uart.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #define XOFF (char)0x13
  33. #define XON (char)0x11
  34. static const char* UART_TAG = "uart";
  35. #define UART_CHECK(a, str, ret_val) \
  36. if (!(a)) { \
  37. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  38. return (ret_val); \
  39. }
  40. #define UART_EMPTY_THRESH_DEFAULT (10)
  41. #define UART_FULL_THRESH_DEFAULT (120)
  42. #define UART_TOUT_THRESH_DEFAULT (10)
  43. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  44. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  45. #define UART_TX_IDLE_NUM_DEFAULT (0)
  46. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  47. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  48. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  49. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  50. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  51. // Check actual UART mode set
  52. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  53. typedef struct {
  54. uart_event_type_t type; /*!< UART TX data type */
  55. struct {
  56. int brk_len;
  57. size_t size;
  58. uint8_t data[0];
  59. } tx_data;
  60. } uart_tx_data_t;
  61. typedef struct {
  62. int wr;
  63. int rd;
  64. int len;
  65. int* data;
  66. } uart_pat_rb_t;
  67. typedef struct {
  68. uart_port_t uart_num; /*!< UART port number*/
  69. int queue_size; /*!< UART event queue size*/
  70. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  71. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  72. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  73. bool coll_det_flg; /*!< UART collision detection flag */
  74. //rx parameters
  75. int rx_buffered_len; /*!< UART cached data length */
  76. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  77. int rx_buf_size; /*!< RX ring buffer size */
  78. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  79. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  80. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  81. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  82. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  83. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  84. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  85. uart_pat_rb_t rx_pattern_pos;
  86. //tx parameters
  87. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  88. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  89. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  90. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  91. int tx_buf_size; /*!< TX ring buffer size */
  92. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  93. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  94. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  95. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  96. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  97. uint32_t tx_len_cur;
  98. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  99. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  100. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  101. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  102. } uart_obj_t;
  103. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  104. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  105. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  106. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  107. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  108. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  109. {
  110. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  111. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  112. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  113. UART[uart_num]->conf0.bit_num = data_bit;
  114. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  115. return ESP_OK;
  116. }
  117. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  118. {
  119. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  120. *(data_bit) = UART[uart_num]->conf0.bit_num;
  121. return ESP_OK;
  122. }
  123. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  124. {
  125. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  126. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  127. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  128. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  129. if (stop_bit == UART_STOP_BITS_2) {
  130. stop_bit = UART_STOP_BITS_1;
  131. UART[uart_num]->rs485_conf.dl1_en = 1;
  132. } else {
  133. UART[uart_num]->rs485_conf.dl1_en = 0;
  134. }
  135. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  136. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  137. return ESP_OK;
  138. }
  139. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  140. {
  141. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  142. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  143. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  144. (*stop_bit) = UART_STOP_BITS_2;
  145. } else {
  146. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  147. }
  148. return ESP_OK;
  149. }
  150. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  151. {
  152. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  153. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  154. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  155. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  156. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  157. return ESP_OK;
  158. }
  159. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  160. {
  161. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  162. int val = UART[uart_num]->conf0.val;
  163. if(val & UART_PARITY_EN_M) {
  164. if(val & UART_PARITY_M) {
  165. (*parity_mode) = UART_PARITY_ODD;
  166. } else {
  167. (*parity_mode) = UART_PARITY_EVEN;
  168. }
  169. } else {
  170. (*parity_mode) = UART_PARITY_DISABLE;
  171. }
  172. return ESP_OK;
  173. }
  174. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  175. {
  176. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  177. esp_err_t ret = ESP_OK;
  178. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  179. int uart_clk_freq;
  180. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  181. /* this UART has been configured to use REF_TICK */
  182. uart_clk_freq = REF_CLK_FREQ;
  183. } else {
  184. uart_clk_freq = esp_clk_apb_freq();
  185. }
  186. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  187. if (clk_div < 16) {
  188. /* baud rate is too high for this clock frequency */
  189. ret = ESP_ERR_INVALID_ARG;
  190. } else {
  191. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  192. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  193. }
  194. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  195. return ret;
  196. }
  197. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  198. {
  199. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  200. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  201. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  202. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  203. uint32_t uart_clk_freq = esp_clk_apb_freq();
  204. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  205. uart_clk_freq = REF_CLK_FREQ;
  206. }
  207. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  208. return ESP_OK;
  209. }
  210. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  211. {
  212. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  213. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  214. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  215. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  216. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  217. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  218. return ESP_OK;
  219. }
  220. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  221. {
  222. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  223. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  224. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  225. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  226. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  227. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  228. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  229. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  230. UART[uart_num]->swfc_conf.xon_char = XON;
  231. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  232. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  233. return ESP_OK;
  234. }
  235. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  236. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  237. {
  238. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  239. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  240. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  241. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  242. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  243. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  244. UART[uart_num]->conf1.rx_flow_en = 1;
  245. } else {
  246. UART[uart_num]->conf1.rx_flow_en = 0;
  247. }
  248. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  249. UART[uart_num]->conf0.tx_flow_en = 1;
  250. } else {
  251. UART[uart_num]->conf0.tx_flow_en = 0;
  252. }
  253. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  254. return ESP_OK;
  255. }
  256. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  257. {
  258. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  259. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  260. if(UART[uart_num]->conf1.rx_flow_en) {
  261. val |= UART_HW_FLOWCTRL_RTS;
  262. }
  263. if(UART[uart_num]->conf0.tx_flow_en) {
  264. val |= UART_HW_FLOWCTRL_CTS;
  265. }
  266. (*flow_ctrl) = val;
  267. return ESP_OK;
  268. }
  269. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  270. {
  271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  272. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  273. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  274. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  275. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  276. READ_PERI_REG(UART_FIFO_REG(uart_num));
  277. }
  278. return ESP_OK;
  279. }
  280. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  281. {
  282. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  283. //intr_clr register is write-only
  284. UART[uart_num]->int_clr.val = clr_mask;
  285. return ESP_OK;
  286. }
  287. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  288. {
  289. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  290. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  291. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  292. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  293. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  294. return ESP_OK;
  295. }
  296. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  297. {
  298. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  299. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  300. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  301. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  302. return ESP_OK;
  303. }
  304. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  305. {
  306. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  307. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  308. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  309. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  310. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  311. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  312. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  313. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  314. free(pdata);
  315. }
  316. return ESP_OK;
  317. }
  318. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  319. {
  320. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  321. esp_err_t ret = ESP_OK;
  322. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  323. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  324. int next = p_pos->wr + 1;
  325. if (next >= p_pos->len) {
  326. next = 0;
  327. }
  328. if (next == p_pos->rd) {
  329. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  330. ret = ESP_FAIL;
  331. } else {
  332. p_pos->data[p_pos->wr] = pos;
  333. p_pos->wr = next;
  334. ret = ESP_OK;
  335. }
  336. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  337. return ret;
  338. }
  339. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  340. {
  341. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  342. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  343. return ESP_ERR_INVALID_STATE;
  344. } else {
  345. esp_err_t ret = ESP_OK;
  346. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  347. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  348. if (p_pos->rd == p_pos->wr) {
  349. ret = ESP_FAIL;
  350. } else {
  351. p_pos->rd++;
  352. }
  353. if (p_pos->rd >= p_pos->len) {
  354. p_pos->rd = 0;
  355. }
  356. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  357. return ret;
  358. }
  359. }
  360. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  361. {
  362. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  363. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  364. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  365. int rd = p_pos->rd;
  366. while(rd != p_pos->wr) {
  367. p_pos->data[rd] -= diff_len;
  368. int rd_rec = rd;
  369. rd ++;
  370. if (rd >= p_pos->len) {
  371. rd = 0;
  372. }
  373. if (p_pos->data[rd_rec] < 0) {
  374. p_pos->rd = rd;
  375. }
  376. }
  377. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  378. return ESP_OK;
  379. }
  380. int uart_pattern_pop_pos(uart_port_t uart_num)
  381. {
  382. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  383. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  384. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  385. int pos = -1;
  386. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  387. pos = pat_pos->data[pat_pos->rd];
  388. uart_pattern_dequeue(uart_num);
  389. }
  390. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  391. return pos;
  392. }
  393. int uart_pattern_get_pos(uart_port_t uart_num)
  394. {
  395. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  396. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  397. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  398. int pos = -1;
  399. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  400. pos = pat_pos->data[pat_pos->rd];
  401. }
  402. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  403. return pos;
  404. }
  405. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  406. {
  407. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  408. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  409. int* pdata = (int*) malloc(queue_length * sizeof(int));
  410. if(pdata == NULL) {
  411. return ESP_ERR_NO_MEM;
  412. }
  413. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  414. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  415. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  416. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  417. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  418. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  419. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  420. free(ptmp);
  421. return ESP_OK;
  422. }
  423. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  424. {
  425. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  426. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  427. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  428. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  429. UART[uart_num]->at_cmd_char.data = pattern_chr;
  430. UART[uart_num]->at_cmd_char.char_num = chr_num;
  431. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  432. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  433. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  434. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  435. }
  436. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  437. {
  438. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  439. }
  440. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  441. {
  442. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  443. }
  444. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  445. {
  446. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  447. }
  448. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  449. {
  450. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  451. }
  452. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  453. {
  454. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  455. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  456. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  457. UART[uart_num]->int_clr.txfifo_empty = 1;
  458. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  459. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  460. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  461. return ESP_OK;
  462. }
  463. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  464. {
  465. int ret;
  466. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  467. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  468. switch(uart_num) {
  469. case UART_NUM_1:
  470. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  471. break;
  472. case UART_NUM_2:
  473. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  474. break;
  475. case UART_NUM_0:
  476. default:
  477. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  478. break;
  479. }
  480. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  481. return ret;
  482. }
  483. esp_err_t uart_isr_free(uart_port_t uart_num)
  484. {
  485. esp_err_t ret;
  486. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  487. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  488. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  489. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  490. p_uart_obj[uart_num]->intr_handle=NULL;
  491. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  492. return ret;
  493. }
  494. //internal signal can be output to multiple GPIO pads
  495. //only one GPIO pad can connect with input signal
  496. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  497. {
  498. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  499. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  500. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  501. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  502. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  503. int tx_sig, rx_sig, rts_sig, cts_sig;
  504. switch(uart_num) {
  505. case UART_NUM_0:
  506. tx_sig = U0TXD_OUT_IDX;
  507. rx_sig = U0RXD_IN_IDX;
  508. rts_sig = U0RTS_OUT_IDX;
  509. cts_sig = U0CTS_IN_IDX;
  510. break;
  511. case UART_NUM_1:
  512. tx_sig = U1TXD_OUT_IDX;
  513. rx_sig = U1RXD_IN_IDX;
  514. rts_sig = U1RTS_OUT_IDX;
  515. cts_sig = U1CTS_IN_IDX;
  516. break;
  517. case UART_NUM_2:
  518. tx_sig = U2TXD_OUT_IDX;
  519. rx_sig = U2RXD_IN_IDX;
  520. rts_sig = U2RTS_OUT_IDX;
  521. cts_sig = U2CTS_IN_IDX;
  522. break;
  523. case UART_NUM_MAX:
  524. default:
  525. tx_sig = U0TXD_OUT_IDX;
  526. rx_sig = U0RXD_IN_IDX;
  527. rts_sig = U0RTS_OUT_IDX;
  528. cts_sig = U0CTS_IN_IDX;
  529. break;
  530. }
  531. if(tx_io_num >= 0) {
  532. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  533. gpio_set_level(tx_io_num, 1);
  534. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  535. }
  536. if(rx_io_num >= 0) {
  537. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  538. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  539. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  540. gpio_matrix_in(rx_io_num, rx_sig, 0);
  541. }
  542. if(rts_io_num >= 0) {
  543. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  544. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  545. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  546. }
  547. if(cts_io_num >= 0) {
  548. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  549. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  550. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  551. gpio_matrix_in(cts_io_num, cts_sig, 0);
  552. }
  553. return ESP_OK;
  554. }
  555. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  556. {
  557. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  558. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  559. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  560. UART[uart_num]->conf0.sw_rts = level & 0x1;
  561. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  562. return ESP_OK;
  563. }
  564. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  565. {
  566. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  567. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  568. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  569. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  570. return ESP_OK;
  571. }
  572. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  573. {
  574. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  575. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  576. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  577. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  578. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  579. return ESP_OK;
  580. }
  581. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  582. {
  583. esp_err_t r;
  584. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  585. UART_CHECK((uart_config), "param null", ESP_FAIL);
  586. if(uart_num == UART_NUM_0) {
  587. periph_module_enable(PERIPH_UART0_MODULE);
  588. } else if(uart_num == UART_NUM_1) {
  589. periph_module_enable(PERIPH_UART1_MODULE);
  590. } else if(uart_num == UART_NUM_2) {
  591. periph_module_enable(PERIPH_UART2_MODULE);
  592. }
  593. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  594. if (r != ESP_OK) return r;
  595. UART[uart_num]->conf0.val =
  596. (uart_config->parity << UART_PARITY_S)
  597. | (uart_config->data_bits << UART_BIT_NUM_S)
  598. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  599. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  600. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  601. if (r != ESP_OK) return r;
  602. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  603. if (r != ESP_OK) return r;
  604. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  605. //A hardware reset does not reset the fifo,
  606. //so we need to reset the fifo manually.
  607. uart_reset_rx_fifo(uart_num);
  608. return r;
  609. }
  610. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  611. {
  612. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  613. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  614. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  615. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  616. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  617. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  618. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  619. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  620. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  621. } else {
  622. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  623. }
  624. UART[uart_num]->conf1.rx_tout_en = 1;
  625. } else {
  626. UART[uart_num]->conf1.rx_tout_en = 0;
  627. }
  628. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  629. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  630. }
  631. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  632. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  633. }
  634. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  635. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  636. return ESP_OK;
  637. }
  638. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  639. {
  640. int cnt = 0;
  641. int len = length;
  642. while (len >= 0) {
  643. if (buf[len] == pat_chr) {
  644. cnt++;
  645. } else {
  646. cnt = 0;
  647. }
  648. if (cnt >= pat_num) {
  649. break;
  650. }
  651. len --;
  652. }
  653. return len;
  654. }
  655. //internal isr handler for default driver code.
  656. static void uart_rx_intr_handler_default(void *param)
  657. {
  658. uart_obj_t *p_uart = (uart_obj_t*) param;
  659. uint8_t uart_num = p_uart->uart_num;
  660. uart_dev_t* uart_reg = UART[uart_num];
  661. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  662. uint8_t buf_idx = 0;
  663. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  664. uart_event_t uart_event;
  665. portBASE_TYPE HPTaskAwoken = 0;
  666. static uint8_t pat_flg = 0;
  667. while(uart_intr_status != 0x0) {
  668. buf_idx = 0;
  669. uart_event.type = UART_EVENT_MAX;
  670. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  671. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  672. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  673. if(p_uart->tx_waiting_brk) {
  674. continue;
  675. }
  676. //TX semaphore will only be used when tx_buf_size is zero.
  677. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  678. p_uart->tx_waiting_fifo = false;
  679. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  680. if(HPTaskAwoken == pdTRUE) {
  681. portYIELD_FROM_ISR();
  682. }
  683. } else {
  684. //We don't use TX ring buffer, because the size is zero.
  685. if(p_uart->tx_buf_size == 0) {
  686. continue;
  687. }
  688. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  689. bool en_tx_flg = false;
  690. //We need to put a loop here, in case all the buffer items are very short.
  691. //That would cause a watch_dog reset because empty interrupt happens so often.
  692. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  693. while(tx_fifo_rem) {
  694. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  695. size_t size;
  696. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  697. if(p_uart->tx_head) {
  698. //The first item is the data description
  699. //Get the first item to get the data information
  700. if(p_uart->tx_len_tot == 0) {
  701. p_uart->tx_ptr = NULL;
  702. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  703. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  704. p_uart->tx_brk_flg = 1;
  705. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  706. }
  707. //We have saved the data description from the 1st item, return buffer.
  708. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  709. if(HPTaskAwoken == pdTRUE) {
  710. portYIELD_FROM_ISR();
  711. }
  712. }else if(p_uart->tx_ptr == NULL) {
  713. //Update the TX item pointer, we will need this to return item to buffer.
  714. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  715. en_tx_flg = true;
  716. p_uart->tx_len_cur = size;
  717. }
  718. }
  719. else {
  720. //Can not get data from ring buffer, return;
  721. break;
  722. }
  723. }
  724. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  725. //To fill the TX FIFO.
  726. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  727. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  728. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  729. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  730. uart_reg->conf0.sw_rts = 0;
  731. uart_reg->int_ena.tx_done = 1;
  732. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  733. }
  734. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  735. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  736. *(p_uart->tx_ptr++) & 0xff);
  737. }
  738. p_uart->tx_len_tot -= send_len;
  739. p_uart->tx_len_cur -= send_len;
  740. tx_fifo_rem -= send_len;
  741. if (p_uart->tx_len_cur == 0) {
  742. //Return item to ring buffer.
  743. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  744. if(HPTaskAwoken == pdTRUE) {
  745. portYIELD_FROM_ISR();
  746. }
  747. p_uart->tx_head = NULL;
  748. p_uart->tx_ptr = NULL;
  749. //Sending item done, now we need to send break if there is a record.
  750. //Set TX break signal after FIFO is empty
  751. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  752. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  753. uart_reg->int_ena.tx_brk_done = 0;
  754. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  755. uart_reg->conf0.txd_brk = 1;
  756. uart_reg->int_clr.tx_brk_done = 1;
  757. uart_reg->int_ena.tx_brk_done = 1;
  758. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  759. p_uart->tx_waiting_brk = 1;
  760. //do not enable TX empty interrupt
  761. en_tx_flg = false;
  762. } else {
  763. //enable TX empty interrupt
  764. en_tx_flg = true;
  765. }
  766. } else {
  767. //enable TX empty interrupt
  768. en_tx_flg = true;
  769. }
  770. }
  771. }
  772. if (en_tx_flg) {
  773. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  774. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  775. }
  776. }
  777. }
  778. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  779. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  780. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  781. ) {
  782. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  783. if(pat_flg == 1) {
  784. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  785. pat_flg = 0;
  786. }
  787. if (p_uart->rx_buffer_full_flg == false) {
  788. //We have to read out all data in RX FIFO to clear the interrupt signal
  789. while (buf_idx < rx_fifo_len) {
  790. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  791. }
  792. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  793. int pat_num = uart_reg->at_cmd_char.char_num;
  794. int pat_idx = -1;
  795. //Get the buffer from the FIFO
  796. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  797. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  798. uart_event.type = UART_PATTERN_DET;
  799. uart_event.size = rx_fifo_len;
  800. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  801. } else {
  802. //After Copying the Data From FIFO ,Clear intr_status
  803. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  804. uart_event.type = UART_DATA;
  805. uart_event.size = rx_fifo_len;
  806. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  807. if (p_uart->uart_select_notif_callback) {
  808. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  809. }
  810. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  811. }
  812. p_uart->rx_stash_len = rx_fifo_len;
  813. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  814. //Mainly for applications that uses flow control or small ring buffer.
  815. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  816. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  817. if (uart_event.type == UART_PATTERN_DET) {
  818. if (rx_fifo_len < pat_num) {
  819. //some of the characters are read out in last interrupt
  820. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  821. } else {
  822. uart_pattern_enqueue(uart_num,
  823. pat_idx <= -1 ?
  824. //can not find the pattern in buffer,
  825. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  826. // find the pattern in buffer
  827. p_uart->rx_buffered_len + pat_idx);
  828. }
  829. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  830. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  831. }
  832. }
  833. uart_event.type = UART_BUFFER_FULL;
  834. p_uart->rx_buffer_full_flg = true;
  835. } else {
  836. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  837. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  838. if (rx_fifo_len < pat_num) {
  839. //some of the characters are read out in last interrupt
  840. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  841. } else if(pat_idx >= 0) {
  842. // find pattern in statsh buffer.
  843. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  844. }
  845. }
  846. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  847. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  848. }
  849. if(HPTaskAwoken == pdTRUE) {
  850. portYIELD_FROM_ISR();
  851. }
  852. } else {
  853. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  854. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  855. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  856. uart_reg->int_clr.at_cmd_char_det = 1;
  857. uart_event.type = UART_PATTERN_DET;
  858. uart_event.size = rx_fifo_len;
  859. pat_flg = 1;
  860. }
  861. }
  862. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  863. // When fifo overflows, we reset the fifo.
  864. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  865. uart_reset_rx_fifo(uart_num);
  866. uart_reg->int_clr.rxfifo_ovf = 1;
  867. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  868. uart_event.type = UART_FIFO_OVF;
  869. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  870. if (p_uart->uart_select_notif_callback) {
  871. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  872. }
  873. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  874. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  875. uart_reg->int_clr.brk_det = 1;
  876. uart_event.type = UART_BREAK;
  877. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  878. uart_reg->int_clr.frm_err = 1;
  879. uart_event.type = UART_FRAME_ERR;
  880. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  881. if (p_uart->uart_select_notif_callback) {
  882. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  883. }
  884. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  885. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  886. uart_reg->int_clr.parity_err = 1;
  887. uart_event.type = UART_PARITY_ERR;
  888. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  889. if (p_uart->uart_select_notif_callback) {
  890. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  891. }
  892. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  893. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  894. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  895. uart_reg->conf0.txd_brk = 0;
  896. uart_reg->int_ena.tx_brk_done = 0;
  897. uart_reg->int_clr.tx_brk_done = 1;
  898. if(p_uart->tx_brk_flg == 1) {
  899. uart_reg->int_ena.txfifo_empty = 1;
  900. }
  901. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  902. if(p_uart->tx_brk_flg == 1) {
  903. p_uart->tx_brk_flg = 0;
  904. p_uart->tx_waiting_brk = 0;
  905. } else {
  906. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  907. if(HPTaskAwoken == pdTRUE) {
  908. portYIELD_FROM_ISR();
  909. }
  910. }
  911. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  912. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  913. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  914. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  915. uart_reg->int_clr.at_cmd_char_det = 1;
  916. uart_event.type = UART_PATTERN_DET;
  917. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  918. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  919. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  920. // RS485 collision or frame error interrupt triggered
  921. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  922. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  923. uart_reset_rx_fifo(uart_num);
  924. // Set collision detection flag
  925. p_uart_obj[uart_num]->coll_det_flg = true;
  926. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  927. uart_event.type = UART_EVENT_MAX;
  928. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  929. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  930. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  931. // If RS485 half duplex mode is enable then reset FIFO and
  932. // reset RTS pin to start receiver driver
  933. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  934. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  935. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  936. uart_reg->conf0.sw_rts = 1;
  937. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  938. }
  939. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  940. if (HPTaskAwoken == pdTRUE) {
  941. portYIELD_FROM_ISR();
  942. }
  943. } else {
  944. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  945. uart_event.type = UART_EVENT_MAX;
  946. }
  947. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  948. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  949. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  950. }
  951. if(HPTaskAwoken == pdTRUE) {
  952. portYIELD_FROM_ISR();
  953. }
  954. }
  955. uart_intr_status = uart_reg->int_st.val;
  956. }
  957. }
  958. /**************************************************************/
  959. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  960. {
  961. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  962. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  963. BaseType_t res;
  964. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  965. //Take tx_mux
  966. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  967. if(res == pdFALSE) {
  968. return ESP_ERR_TIMEOUT;
  969. }
  970. ticks_to_wait = ticks_end - xTaskGetTickCount();
  971. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  972. ticks_to_wait = ticks_end - xTaskGetTickCount();
  973. if(UART[uart_num]->status.txfifo_cnt == 0) {
  974. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  975. return ESP_OK;
  976. }
  977. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  978. //take 2nd tx_done_sem, wait given from ISR
  979. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  980. if(res == pdFALSE) {
  981. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  982. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  983. return ESP_ERR_TIMEOUT;
  984. }
  985. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  986. return ESP_OK;
  987. }
  988. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  989. {
  990. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  991. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  992. UART[uart_num]->conf0.txd_brk = 1;
  993. UART[uart_num]->int_clr.tx_brk_done = 1;
  994. UART[uart_num]->int_ena.tx_brk_done = 1;
  995. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  996. return ESP_OK;
  997. }
  998. //Fill UART tx_fifo and return a number,
  999. //This function by itself is not thread-safe, always call from within a muxed section.
  1000. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1001. {
  1002. uint8_t i = 0;
  1003. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1004. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1005. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1006. // Set the RTS pin if RS485 mode is enabled
  1007. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1008. UART[uart_num]->conf0.sw_rts = 0;
  1009. UART[uart_num]->int_ena.tx_done = 1;
  1010. }
  1011. for (i = 0; i < copy_cnt; i++) {
  1012. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1013. }
  1014. return copy_cnt;
  1015. }
  1016. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1017. {
  1018. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1019. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1020. UART_CHECK(buffer, "buffer null", (-1));
  1021. if(len == 0) {
  1022. return 0;
  1023. }
  1024. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1025. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1026. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1027. return tx_len;
  1028. }
  1029. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1030. {
  1031. if(size == 0) {
  1032. return 0;
  1033. }
  1034. size_t original_size = size;
  1035. //lock for uart_tx
  1036. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1037. p_uart_obj[uart_num]->coll_det_flg = false;
  1038. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1039. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1040. int offset = 0;
  1041. uart_tx_data_t evt;
  1042. evt.tx_data.size = size;
  1043. evt.tx_data.brk_len = brk_len;
  1044. if(brk_en) {
  1045. evt.type = UART_DATA_BREAK;
  1046. } else {
  1047. evt.type = UART_DATA;
  1048. }
  1049. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1050. while(size > 0) {
  1051. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1052. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1053. size -= send_size;
  1054. offset += send_size;
  1055. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1056. }
  1057. } else {
  1058. while(size) {
  1059. //semaphore for tx_fifo available
  1060. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1061. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1062. if(sent < size) {
  1063. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1064. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1065. }
  1066. size -= sent;
  1067. src += sent;
  1068. }
  1069. }
  1070. if(brk_en) {
  1071. uart_set_break(uart_num, brk_len);
  1072. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1073. }
  1074. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1075. }
  1076. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1077. return original_size;
  1078. }
  1079. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1080. {
  1081. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1082. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1083. UART_CHECK(src, "buffer null", (-1));
  1084. return uart_tx_all(uart_num, src, size, 0, 0);
  1085. }
  1086. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1087. {
  1088. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1089. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1090. UART_CHECK((size > 0), "uart size error", (-1));
  1091. UART_CHECK((src), "uart data null", (-1));
  1092. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1093. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1094. }
  1095. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1096. {
  1097. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1098. UART_CHECK((buf), "uart data null", (-1));
  1099. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1100. uint8_t* data = NULL;
  1101. size_t size;
  1102. size_t copy_len = 0;
  1103. int len_tmp;
  1104. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1105. return -1;
  1106. }
  1107. while(length) {
  1108. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1109. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1110. if(data) {
  1111. p_uart_obj[uart_num]->rx_head_ptr = data;
  1112. p_uart_obj[uart_num]->rx_ptr = data;
  1113. p_uart_obj[uart_num]->rx_cur_remain = size;
  1114. } else {
  1115. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1116. return copy_len;
  1117. }
  1118. }
  1119. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1120. len_tmp = length;
  1121. } else {
  1122. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1123. }
  1124. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1125. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1126. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1127. uart_pattern_queue_update(uart_num, len_tmp);
  1128. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1129. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1130. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1131. copy_len += len_tmp;
  1132. length -= len_tmp;
  1133. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1134. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1135. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1136. p_uart_obj[uart_num]->rx_ptr = NULL;
  1137. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1138. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1139. if(res == pdTRUE) {
  1140. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1141. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1142. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1143. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1144. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1145. }
  1146. }
  1147. }
  1148. }
  1149. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1150. return copy_len;
  1151. }
  1152. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1153. {
  1154. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1155. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1156. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1157. return ESP_OK;
  1158. }
  1159. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1160. esp_err_t uart_flush_input(uart_port_t uart_num)
  1161. {
  1162. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1163. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1164. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1165. uint8_t* data;
  1166. size_t size;
  1167. //rx sem protect the ring buffer read related functions
  1168. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1169. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1170. while(true) {
  1171. if(p_uart->rx_head_ptr) {
  1172. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1173. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1174. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1175. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1176. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1177. p_uart->rx_ptr = NULL;
  1178. p_uart->rx_cur_remain = 0;
  1179. p_uart->rx_head_ptr = NULL;
  1180. }
  1181. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1182. if(data == NULL) {
  1183. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1184. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1185. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1186. }
  1187. //We also need to clear the `rx_buffer_full_flg` here.
  1188. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1189. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1190. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1191. break;
  1192. }
  1193. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1194. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1195. uart_pattern_queue_update(uart_num, size);
  1196. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1197. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1198. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1199. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1200. if(res == pdTRUE) {
  1201. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1202. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1203. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1204. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1205. }
  1206. }
  1207. }
  1208. p_uart->rx_ptr = NULL;
  1209. p_uart->rx_cur_remain = 0;
  1210. p_uart->rx_head_ptr = NULL;
  1211. uart_reset_rx_fifo(uart_num);
  1212. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1213. xSemaphoreGive(p_uart->rx_mux);
  1214. return ESP_OK;
  1215. }
  1216. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1217. {
  1218. esp_err_t r;
  1219. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1220. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1221. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1222. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1223. if(p_uart_obj[uart_num] == NULL) {
  1224. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1225. if(p_uart_obj[uart_num] == NULL) {
  1226. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1227. return ESP_FAIL;
  1228. }
  1229. p_uart_obj[uart_num]->uart_num = uart_num;
  1230. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1231. p_uart_obj[uart_num]->coll_det_flg = false;
  1232. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1233. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1234. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1235. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1236. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1237. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1238. p_uart_obj[uart_num]->queue_size = queue_size;
  1239. p_uart_obj[uart_num]->tx_ptr = NULL;
  1240. p_uart_obj[uart_num]->tx_head = NULL;
  1241. p_uart_obj[uart_num]->tx_len_tot = 0;
  1242. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1243. p_uart_obj[uart_num]->tx_brk_len = 0;
  1244. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1245. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1246. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1247. if(uart_queue) {
  1248. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1249. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1250. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1251. } else {
  1252. p_uart_obj[uart_num]->xQueueUart = NULL;
  1253. }
  1254. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1255. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1256. p_uart_obj[uart_num]->rx_ptr = NULL;
  1257. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1258. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1259. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1260. if(tx_buffer_size > 0) {
  1261. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1262. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1263. } else {
  1264. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1265. p_uart_obj[uart_num]->tx_buf_size = 0;
  1266. }
  1267. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1268. } else {
  1269. ESP_LOGE(UART_TAG, "UART driver already installed");
  1270. return ESP_FAIL;
  1271. }
  1272. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1273. if (r!=ESP_OK) goto err;
  1274. uart_intr_config_t uart_intr = {
  1275. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1276. | UART_RXFIFO_TOUT_INT_ENA_M
  1277. | UART_FRM_ERR_INT_ENA_M
  1278. | UART_RXFIFO_OVF_INT_ENA_M
  1279. | UART_BRK_DET_INT_ENA_M
  1280. | UART_PARITY_ERR_INT_ENA_M,
  1281. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1282. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1283. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1284. };
  1285. r=uart_intr_config(uart_num, &uart_intr);
  1286. if (r!=ESP_OK) goto err;
  1287. return r;
  1288. err:
  1289. uart_driver_delete(uart_num);
  1290. return r;
  1291. }
  1292. //Make sure no other tasks are still using UART before you call this function
  1293. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1294. {
  1295. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1296. if(p_uart_obj[uart_num] == NULL) {
  1297. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1298. return ESP_OK;
  1299. }
  1300. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1301. uart_disable_rx_intr(uart_num);
  1302. uart_disable_tx_intr(uart_num);
  1303. uart_pattern_link_free(uart_num);
  1304. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1305. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1306. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1307. }
  1308. if(p_uart_obj[uart_num]->tx_done_sem) {
  1309. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1310. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1311. }
  1312. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1313. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1314. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1315. }
  1316. if(p_uart_obj[uart_num]->tx_mux) {
  1317. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1318. p_uart_obj[uart_num]->tx_mux = NULL;
  1319. }
  1320. if(p_uart_obj[uart_num]->rx_mux) {
  1321. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1322. p_uart_obj[uart_num]->rx_mux = NULL;
  1323. }
  1324. if(p_uart_obj[uart_num]->xQueueUart) {
  1325. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1326. p_uart_obj[uart_num]->xQueueUart = NULL;
  1327. }
  1328. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1329. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1330. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1331. }
  1332. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1333. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1334. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1335. }
  1336. free(p_uart_obj[uart_num]);
  1337. p_uart_obj[uart_num] = NULL;
  1338. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1339. if(uart_num == UART_NUM_0) {
  1340. periph_module_disable(PERIPH_UART0_MODULE);
  1341. } else if(uart_num == UART_NUM_1) {
  1342. periph_module_disable(PERIPH_UART1_MODULE);
  1343. } else if(uart_num == UART_NUM_2) {
  1344. periph_module_disable(PERIPH_UART2_MODULE);
  1345. }
  1346. }
  1347. return ESP_OK;
  1348. }
  1349. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1350. {
  1351. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1352. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1353. }
  1354. }
  1355. portMUX_TYPE *uart_get_selectlock()
  1356. {
  1357. return &uart_selectlock;
  1358. }
  1359. // Set UART mode
  1360. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1361. {
  1362. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1363. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1364. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1365. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1366. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1367. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1368. }
  1369. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1370. UART[uart_num]->rs485_conf.en = 0;
  1371. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1372. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1373. UART[uart_num]->conf0.irda_en = 0;
  1374. UART[uart_num]->conf0.sw_rts = 0;
  1375. switch (mode) {
  1376. case UART_MODE_UART:
  1377. break;
  1378. case UART_MODE_RS485_COLLISION_DETECT:
  1379. // This mode allows read while transmitting that allows collision detection
  1380. p_uart_obj[uart_num]->coll_det_flg = false;
  1381. // Transmitter’s output signal loop back to the receiver’s input signal
  1382. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1383. // Transmitter should send data when its receiver is busy
  1384. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1385. UART[uart_num]->rs485_conf.en = 1;
  1386. // Enable collision detection interrupts
  1387. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1388. | UART_RXFIFO_FULL_INT_ENA
  1389. | UART_RS485_CLASH_INT_ENA
  1390. | UART_RS485_FRM_ERR_INT_ENA
  1391. | UART_RS485_PARITY_ERR_INT_ENA);
  1392. break;
  1393. case UART_MODE_RS485_APP_CTRL:
  1394. // Application software control, remove echo
  1395. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1396. UART[uart_num]->rs485_conf.en = 1;
  1397. break;
  1398. case UART_MODE_RS485_HALF_DUPLEX:
  1399. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1400. UART[uart_num]->conf0.sw_rts = 1;
  1401. UART[uart_num]->rs485_conf.en = 1;
  1402. // Must be set to 0 to automatically remove echo
  1403. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1404. // This is to void collision
  1405. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1406. break;
  1407. case UART_MODE_IRDA:
  1408. UART[uart_num]->conf0.irda_en = 1;
  1409. break;
  1410. default:
  1411. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1412. break;
  1413. }
  1414. p_uart_obj[uart_num]->uart_mode = mode;
  1415. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1416. return ESP_OK;
  1417. }
  1418. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1419. {
  1420. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1421. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1422. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1423. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1424. // transmission time of one symbol (~11 bit) on current baudrate
  1425. if (tout_thresh > 0) {
  1426. UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V);
  1427. UART[uart_num]->conf1.rx_tout_en = 1;
  1428. } else {
  1429. UART[uart_num]->conf1.rx_tout_en = 0;
  1430. }
  1431. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1432. return ESP_OK;
  1433. }
  1434. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1435. {
  1436. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1437. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1438. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1439. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1440. "wrong mode", ESP_ERR_INVALID_ARG);
  1441. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1442. return ESP_OK;
  1443. }