* If the pin is input, we also have to redirect the signal,
  561. * in order to bypasse the GPIO matrix. */
  562. if (upin->input) {
  563. gpio_iomux_in(io_num, upin->signal);
  564. }
  565. }
  566. #if (SOC_UART_LP_NUM >= 1)
  567. else {
  568. if (upin->input) {
  569. rtc_gpio_set_direction(io_num, RTC_GPIO_MODE_INPUT_ONLY);
  570. } else {
  571. rtc_gpio_set_direction(io_num, RTC_GPIO_MODE_OUTPUT_ONLY);
  572. }
  573. rtc_gpio_init(io_num);
  574. rtc_gpio_iomux_func_sel(io_num, upin->iomux_func);
  575. }
  576. #endif
  577. return true;
  578. }
  579. //internal signal can be output to multiple GPIO pads
  580. //only one GPIO pad can connect with input signal
  581. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  582. {
  583. ESP_RETURN_ON_FALSE((uart_num >= 0), ESP_FAIL, UART_TAG, "uart_num error");
  584. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  585. if (uart_num < SOC_UART_HP_NUM) {
  586. ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error");
  587. ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error");
  588. ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error");
  589. ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error");
  590. }
  591. #if (SOC_UART_LP_NUM >= 1)
  592. else { // LP_UART has its fixed IOs
  593. const uart_periph_sig_t *pins = uart_periph_signal[uart_num].pins;
  594. ESP_RETURN_ON_FALSE((tx_io_num < 0 || (tx_io_num == pins[SOC_UART_TX_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "tx_io_num error");
  595. ESP_RETURN_ON_FALSE((rx_io_num < 0 || (rx_io_num == pins[SOC_UART_RX_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "rx_io_num error");
  596. ESP_RETURN_ON_FALSE((rts_io_num < 0 || (rts_io_num == pins[SOC_UART_RTS_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "rts_io_num error");
  597. ESP_RETURN_ON_FALSE((cts_io_num < 0 || (cts_io_num == pins[SOC_UART_CTS_PIN_IDX].default_gpio)), ESP_FAIL, UART_TAG, "cts_io_num error");
  598. }
  599. #endif
  600. /* In the following statements, if the io_num is negative, no need to configure anything. */
  601. if (tx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, tx_io_num, SOC_UART_TX_PIN_IDX)) {
  602. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  603. gpio_set_level(tx_io_num, 1);
  604. esp_rom_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0);
  605. }
  606. if (rx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rx_io_num, SOC_UART_RX_PIN_IDX)) {
  607. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  608. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  609. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  610. esp_rom_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0);
  611. }
  612. if (rts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rts_io_num, SOC_UART_RTS_PIN_IDX)) {
  613. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  614. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  615. esp_rom_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
  616. }
  617. if (cts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, cts_io_num, SOC_UART_CTS_PIN_IDX)) {
  618. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  619. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  620. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  621. esp_rom_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0);
  622. }
  623. return ESP_OK;
  624. }
  625. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  626. {
  627. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  628. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control");
  629. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  630. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  631. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  632. return ESP_OK;
  633. }
  634. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  635. {
  636. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  637. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  638. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  639. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  640. return ESP_OK;
  641. }
  642. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  643. {
  644. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  645. ESP_RETURN_ON_FALSE((idle_num <= UART_THRESHOLD_NUM(uart_num, UART_TX_IDLE_NUM_V)), ESP_FAIL, UART_TAG, "uart idle num error");
  646. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  647. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  648. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  649. return ESP_OK;
  650. }
  651. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  652. {
  653. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  654. ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null");
  655. ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "rx flow thresh error");
  656. ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  657. ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  658. uart_module_enable(uart_num);
  659. soc_module_clk_t uart_sclk_sel = 0; // initialize to an invalid module clock ID
  660. if (uart_num < SOC_UART_HP_NUM) {
  661. uart_sclk_sel = (soc_module_clk_t)((uart_config->source_clk) ? uart_config->source_clk : UART_SCLK_DEFAULT); // if no specifying the clock source (soc_module_clk_t starts from 1), then just use the default clock
  662. }
  663. #if (SOC_UART_LP_NUM >= 1)
  664. else {
  665. uart_sclk_sel = (soc_module_clk_t)((uart_config->lp_source_clk) ? uart_config->lp_source_clk : LP_UART_SCLK_DEFAULT);
  666. }
  667. #endif
  668. #if SOC_UART_SUPPORT_RTC_CLK
  669. if (uart_sclk_sel == (soc_module_clk_t)UART_SCLK_RTC) {
  670. periph_rtc_dig_clk8m_enable();
  671. }
  672. #endif
  673. uint32_t sclk_freq;
  674. ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz(uart_sclk_sel, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq), UART_TAG, "Invalid src_clk");
  675. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  676. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  677. if (uart_num < SOC_UART_HP_NUM) {
  678. uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_sclk_sel);
  679. }
  680. #if (SOC_UART_LP_NUM >= 1)
  681. else {
  682. lp_periph_set_clk_src(uart_periph_signal[uart_num].lp_module, uart_sclk_sel);
  683. }
  684. #endif
  685. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate, sclk_freq);
  686. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  687. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  688. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  689. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  690. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  691. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  692. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  693. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  694. return ESP_OK;
  695. }
  696. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  697. {
  698. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  699. ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null");
  700. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  701. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  702. if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  703. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  704. } else {
  705. //Disable rx_tout intr
  706. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  707. }
  708. if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  709. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  710. }
  711. if (intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  712. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  713. }
  714. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  715. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  716. return ESP_OK;
  717. }
  718. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, uint8_t pat_num)
  719. {
  720. int cnt = 0;
  721. int len = length;
  722. while (len >= 0) {
  723. if (buf[len] == pat_chr) {
  724. cnt++;
  725. } else {
  726. cnt = 0;
  727. }
  728. if (cnt >= pat_num) {
  729. break;
  730. }
  731. len --;
  732. }
  733. return len;
  734. }
  735. static uint32_t UART_ISR_ATTR uart_enable_tx_write_fifo(uart_port_t uart_num, const uint8_t *pbuf, uint32_t len)
  736. {
  737. uint32_t sent_len = 0;
  738. UART_ENTER_CRITICAL_SAFE(&(uart_context[uart_num].spinlock));
  739. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  740. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  741. // If any new things are written to fifo, then we can always clear the previous TX_DONE interrupt bit (if it was set)
  742. // Old TX_DONE bit might reset the RTS, leading new tx transmission failure for rs485 mode
  743. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  744. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  745. }
  746. uart_hal_write_txfifo(&(uart_context[uart_num].hal), pbuf, len, &sent_len);
  747. UART_EXIT_CRITICAL_SAFE(&(uart_context[uart_num].spinlock));
  748. return sent_len;
  749. }
  750. //internal isr handler for default driver code.
  751. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  752. {
  753. uart_obj_t *p_uart = (uart_obj_t *) param;
  754. uint8_t uart_num = p_uart->uart_num;
  755. int rx_fifo_len = 0;
  756. uint32_t uart_intr_status = 0;
  757. uart_event_t uart_event;
  758. portBASE_TYPE HPTaskAwoken = 0;
  759. static uint8_t pat_flg = 0;
  760. while (1) {
  761. // The `continue statement` may cause the interrupt to loop infinitely
  762. // we exit the interrupt here
  763. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  764. //Exit form while loop
  765. if (uart_intr_status == 0) {
  766. break;
  767. }
  768. uart_event.type = UART_EVENT_MAX;
  769. if (uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  770. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  771. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  772. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  773. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  774. if (p_uart->tx_waiting_brk) {
  775. continue;
  776. }
  777. //TX semaphore will only be used when tx_buf_size is zero.
  778. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  779. p_uart->tx_waiting_fifo = false;
  780. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  781. } else {
  782. //We don't use TX ring buffer, because the size is zero.
  783. if (p_uart->tx_buf_size == 0) {
  784. continue;
  785. }
  786. bool en_tx_flg = false;
  787. uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  788. //We need to put a loop here, in case all the buffer items are very short.
  789. //That would cause a watch_dog reset because empty interrupt happens so often.
  790. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  791. while (tx_fifo_rem) {
  792. if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  793. size_t size;
  794. p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  795. if (p_uart->tx_head) {
  796. //The first item is the data description
  797. //Get the first item to get the data information
  798. if (p_uart->tx_len_tot == 0) {
  799. p_uart->tx_ptr = NULL;
  800. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  801. if (p_uart->tx_head->type == UART_DATA_BREAK) {
  802. p_uart->tx_brk_flg = 1;
  803. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  804. }
  805. //We have saved the data description from the 1st item, return buffer.
  806. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  807. } else if (p_uart->tx_ptr == NULL) {
  808. //Update the TX item pointer, we will need this to return item to buffer.
  809. p_uart->tx_ptr = (uint8_t *)p_uart->tx_head;
  810. en_tx_flg = true;
  811. p_uart->tx_len_cur = size;
  812. }
  813. } else {
  814. //Can not get data from ring buffer, return;
  815. break;
  816. }
  817. }
  818. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  819. // To fill the TX FIFO.
  820. uint32_t send_len = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) p_uart->tx_ptr,
  821. MIN(p_uart->tx_len_cur, tx_fifo_rem));
  822. p_uart->tx_ptr += send_len;
  823. p_uart->tx_len_tot -= send_len;
  824. p_uart->tx_len_cur -= send_len;
  825. tx_fifo_rem -= send_len;
  826. if (p_uart->tx_len_cur == 0) {
  827. //Return item to ring buffer.
  828. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  829. p_uart->tx_head = NULL;
  830. p_uart->tx_ptr = NULL;
  831. //Sending item done, now we need to send break if there is a record.
  832. //Set TX break signal after FIFO is empty
  833. if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  834. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  835. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  836. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  837. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  838. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  839. p_uart->tx_waiting_brk = 1;
  840. //do not enable TX empty interrupt
  841. en_tx_flg = false;
  842. } else {
  843. //enable TX empty interrupt
  844. en_tx_flg = true;
  845. }
  846. } else {
  847. //enable TX empty interrupt
  848. en_tx_flg = true;
  849. }
  850. }
  851. }
  852. if (en_tx_flg) {
  853. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  854. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  855. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  856. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  857. }
  858. }
  859. } else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  860. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  861. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  862. ) {
  863. if (pat_flg == 1) {
  864. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  865. pat_flg = 0;
  866. }
  867. if (p_uart->rx_buffer_full_flg == false) {
  868. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  869. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  870. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  871. }
  872. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  873. uint8_t pat_chr = 0;
  874. uint8_t pat_num = 0;
  875. int pat_idx = -1;
  876. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  877. //Get the buffer from the FIFO
  878. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  879. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  880. uart_event.type = UART_PATTERN_DET;
  881. uart_event.size = rx_fifo_len;
  882. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  883. } else {
  884. //After Copying the Data From FIFO ,Clear intr_status
  885. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  886. uart_event.type = UART_DATA;
  887. uart_event.size = rx_fifo_len;
  888. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  889. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  890. if (p_uart->uart_select_notif_callback) {
  891. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  892. }
  893. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  894. }
  895. p_uart->rx_stash_len = rx_fifo_len;
  896. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  897. //Mainly for applications that uses flow control or small ring buffer.
  898. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  899. p_uart->rx_buffer_full_flg = true;
  900. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  901. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  902. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  903. if (uart_event.type == UART_PATTERN_DET) {
  904. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  905. if (rx_fifo_len < pat_num) {
  906. //some of the characters are read out in last interrupt
  907. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  908. } else {
  909. uart_pattern_enqueue(uart_num,
  910. pat_idx <= -1 ?
  911. //can not find the pattern in buffer,
  912. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  913. // find the pattern in buffer
  914. p_uart->rx_buffered_len + pat_idx);
  915. }
  916. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  917. if ((p_uart->event_queue != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken))) {
  918. #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
  919. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  920. #endif
  921. }
  922. }
  923. uart_event.type = UART_BUFFER_FULL;
  924. } else {
  925. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  926. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  927. if (rx_fifo_len < pat_num) {
  928. //some of the characters are read out in last interrupt
  929. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  930. } else if (pat_idx >= 0) {
  931. // find the pattern in stash buffer.
  932. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  933. }
  934. }
  935. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  936. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  937. }
  938. } else {
  939. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  940. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  941. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  942. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  943. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  944. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  945. uart_event.type = UART_PATTERN_DET;
  946. uart_event.size = rx_fifo_len;
  947. pat_flg = 1;
  948. }
  949. }
  950. } else if (uart_intr_status & UART_INTR_RXFIFO_OVF) {
  951. // When fifo overflows, we reset the fifo.
  952. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  953. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  954. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  955. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  956. if (p_uart->uart_select_notif_callback) {
  957. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  958. }
  959. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  960. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  961. uart_event.type = UART_FIFO_OVF;
  962. } else if (uart_intr_status & UART_INTR_BRK_DET) {
  963. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  964. uart_event.type = UART_BREAK;
  965. } else if (uart_intr_status & UART_INTR_FRAM_ERR) {
  966. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  967. if (p_uart->uart_select_notif_callback) {
  968. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  969. }
  970. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  971. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  972. uart_event.type = UART_FRAME_ERR;
  973. } else if (uart_intr_status & UART_INTR_PARITY_ERR) {
  974. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  975. if (p_uart->uart_select_notif_callback) {
  976. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  977. }
  978. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  979. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  980. uart_event.type = UART_PARITY_ERR;
  981. } else if (uart_intr_status & UART_INTR_TX_BRK_DONE) {
  982. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  983. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  984. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  985. if (p_uart->tx_brk_flg == 1) {
  986. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  987. }
  988. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  989. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  990. if (p_uart->tx_brk_flg == 1) {
  991. p_uart->tx_brk_flg = 0;
  992. p_uart->tx_waiting_brk = 0;
  993. } else {
  994. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  995. }
  996. } else if (uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  997. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  998. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  999. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  1000. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  1001. } else if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  1002. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  1003. uart_event.type = UART_PATTERN_DET;
  1004. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  1005. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  1006. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  1007. // RS485 collision or frame error interrupt triggered
  1008. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  1009. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1010. // Set collision detection flag
  1011. p_uart_obj[uart_num]->coll_det_flg = true;
  1012. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  1013. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  1014. uart_event.type = UART_EVENT_MAX;
  1015. } else if (uart_intr_status & UART_INTR_TX_DONE) {
  1016. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  1017. // The TX_DONE interrupt is triggered but transmit is active
  1018. // then postpone interrupt processing for next interrupt
  1019. uart_event.type = UART_EVENT_MAX;
  1020. } else {
  1021. // Workaround for RS485: If the RS485 half duplex mode is active
  1022. // and transmitter is in idle state then reset received buffer and reset RTS pin
  1023. // skip this behavior for other UART modes
  1024. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1025. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  1026. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1027. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1028. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1029. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  1030. }
  1031. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  1032. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  1033. }
  1034. }
  1035. #if SOC_UART_SUPPORT_WAKEUP_INT
  1036. else if (uart_intr_status & UART_INTR_WAKEUP) {
  1037. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_WAKEUP);
  1038. uart_event.type = UART_WAKEUP;
  1039. }
  1040. #endif
  1041. else {
  1042. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  1043. uart_event.type = UART_EVENT_MAX;
  1044. }
  1045. if (uart_event.type != UART_EVENT_MAX && p_uart->event_queue) {
  1046. if (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken)) {
  1047. #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
  1048. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  1049. #endif
  1050. }
  1051. }
  1052. }
  1053. if (HPTaskAwoken == pdTRUE) {
  1054. portYIELD_FROM_ISR();
  1055. }
  1056. }
  1057. /**************************************************************/
  1058. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1059. {
  1060. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1061. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1062. BaseType_t res;
  1063. TickType_t ticks_start = xTaskGetTickCount();
  1064. //Take tx_mux
  1065. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)ticks_to_wait);
  1066. if (res == pdFALSE) {
  1067. return ESP_ERR_TIMEOUT;
  1068. }
  1069. // Check the enable status of TX_DONE: If already enabled, then let the isr handle the status bit;
  1070. // If not enabled, then make sure to clear the status bit before enabling the TX_DONE interrupt bit
  1071. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1072. bool is_rs485_mode = UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX);
  1073. bool disabled = !(uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TX_DONE);
  1074. // For RS485 mode, TX_DONE interrupt is enabled for every tx transmission, so there shouldn't be a case of
  1075. // interrupt not enabled but raw bit is set.
  1076. assert(!(is_rs485_mode &&
  1077. disabled &&
  1078. uart_hal_get_intraw_mask(&(uart_context[uart_num].hal)) & UART_INTR_TX_DONE));
  1079. // If decided to register for the TX_DONE event, then we should clear any possible old tx transmission status.
  1080. // The clear operation of RS485 mode should only be handled in isr or when writing to tx fifo.
  1081. if (disabled && !is_rs485_mode) {
  1082. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1083. }
  1084. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1085. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1086. // FSM status register update comes later than TX_DONE interrupt raw bit raise
  1087. // The maximum time takes for FSM status register to update is (6 APB clock cycles + 3 UART core clock cycles)
  1088. // Therefore, to avoid the situation of TX_DONE bit being cleared but FSM didn't be recognized as IDLE (which
  1089. // would lead to timeout), a delay of 2us is added in between.
  1090. esp_rom_delay_us(2);
  1091. if (uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  1092. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1093. return ESP_OK;
  1094. }
  1095. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1096. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1097. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1098. TickType_t ticks_end = xTaskGetTickCount();
  1099. if (ticks_end - ticks_start > ticks_to_wait) {
  1100. ticks_to_wait = 0;
  1101. } else {
  1102. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1103. }
  1104. //take 2nd tx_done_sem, wait given from ISR
  1105. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (TickType_t)ticks_to_wait);
  1106. if (res == pdFALSE) {
  1107. // The TX_DONE interrupt will be disabled in ISR
  1108. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1109. return ESP_ERR_TIMEOUT;
  1110. }
  1111. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1112. return ESP_OK;
  1113. }
  1114. int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
  1115. {
  1116. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1117. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1118. ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null");
  1119. if (len == 0) {
  1120. return 0;
  1121. }
  1122. int tx_len = 0;
  1123. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)portMAX_DELAY);
  1124. tx_len = (int)uart_enable_tx_write_fifo(uart_num, (const uint8_t *) buffer, len);
  1125. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1126. return tx_len;
  1127. }
  1128. static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
  1129. {
  1130. if (size == 0) {
  1131. return 0;
  1132. }
  1133. size_t original_size = size;
  1134. //lock for uart_tx
  1135. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)portMAX_DELAY);
  1136. p_uart_obj[uart_num]->coll_det_flg = false;
  1137. if (p_uart_obj[uart_num]->tx_buf_size > 0) {
  1138. size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1139. int offset = 0;
  1140. uart_tx_data_t evt;
  1141. evt.tx_data.size = size;
  1142. evt.tx_data.brk_len = brk_len;
  1143. if (brk_en) {
  1144. evt.type = UART_DATA_BREAK;
  1145. } else {
  1146. evt.type = UART_DATA;
  1147. }
  1148. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1149. while (size > 0) {
  1150. size_t send_size = size > max_size / 2 ? max_size / 2 : size;
  1151. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
  1152. size -= send_size;
  1153. offset += send_size;
  1154. uart_enable_tx_intr(uart_num, 1, UART_THRESHOLD_NUM(uart_num, UART_EMPTY_THRESH_DEFAULT));
  1155. }
  1156. } else {
  1157. while (size) {
  1158. //semaphore for tx_fifo available
  1159. if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (TickType_t)portMAX_DELAY)) {
  1160. uint32_t sent = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) src, size);
  1161. if (sent < size) {
  1162. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1163. uart_enable_tx_intr(uart_num, 1, UART_THRESHOLD_NUM(uart_num, UART_EMPTY_THRESH_DEFAULT));
  1164. }
  1165. size -= sent;
  1166. src += sent;
  1167. }
  1168. }
  1169. if (brk_en) {
  1170. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1171. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1172. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1173. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1174. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1175. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (TickType_t)portMAX_DELAY);
  1176. }
  1177. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1178. }
  1179. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1180. return original_size;
  1181. }
  1182. int uart_write_bytes(uart_port_t uart_num, const void *src, size_t size)
  1183. {
  1184. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1185. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error");
  1186. ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null");
  1187. return uart_tx_all(uart_num, src, size, 0, 0);
  1188. }
  1189. int uart_write_bytes_with_break(uart_port_t uart_num, const void *src, size_t size, int brk_len)
  1190. {
  1191. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1192. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1193. ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error");
  1194. ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null");
  1195. ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error");
  1196. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1197. }
  1198. static bool uart_check_buf_full(uart_port_t uart_num)
  1199. {
  1200. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1201. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1202. if (res == pdTRUE) {
  1203. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1204. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1205. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1206. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1207. /* Only re-activate UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL
  1208. * interrupts if they were NOT explicitly disabled by the user. */
  1209. uart_reenable_intr_mask(p_uart_obj[uart_num]->uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  1210. return true;
  1211. }
  1212. }
  1213. return false;
  1214. }
  1215. int uart_read_bytes(uart_port_t uart_num, void *buf, uint32_t length, TickType_t ticks_to_wait)
  1216. {
  1217. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1218. ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null");
  1219. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1220. uint8_t *data = NULL;
  1221. size_t size;
  1222. size_t copy_len = 0;
  1223. int len_tmp;
  1224. if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (TickType_t)ticks_to_wait) != pdTRUE) {
  1225. return -1;
  1226. }
  1227. while (length) {
  1228. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1229. data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (TickType_t) ticks_to_wait);
  1230. if (data) {
  1231. p_uart_obj[uart_num]->rx_head_ptr = data;
  1232. p_uart_obj[uart_num]->rx_ptr = data;
  1233. p_uart_obj[uart_num]->rx_cur_remain = size;
  1234. } else {
  1235. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1236. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1237. //to solve the possible asynchronous issues.
  1238. if (uart_check_buf_full(uart_num)) {
  1239. //This condition will never be true if `uart_read_bytes`
  1240. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1241. continue;
  1242. } else {
  1243. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1244. return copy_len;
  1245. }
  1246. }
  1247. }
  1248. if (p_uart_obj[uart_num]->rx_cur_remain > length) {
  1249. len_tmp = length;
  1250. } else {
  1251. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1252. }
  1253. memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1254. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1255. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1256. uart_pattern_queue_update(uart_num, len_tmp);
  1257. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1258. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1259. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1260. copy_len += len_tmp;
  1261. length -= len_tmp;
  1262. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1263. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1264. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1265. p_uart_obj[uart_num]->rx_ptr = NULL;
  1266. uart_check_buf_full(uart_num);
  1267. }
  1268. }
  1269. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1270. return copy_len;
  1271. }
  1272. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
  1273. {
  1274. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1275. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1276. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1277. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1278. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1279. return ESP_OK;
  1280. }
  1281. esp_err_t uart_get_tx_buffer_free_size(uart_port_t uart_num, size_t *size)
  1282. {
  1283. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1284. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error");
  1285. ESP_RETURN_ON_FALSE((size != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "arg pointer is NULL");
  1286. *size = p_uart_obj[uart_num]->tx_buf_size - p_uart_obj[uart_num]->tx_len_tot;
  1287. return ESP_OK;
  1288. }
  1289. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1290. esp_err_t uart_flush_input(uart_port_t uart_num)
  1291. {
  1292. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1293. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1294. uart_obj_t *p_uart = p_uart_obj[uart_num];
  1295. uint8_t *data;
  1296. size_t size;
  1297. //rx sem protect the ring buffer read related functions
  1298. xSemaphoreTake(p_uart->rx_mux, (TickType_t)portMAX_DELAY);
  1299. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1300. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  1301. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1302. while (true) {
  1303. if (p_uart->rx_head_ptr) {
  1304. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1305. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1306. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1307. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1308. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1309. p_uart->rx_ptr = NULL;
  1310. p_uart->rx_cur_remain = 0;
  1311. p_uart->rx_head_ptr = NULL;
  1312. }
  1313. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (TickType_t) 0);
  1314. if(data == NULL) {
  1315. bool error = false;
  1316. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1317. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1318. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1319. error = true;
  1320. }
  1321. //We also need to clear the `rx_buffer_full_flg` here.
  1322. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1323. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1324. if (error) {
  1325. // this must be called outside the critical section
  1326. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1327. }
  1328. break;
  1329. }
  1330. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1331. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1332. uart_pattern_queue_update(uart_num, size);
  1333. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1334. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1335. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1336. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1337. if (res == pdTRUE) {
  1338. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1339. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1340. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1341. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1342. }
  1343. }
  1344. }
  1345. p_uart->rx_ptr = NULL;
  1346. p_uart->rx_cur_remain = 0;
  1347. p_uart->rx_head_ptr = NULL;
  1348. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1349. /* Only re-enable UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL if they
  1350. * were explicitly enabled by the user. */
  1351. uart_reenable_intr_mask(uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  1352. xSemaphoreGive(p_uart->rx_mux);
  1353. return ESP_OK;
  1354. }
  1355. static void uart_free_driver_obj(uart_obj_t *uart_obj)
  1356. {
  1357. if (uart_obj->tx_fifo_sem) {
  1358. vSemaphoreDelete(uart_obj->tx_fifo_sem);
  1359. }
  1360. if (uart_obj->tx_done_sem) {
  1361. vSemaphoreDelete(uart_obj->tx_done_sem);
  1362. }
  1363. if (uart_obj->tx_brk_sem) {
  1364. vSemaphoreDelete(uart_obj->tx_brk_sem);
  1365. }
  1366. if (uart_obj->tx_mux) {
  1367. vSemaphoreDelete(uart_obj->tx_mux);
  1368. }
  1369. if (uart_obj->rx_mux) {
  1370. vSemaphoreDelete(uart_obj->rx_mux);
  1371. }
  1372. if (uart_obj->event_queue) {
  1373. vQueueDelete(uart_obj->event_queue);
  1374. }
  1375. if (uart_obj->rx_ring_buf) {
  1376. vRingbufferDelete(uart_obj->rx_ring_buf);
  1377. }
  1378. if (uart_obj->tx_ring_buf) {
  1379. vRingbufferDelete(uart_obj->tx_ring_buf);
  1380. }
  1381. #if CONFIG_UART_ISR_IN_IRAM
  1382. free(uart_obj->event_queue_storage);
  1383. free(uart_obj->event_queue_struct);
  1384. free(uart_obj->tx_ring_buf_storage);
  1385. free(uart_obj->tx_ring_buf_struct);
  1386. free(uart_obj->rx_ring_buf_storage);
  1387. free(uart_obj->rx_ring_buf_struct);
  1388. free(uart_obj->rx_mux_struct);
  1389. free(uart_obj->tx_mux_struct);
  1390. free(uart_obj->tx_brk_sem_struct);
  1391. free(uart_obj->tx_done_sem_struct);
  1392. free(uart_obj->tx_fifo_sem_struct);
  1393. #endif
  1394. free(uart_obj->rx_data_buf);
  1395. free(uart_obj);
  1396. }
  1397. static uart_obj_t *uart_alloc_driver_obj(uart_port_t uart_num, int event_queue_size, int tx_buffer_size, int rx_buffer_size)
  1398. {
  1399. uart_obj_t *uart_obj = heap_caps_calloc(1, sizeof(uart_obj_t), UART_MALLOC_CAPS);
  1400. if (!uart_obj) {
  1401. return NULL;
  1402. }
  1403. uart_obj->rx_data_buf = heap_caps_calloc(UART_HW_FIFO_LEN(uart_num), sizeof(uint32_t), UART_MALLOC_CAPS);
  1404. if (!uart_obj->rx_data_buf) {
  1405. goto err;
  1406. }
  1407. #if CONFIG_UART_ISR_IN_IRAM
  1408. if (event_queue_size > 0) {
  1409. uart_obj->event_queue_storage = heap_caps_calloc(event_queue_size, sizeof(uart_event_t), UART_MALLOC_CAPS);
  1410. uart_obj->event_queue_struct = heap_caps_calloc(1, sizeof(StaticQueue_t), UART_MALLOC_CAPS);
  1411. if (!uart_obj->event_queue_storage || !uart_obj->event_queue_struct) {
  1412. goto err;
  1413. }
  1414. }
  1415. if (tx_buffer_size > 0) {
  1416. uart_obj->tx_ring_buf_storage = heap_caps_calloc(1, tx_buffer_size, UART_MALLOC_CAPS);
  1417. uart_obj->tx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS);
  1418. if (!uart_obj->tx_ring_buf_storage || !uart_obj->tx_ring_buf_struct) {
  1419. goto err;
  1420. }
  1421. }
  1422. uart_obj->rx_ring_buf_storage = heap_caps_calloc(1, rx_buffer_size, UART_MALLOC_CAPS);
  1423. uart_obj->rx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS);
  1424. uart_obj->rx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1425. uart_obj->tx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1426. uart_obj->tx_brk_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1427. uart_obj->tx_done_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1428. uart_obj->tx_fifo_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1429. if (!uart_obj->rx_ring_buf_storage || !uart_obj->rx_ring_buf_struct || !uart_obj->rx_mux_struct ||
  1430. !uart_obj->tx_mux_struct || !uart_obj->tx_brk_sem_struct || !uart_obj->tx_done_sem_struct ||
  1431. !uart_obj->tx_fifo_sem_struct) {
  1432. goto err;
  1433. }
  1434. if (event_queue_size > 0) {
  1435. uart_obj->event_queue = xQueueCreateStatic(event_queue_size, sizeof(uart_event_t),
  1436. uart_obj->event_queue_storage, uart_obj->event_queue_struct);
  1437. if (!uart_obj->event_queue) {
  1438. goto err;
  1439. }
  1440. }
  1441. if (tx_buffer_size > 0) {
  1442. uart_obj->tx_ring_buf = xRingbufferCreateStatic(tx_buffer_size, RINGBUF_TYPE_NOSPLIT,
  1443. uart_obj->tx_ring_buf_storage, uart_obj->tx_ring_buf_struct);
  1444. if (!uart_obj->tx_ring_buf) {
  1445. goto err;
  1446. }
  1447. }
  1448. uart_obj->rx_ring_buf = xRingbufferCreateStatic(rx_buffer_size, RINGBUF_TYPE_BYTEBUF,
  1449. uart_obj->rx_ring_buf_storage, uart_obj->rx_ring_buf_struct);
  1450. uart_obj->rx_mux = xSemaphoreCreateMutexStatic(uart_obj->rx_mux_struct);
  1451. uart_obj->tx_mux = xSemaphoreCreateMutexStatic(uart_obj->tx_mux_struct);
  1452. uart_obj->tx_brk_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_brk_sem_struct);
  1453. uart_obj->tx_done_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_done_sem_struct);
  1454. uart_obj->tx_fifo_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_fifo_sem_struct);
  1455. if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
  1456. !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
  1457. goto err;
  1458. }
  1459. #else
  1460. if (event_queue_size > 0) {
  1461. uart_obj->event_queue = xQueueCreate(event_queue_size, sizeof(uart_event_t));
  1462. if (!uart_obj->event_queue) {
  1463. goto err;
  1464. }
  1465. }
  1466. if (tx_buffer_size > 0) {
  1467. uart_obj->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1468. if (!uart_obj->tx_ring_buf) {
  1469. goto err;
  1470. }
  1471. }
  1472. uart_obj->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1473. uart_obj->tx_mux = xSemaphoreCreateMutex();
  1474. uart_obj->rx_mux = xSemaphoreCreateMutex();
  1475. uart_obj->tx_brk_sem = xSemaphoreCreateBinary();
  1476. uart_obj->tx_done_sem = xSemaphoreCreateBinary();
  1477. uart_obj->tx_fifo_sem = xSemaphoreCreateBinary();
  1478. if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
  1479. !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
  1480. goto err;
  1481. }
  1482. #endif
  1483. return uart_obj;
  1484. err:
  1485. uart_free_driver_obj(uart_obj);
  1486. return NULL;
  1487. }
  1488. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int event_queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1489. {
  1490. esp_err_t ret;
  1491. #ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
  1492. ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig.");
  1493. #endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
  1494. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1495. ESP_RETURN_ON_FALSE((rx_buffer_size > UART_HW_FIFO_LEN(uart_num)), ESP_FAIL, UART_TAG, "uart rx buffer length error");
  1496. ESP_RETURN_ON_FALSE((tx_buffer_size > UART_HW_FIFO_LEN(uart_num)) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error");
  1497. #if CONFIG_UART_ISR_IN_IRAM
  1498. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1499. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1500. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1501. }
  1502. #else
  1503. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1504. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1505. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1506. }
  1507. #endif
  1508. if (p_uart_obj[uart_num] == NULL) {
  1509. p_uart_obj[uart_num] = uart_alloc_driver_obj(uart_num, event_queue_size, tx_buffer_size, rx_buffer_size);
  1510. if (p_uart_obj[uart_num] == NULL) {
  1511. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1512. return ESP_FAIL;
  1513. }
  1514. p_uart_obj[uart_num]->uart_num = uart_num;
  1515. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1516. p_uart_obj[uart_num]->coll_det_flg = false;
  1517. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1518. p_uart_obj[uart_num]->event_queue_size = event_queue_size;
  1519. p_uart_obj[uart_num]->tx_ptr = NULL;
  1520. p_uart_obj[uart_num]->tx_head = NULL;
  1521. p_uart_obj[uart_num]->tx_len_tot = 0;
  1522. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1523. p_uart_obj[uart_num]->tx_brk_len = 0;
  1524. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1525. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1526. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1527. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1528. p_uart_obj[uart_num]->rx_ptr = NULL;
  1529. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1530. p_uart_obj[uart_num]->rx_int_usr_mask = UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT;
  1531. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1532. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1533. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1534. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1535. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1536. if (uart_queue) {
  1537. *uart_queue = p_uart_obj[uart_num]->event_queue;
  1538. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->event_queue));
  1539. }
  1540. } else {
  1541. ESP_LOGE(UART_TAG, "UART driver already installed");
  1542. return ESP_FAIL;
  1543. }
  1544. uart_intr_config_t uart_intr = {
  1545. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1546. .rxfifo_full_thresh = UART_THRESHOLD_NUM(uart_num, UART_FULL_THRESH_DEFAULT),
  1547. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1548. .txfifo_empty_intr_thresh = UART_THRESHOLD_NUM(uart_num, UART_EMPTY_THRESH_DEFAULT),
  1549. };
  1550. uart_module_enable(uart_num);
  1551. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1552. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1553. ret = esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags,
  1554. uart_rx_intr_handler_default, p_uart_obj[uart_num],
  1555. &p_uart_obj[uart_num]->intr_handle);
  1556. ESP_GOTO_ON_ERROR(ret, err, UART_TAG, "Could not allocate an interrupt for UART");
  1557. ret = uart_intr_config(uart_num, &uart_intr);
  1558. ESP_GOTO_ON_ERROR(ret, err, UART_TAG, "Could not configure the interrupt for UART");
  1559. return ret;
  1560. err:
  1561. uart_driver_delete(uart_num);
  1562. return ret;
  1563. }
  1564. //Make sure no other tasks are still using UART before you call this function
  1565. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1566. {
  1567. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1568. if (p_uart_obj[uart_num] == NULL) {
  1569. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1570. return ESP_OK;
  1571. }
  1572. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1573. uart_disable_rx_intr(uart_num);
  1574. uart_disable_tx_intr(uart_num);
  1575. uart_pattern_link_free(uart_num);
  1576. uart_free_driver_obj(p_uart_obj[uart_num]);
  1577. p_uart_obj[uart_num] = NULL;
  1578. #if SOC_UART_SUPPORT_RTC_CLK
  1579. soc_module_clk_t sclk = 0;
  1580. uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
  1581. if (sclk == (soc_module_clk_t)UART_SCLK_RTC) {
  1582. periph_rtc_dig_clk8m_disable();
  1583. }
  1584. #endif
  1585. uart_module_disable(uart_num);
  1586. return ESP_OK;
  1587. }
  1588. bool uart_is_driver_installed(uart_port_t uart_num)
  1589. {
  1590. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1591. }
  1592. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1593. {
  1594. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1595. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1596. }
  1597. }
  1598. portMUX_TYPE *uart_get_selectlock(void)
  1599. {
  1600. return &uart_selectlock;
  1601. }
  1602. // Set UART mode
  1603. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1604. {
  1605. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1606. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  1607. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1608. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1609. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG,
  1610. "disable hw flowctrl before using RS485 mode");
  1611. }
  1612. if (uart_num >= SOC_UART_HP_NUM) {
  1613. ESP_RETURN_ON_FALSE((mode == UART_MODE_UART), ESP_ERR_INVALID_ARG, UART_TAG, "LP_UART can only be in normal UART mode");
  1614. }
  1615. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1616. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1617. if (mode == UART_MODE_RS485_COLLISION_DETECT) {
  1618. // This mode allows read while transmitting that allows collision detection
  1619. p_uart_obj[uart_num]->coll_det_flg = false;
  1620. // Enable collision detection interrupts
  1621. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1622. | UART_INTR_RXFIFO_FULL
  1623. | UART_INTR_RS485_CLASH
  1624. | UART_INTR_RS485_FRM_ERR
  1625. | UART_INTR_RS485_PARITY_ERR);
  1626. }
  1627. p_uart_obj[uart_num]->uart_mode = mode;
  1628. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1629. return ESP_OK;
  1630. }
  1631. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1632. {
  1633. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1634. ESP_RETURN_ON_FALSE((threshold < UART_THRESHOLD_NUM(uart_num, UART_RXFIFO_FULL_THRHD_V)) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1635. "rx fifo full threshold value error");
  1636. if (p_uart_obj[uart_num] == NULL) {
  1637. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1638. return ESP_ERR_INVALID_STATE;
  1639. }
  1640. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1641. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1642. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1643. }
  1644. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1645. return ESP_OK;
  1646. }
  1647. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1648. {
  1649. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1650. ESP_RETURN_ON_FALSE((threshold < UART_THRESHOLD_NUM(uart_num, UART_TXFIFO_EMPTY_THRHD_V)) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1651. "tx fifo empty threshold value error");
  1652. if (p_uart_obj[uart_num] == NULL) {
  1653. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1654. return ESP_ERR_INVALID_STATE;
  1655. }
  1656. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1657. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1658. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1659. }
  1660. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1661. return ESP_OK;
  1662. }
  1663. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1664. {
  1665. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1666. // get maximum timeout threshold
  1667. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1668. if (tout_thresh > tout_max_thresh) {
  1669. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1670. return ESP_ERR_INVALID_ARG;
  1671. }
  1672. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1673. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1674. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1675. return ESP_OK;
  1676. }
  1677. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
  1678. {
  1679. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1680. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1681. ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer");
  1682. ESP_RETURN_ON_FALSE((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1683. ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode");
  1684. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1685. return ESP_OK;
  1686. }
  1687. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1688. {
  1689. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1690. ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_THRESHOLD_NUM(uart_num, UART_ACTIVE_THRESHOLD_V) && wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG,
  1691. "wakeup_threshold out of bounds");
  1692. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1693. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1694. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1695. return ESP_OK;
  1696. }
  1697. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
  1698. {
  1699. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1700. ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL");
  1701. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1702. return ESP_OK;
  1703. }
  1704. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1705. {
  1706. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1707. while (!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1708. return ESP_OK;
  1709. }
  1710. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1711. {
  1712. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1713. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1714. return ESP_OK;
  1715. }
  1716. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1717. {
  1718. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1719. if (rx_tout) {
  1720. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1721. } else {
  1722. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1723. }
  1724. }