uart.c 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/task.h"
  24. #include "freertos/ringbuf.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "sdkconfig.h"
  30. #if CONFIG_IDF_TARGET_ESP32
  31. #include "esp32/clk.h"
  32. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  33. #include "esp32s2beta/clk.h"
  34. #endif
  35. #define UART_NUM SOC_UART_NUM
  36. #ifdef CONFIG_UART_ISR_IN_IRAM
  37. #define UART_ISR_ATTR IRAM_ATTR
  38. #else
  39. #define UART_ISR_ATTR
  40. #endif
  41. #define XOFF (char)0x13
  42. #define XON (char)0x11
  43. static const char *UART_TAG = "uart";
  44. #define UART_CHECK(a, str, ret_val) \
  45. if (!(a)) { \
  46. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  47. return (ret_val); \
  48. }
  49. #define UART_EMPTY_THRESH_DEFAULT (10)
  50. #define UART_FULL_THRESH_DEFAULT (120)
  51. #define UART_TOUT_THRESH_DEFAULT (10)
  52. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  53. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  54. #define UART_TX_IDLE_NUM_DEFAULT (0)
  55. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  56. #define UART_MIN_WAKEUP_THRESH (2)
  57. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  58. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  59. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  60. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  61. // Check actual UART mode set
  62. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  63. typedef struct {
  64. uart_event_type_t type; /*!< UART TX data type */
  65. struct {
  66. int brk_len;
  67. size_t size;
  68. uint8_t data[0];
  69. } tx_data;
  70. } uart_tx_data_t;
  71. typedef struct {
  72. int wr;
  73. int rd;
  74. int len;
  75. int *data;
  76. } uart_pat_rb_t;
  77. typedef struct {
  78. uart_port_t uart_num; /*!< UART port number*/
  79. int queue_size; /*!< UART event queue size*/
  80. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  81. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  82. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  83. bool coll_det_flg; /*!< UART collision detection flag */
  84. //rx parameters
  85. int rx_buffered_len; /*!< UART cached data length */
  86. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  87. int rx_buf_size; /*!< RX ring buffer size */
  88. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  89. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  90. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  91. uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
  92. uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
  93. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  94. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  95. uart_pat_rb_t rx_pattern_pos;
  96. //tx parameters
  97. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  98. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  99. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  100. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  101. int tx_buf_size; /*!< TX ring buffer size */
  102. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  103. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  104. uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  105. uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  106. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  107. uint32_t tx_len_cur;
  108. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  109. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  110. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  111. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  112. } uart_obj_t;
  113. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  114. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  115. static DRAM_ATTR uart_dev_t *const UART[UART_NUM_MAX] = {
  116. &UART0,
  117. &UART1,
  118. #if UART_NUM > 2
  119. &UART2
  120. #endif
  121. };
  122. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
  123. portMUX_INITIALIZER_UNLOCKED,
  124. portMUX_INITIALIZER_UNLOCKED,
  125. #if UART_NUM > 2
  126. portMUX_INITIALIZER_UNLOCKED
  127. #endif
  128. };
  129. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  130. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  131. {
  132. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  133. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  134. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  135. UART[uart_num]->conf0.bit_num = data_bit;
  136. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  137. return ESP_OK;
  138. }
  139. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
  140. {
  141. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  142. *(data_bit) = UART[uart_num]->conf0.bit_num;
  143. return ESP_OK;
  144. }
  145. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  146. {
  147. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  148. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  149. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  150. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  151. if (stop_bit == UART_STOP_BITS_2) {
  152. stop_bit = UART_STOP_BITS_1;
  153. UART[uart_num]->rs485_conf.dl1_en = 1;
  154. } else {
  155. UART[uart_num]->rs485_conf.dl1_en = 0;
  156. }
  157. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  158. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  159. return ESP_OK;
  160. }
  161. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
  162. {
  163. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  164. #if CONFIG_IDF_TARGET_ESP32
  165. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  166. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  167. (*stop_bit) = UART_STOP_BITS_2;
  168. } else {
  169. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  170. }
  171. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  172. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  173. #endif
  174. return ESP_OK;
  175. }
  176. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  177. {
  178. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  179. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  180. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  181. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  182. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  183. return ESP_OK;
  184. }
  185. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
  186. {
  187. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  188. int val = UART[uart_num]->conf0.val;
  189. if (val & UART_PARITY_EN_M) {
  190. if (val & UART_PARITY_M) {
  191. (*parity_mode) = UART_PARITY_ODD;
  192. } else {
  193. (*parity_mode) = UART_PARITY_EVEN;
  194. }
  195. } else {
  196. (*parity_mode) = UART_PARITY_DISABLE;
  197. }
  198. return ESP_OK;
  199. }
  200. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  201. {
  202. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  203. esp_err_t ret = ESP_OK;
  204. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  205. int uart_clk_freq;
  206. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  207. /* this UART has been configured to use REF_TICK */
  208. uart_clk_freq = REF_CLK_FREQ;
  209. } else {
  210. uart_clk_freq = esp_clk_apb_freq();
  211. }
  212. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  213. if (clk_div < 16) {
  214. /* baud rate is too high for this clock frequency */
  215. ret = ESP_ERR_INVALID_ARG;
  216. } else {
  217. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  218. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  219. }
  220. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  221. return ret;
  222. }
  223. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  224. {
  225. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  227. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  228. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  229. uint32_t uart_clk_freq = esp_clk_apb_freq();
  230. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  231. uart_clk_freq = REF_CLK_FREQ;
  232. }
  233. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  234. return ESP_OK;
  235. }
  236. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  237. {
  238. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  239. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  240. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  241. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  242. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  243. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  244. return ESP_OK;
  245. }
  246. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  247. {
  248. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  249. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  250. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  251. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  252. UART[uart_num]->flow_conf.sw_flow_con_en = enable ? 1 : 0;
  253. UART[uart_num]->flow_conf.xonoff_del = enable ? 1 : 0;
  254. #if CONFIG_IDF_TARGET_ESP32
  255. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  256. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  257. UART[uart_num]->swfc_conf.xon_char = XON;
  258. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  259. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  260. UART[uart_num]->swfc_conf1.xon_threshold = rx_thresh_xon;
  261. UART[uart_num]->swfc_conf0.xoff_threshold = rx_thresh_xoff;
  262. UART[uart_num]->swfc_conf1.xon_char = XON;
  263. UART[uart_num]->swfc_conf0.xoff_char = XOFF;
  264. #endif
  265. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  266. return ESP_OK;
  267. }
  268. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  269. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  270. {
  271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  272. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  273. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  274. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  275. if (flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  276. #if CONFIG_IDF_TARGET_ESP32
  277. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  278. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  279. UART[uart_num]->mem_conf.rx_flow_thrhd = rx_thresh;
  280. #endif
  281. UART[uart_num]->conf1.rx_flow_en = 1;
  282. } else {
  283. UART[uart_num]->conf1.rx_flow_en = 0;
  284. }
  285. if (flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  286. UART[uart_num]->conf0.tx_flow_en = 1;
  287. } else {
  288. UART[uart_num]->conf0.tx_flow_en = 0;
  289. }
  290. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  291. return ESP_OK;
  292. }
  293. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
  294. {
  295. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  296. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  297. if (UART[uart_num]->conf1.rx_flow_en) {
  298. val |= UART_HW_FLOWCTRL_RTS;
  299. }
  300. if (UART[uart_num]->conf0.tx_flow_en) {
  301. val |= UART_HW_FLOWCTRL_CTS;
  302. }
  303. (*flow_ctrl) = val;
  304. return ESP_OK;
  305. }
  306. static esp_err_t UART_ISR_ATTR uart_reset_rx_fifo(uart_port_t uart_num)
  307. {
  308. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  309. #if CONFIG_IDF_TARGET_ESP32
  310. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  311. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  312. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  313. while (UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  314. READ_PERI_REG(UART_FIFO_REG(uart_num));
  315. }
  316. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  317. UART[uart_num]->conf0.rxfifo_rst = 1;
  318. UART[uart_num]->conf0.rxfifo_rst = 0;
  319. #endif
  320. return ESP_OK;
  321. }
  322. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  323. {
  324. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  325. //intr_clr register is write-only
  326. UART[uart_num]->int_clr.val = clr_mask;
  327. return ESP_OK;
  328. }
  329. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  330. {
  331. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  332. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  333. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  334. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  335. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  336. return ESP_OK;
  337. }
  338. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  339. {
  340. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  341. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  342. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  343. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  344. return ESP_OK;
  345. }
  346. static void UART_ISR_ATTR uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  347. {
  348. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  349. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  350. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  351. }
  352. static void UART_ISR_ATTR uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  353. {
  354. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  355. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  356. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  357. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  358. }
  359. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  360. {
  361. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  362. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  363. int *pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  364. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  365. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  366. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  367. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  368. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  369. free(pdata);
  370. }
  371. return ESP_OK;
  372. }
  373. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  374. {
  375. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  376. esp_err_t ret = ESP_OK;
  377. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  378. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  379. int next = p_pos->wr + 1;
  380. if (next >= p_pos->len) {
  381. next = 0;
  382. }
  383. if (next == p_pos->rd) {
  384. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  385. ret = ESP_FAIL;
  386. } else {
  387. p_pos->data[p_pos->wr] = pos;
  388. p_pos->wr = next;
  389. ret = ESP_OK;
  390. }
  391. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  392. return ret;
  393. }
  394. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  395. {
  396. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  397. if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  398. return ESP_ERR_INVALID_STATE;
  399. } else {
  400. esp_err_t ret = ESP_OK;
  401. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  402. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  403. if (p_pos->rd == p_pos->wr) {
  404. ret = ESP_FAIL;
  405. } else {
  406. p_pos->rd++;
  407. }
  408. if (p_pos->rd >= p_pos->len) {
  409. p_pos->rd = 0;
  410. }
  411. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  412. return ret;
  413. }
  414. }
  415. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  416. {
  417. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  418. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  419. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  420. int rd = p_pos->rd;
  421. while (rd != p_pos->wr) {
  422. p_pos->data[rd] -= diff_len;
  423. int rd_rec = rd;
  424. rd ++;
  425. if (rd >= p_pos->len) {
  426. rd = 0;
  427. }
  428. if (p_pos->data[rd_rec] < 0) {
  429. p_pos->rd = rd;
  430. }
  431. }
  432. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  433. return ESP_OK;
  434. }
  435. int uart_pattern_pop_pos(uart_port_t uart_num)
  436. {
  437. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  438. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  439. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  440. int pos = -1;
  441. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  442. pos = pat_pos->data[pat_pos->rd];
  443. uart_pattern_dequeue(uart_num);
  444. }
  445. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  446. return pos;
  447. }
  448. int uart_pattern_get_pos(uart_port_t uart_num)
  449. {
  450. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  451. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  452. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  453. int pos = -1;
  454. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  455. pos = pat_pos->data[pat_pos->rd];
  456. }
  457. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  458. return pos;
  459. }
  460. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  461. {
  462. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  463. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  464. int *pdata = (int *) malloc(queue_length * sizeof(int));
  465. if (pdata == NULL) {
  466. return ESP_ERR_NO_MEM;
  467. }
  468. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  469. int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  470. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  471. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  472. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  473. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  474. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  475. free(ptmp);
  476. return ESP_OK;
  477. }
  478. #if CONFIG_IDF_TARGET_ESP32
  479. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  480. {
  481. //This function is deprecated, please use uart_enable_pattern_det_baud_intr instead.
  482. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  483. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  484. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  485. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  486. UART[uart_num]->at_cmd_char.data = pattern_chr;
  487. UART[uart_num]->at_cmd_char.char_num = chr_num;
  488. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  489. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  490. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  491. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  492. }
  493. #endif
  494. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  495. {
  496. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  497. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  498. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  499. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  500. UART[uart_num]->at_cmd_char.data = pattern_chr;
  501. UART[uart_num]->at_cmd_char.char_num = chr_num;
  502. #if CONFIG_IDF_TARGET_ESP32
  503. int apb_clk_freq = 0;
  504. uint32_t uart_baud = 0;
  505. uint32_t uart_div = 0;
  506. uart_get_baudrate(uart_num, &uart_baud);
  507. apb_clk_freq = esp_clk_apb_freq();
  508. uart_div = apb_clk_freq / uart_baud;
  509. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout * uart_div;
  510. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle * uart_div;
  511. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle * uart_div;
  512. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  513. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  514. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  515. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  516. #endif
  517. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  518. }
  519. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  520. {
  521. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  522. }
  523. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  524. {
  525. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  526. }
  527. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  528. {
  529. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  530. }
  531. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  532. {
  533. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  534. }
  535. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  536. {
  537. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  538. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  539. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  540. UART[uart_num]->int_clr.txfifo_empty = 1;
  541. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  542. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  543. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  544. return ESP_OK;
  545. }
  546. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  547. {
  548. int ret;
  549. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  550. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  551. switch(uart_num) {
  552. case UART_NUM_1:
  553. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  554. break;
  555. #if UART_NUM > 2
  556. case UART_NUM_2:
  557. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  558. break;
  559. #endif
  560. case UART_NUM_0:
  561. default:
  562. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  563. break;
  564. }
  565. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  566. return ret;
  567. }
  568. esp_err_t uart_isr_free(uart_port_t uart_num)
  569. {
  570. esp_err_t ret;
  571. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  572. if (p_uart_obj[uart_num]->intr_handle == NULL) {
  573. return ESP_ERR_INVALID_ARG;
  574. }
  575. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  576. ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  577. p_uart_obj[uart_num]->intr_handle = NULL;
  578. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  579. return ret;
  580. }
  581. //internal signal can be output to multiple GPIO pads
  582. //only one GPIO pad can connect with input signal
  583. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  584. {
  585. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  586. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  587. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  588. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  589. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  590. int tx_sig, rx_sig, rts_sig, cts_sig;
  591. switch(uart_num) {
  592. case UART_NUM_0:
  593. tx_sig = U0TXD_OUT_IDX;
  594. rx_sig = U0RXD_IN_IDX;
  595. rts_sig = U0RTS_OUT_IDX;
  596. cts_sig = U0CTS_IN_IDX;
  597. break;
  598. case UART_NUM_1:
  599. tx_sig = U1TXD_OUT_IDX;
  600. rx_sig = U1RXD_IN_IDX;
  601. rts_sig = U1RTS_OUT_IDX;
  602. cts_sig = U1CTS_IN_IDX;
  603. break;
  604. #if UART_NUM > 2
  605. case UART_NUM_2:
  606. tx_sig = U2TXD_OUT_IDX;
  607. rx_sig = U2RXD_IN_IDX;
  608. rts_sig = U2RTS_OUT_IDX;
  609. cts_sig = U2CTS_IN_IDX;
  610. break;
  611. #endif
  612. case UART_NUM_MAX:
  613. default:
  614. tx_sig = U0TXD_OUT_IDX;
  615. rx_sig = U0RXD_IN_IDX;
  616. rts_sig = U0RTS_OUT_IDX;
  617. cts_sig = U0CTS_IN_IDX;
  618. break;
  619. }
  620. if (tx_io_num >= 0) {
  621. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  622. gpio_set_level(tx_io_num, 1);
  623. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  624. }
  625. if (rx_io_num >= 0) {
  626. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  627. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  628. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  629. gpio_matrix_in(rx_io_num, rx_sig, 0);
  630. }
  631. if (rts_io_num >= 0) {
  632. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  633. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  634. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  635. }
  636. if (cts_io_num >= 0) {
  637. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  638. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  639. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  640. gpio_matrix_in(cts_io_num, cts_sig, 0);
  641. }
  642. return ESP_OK;
  643. }
  644. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  645. {
  646. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  647. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  648. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  649. UART[uart_num]->conf0.sw_rts = level & 0x1;
  650. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  651. return ESP_OK;
  652. }
  653. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  654. {
  655. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  656. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  657. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  658. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  659. return ESP_OK;
  660. }
  661. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  662. {
  663. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  664. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  665. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  666. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  667. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  668. return ESP_OK;
  669. }
  670. static periph_module_t get_periph_module(uart_port_t uart_num)
  671. {
  672. periph_module_t periph_module = PERIPH_UART0_MODULE;
  673. if (uart_num == UART_NUM_0) {
  674. periph_module = PERIPH_UART0_MODULE;
  675. } else if (uart_num == UART_NUM_1) {
  676. periph_module = PERIPH_UART1_MODULE;
  677. }
  678. #if SOC_UART_NUM > 2
  679. else if (uart_num == UART_NUM_2) {
  680. periph_module = PERIPH_UART2_MODULE;
  681. }
  682. #endif
  683. else {
  684. assert(0 && "uart_num error");
  685. }
  686. return periph_module;
  687. }
  688. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  689. {
  690. esp_err_t r;
  691. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  692. UART_CHECK((uart_config), "param null", ESP_FAIL);
  693. periph_module_t periph_module = get_periph_module(uart_num);
  694. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  695. periph_module_reset(periph_module);
  696. }
  697. periph_module_enable(periph_module);
  698. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  699. if (r != ESP_OK) {
  700. return r;
  701. }
  702. UART[uart_num]->conf0.val =
  703. (uart_config->parity << UART_PARITY_S)
  704. | (uart_config->data_bits << UART_BIT_NUM_S)
  705. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  706. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  707. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  708. if (r != ESP_OK) {
  709. return r;
  710. }
  711. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  712. if (r != ESP_OK) {
  713. return r;
  714. }
  715. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  716. //A hardware reset does not reset the fifo,
  717. //so we need to reset the fifo manually.
  718. uart_reset_rx_fifo(uart_num);
  719. return r;
  720. }
  721. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  722. {
  723. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  724. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  725. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  726. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  727. if (intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  728. #if CONFIG_IDF_TARGET_ESP32
  729. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  730. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  731. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  732. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  733. } else {
  734. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  735. }
  736. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  737. UART[uart_num]->mem_conf.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  738. #endif
  739. UART[uart_num]->conf1.rx_tout_en = 1;
  740. } else {
  741. UART[uart_num]->conf1.rx_tout_en = 0;
  742. }
  743. if (intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  744. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  745. }
  746. if (intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  747. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  748. }
  749. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  750. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  751. return ESP_OK;
  752. }
  753. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  754. {
  755. int cnt = 0;
  756. int len = length;
  757. while (len >= 0) {
  758. if (buf[len] == pat_chr) {
  759. cnt++;
  760. } else {
  761. cnt = 0;
  762. }
  763. if (cnt >= pat_num) {
  764. break;
  765. }
  766. len --;
  767. }
  768. return len;
  769. }
  770. //internal isr handler for default driver code.
  771. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  772. {
  773. uart_obj_t *p_uart = (uart_obj_t *) param;
  774. uint8_t uart_num = p_uart->uart_num;
  775. uart_dev_t *uart_reg = UART[uart_num];
  776. int rx_fifo_len = 0;
  777. uint8_t buf_idx = 0;
  778. uint32_t uart_intr_status = 0;
  779. uart_event_t uart_event;
  780. portBASE_TYPE HPTaskAwoken = 0;
  781. static uint8_t pat_flg = 0;
  782. while(1) {
  783. uart_intr_status = uart_reg->int_st.val;
  784. // The `continue statement` may cause the interrupt to loop infinitely
  785. // we exit the interrupt here
  786. if(uart_intr_status == 0) {
  787. break;
  788. }
  789. uart_event.type = UART_EVENT_MAX;
  790. if (uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  791. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  792. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  793. if (p_uart->tx_waiting_brk) {
  794. continue;
  795. }
  796. //TX semaphore will only be used when tx_buf_size is zero.
  797. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  798. p_uart->tx_waiting_fifo = false;
  799. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  800. } else {
  801. //We don't use TX ring buffer, because the size is zero.
  802. if (p_uart->tx_buf_size == 0) {
  803. continue;
  804. }
  805. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  806. bool en_tx_flg = false;
  807. //We need to put a loop here, in case all the buffer items are very short.
  808. //That would cause a watch_dog reset because empty interrupt happens so often.
  809. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  810. while (tx_fifo_rem) {
  811. if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  812. size_t size;
  813. p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  814. if (p_uart->tx_head) {
  815. //The first item is the data description
  816. //Get the first item to get the data information
  817. if (p_uart->tx_len_tot == 0) {
  818. p_uart->tx_ptr = NULL;
  819. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  820. if (p_uart->tx_head->type == UART_DATA_BREAK) {
  821. p_uart->tx_brk_flg = 1;
  822. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  823. }
  824. //We have saved the data description from the 1st item, return buffer.
  825. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  826. }else if(p_uart->tx_ptr == NULL) {
  827. //Update the TX item pointer, we will need this to return item to buffer.
  828. p_uart->tx_ptr = (uint8_t *) p_uart->tx_head;
  829. en_tx_flg = true;
  830. p_uart->tx_len_cur = size;
  831. }
  832. } else {
  833. //Can not get data from ring buffer, return;
  834. break;
  835. }
  836. }
  837. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  838. //To fill the TX FIFO.
  839. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  840. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  841. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  842. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  843. uart_reg->conf0.sw_rts = 0;
  844. uart_reg->int_ena.tx_done = 1;
  845. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  846. }
  847. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  848. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  849. *(p_uart->tx_ptr++) & 0xff);
  850. }
  851. p_uart->tx_len_tot -= send_len;
  852. p_uart->tx_len_cur -= send_len;
  853. tx_fifo_rem -= send_len;
  854. if (p_uart->tx_len_cur == 0) {
  855. //Return item to ring buffer.
  856. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  857. p_uart->tx_head = NULL;
  858. p_uart->tx_ptr = NULL;
  859. //Sending item done, now we need to send break if there is a record.
  860. //Set TX break signal after FIFO is empty
  861. if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  862. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  863. uart_reg->int_ena.tx_brk_done = 0;
  864. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  865. uart_reg->conf0.txd_brk = 1;
  866. uart_reg->int_clr.tx_brk_done = 1;
  867. uart_reg->int_ena.tx_brk_done = 1;
  868. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  869. p_uart->tx_waiting_brk = 1;
  870. //do not enable TX empty interrupt
  871. en_tx_flg = false;
  872. } else {
  873. //enable TX empty interrupt
  874. en_tx_flg = true;
  875. }
  876. } else {
  877. //enable TX empty interrupt
  878. en_tx_flg = true;
  879. }
  880. }
  881. }
  882. if (en_tx_flg) {
  883. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  884. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  885. }
  886. }
  887. } else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  888. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  889. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  890. ) {
  891. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  892. if (pat_flg == 1) {
  893. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  894. pat_flg = 0;
  895. }
  896. if (p_uart->rx_buffer_full_flg == false) {
  897. //We have to read out all data in RX FIFO to clear the interrupt signal
  898. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  899. #if CONFIG_IDF_TARGET_ESP32
  900. p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
  901. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  902. p_uart->rx_data_buf[buf_idx] = READ_PERI_REG(UART_FIFO_AHB_REG(uart_num));
  903. #endif
  904. }
  905. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  906. int pat_num = uart_reg->at_cmd_char.char_num;
  907. int pat_idx = -1;
  908. //Get the buffer from the FIFO
  909. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  910. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  911. uart_event.type = UART_PATTERN_DET;
  912. uart_event.size = rx_fifo_len;
  913. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  914. } else {
  915. //After Copying the Data From FIFO ,Clear intr_status
  916. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  917. uart_event.type = UART_DATA;
  918. uart_event.size = rx_fifo_len;
  919. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  920. if (p_uart->uart_select_notif_callback) {
  921. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  922. }
  923. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  924. }
  925. p_uart->rx_stash_len = rx_fifo_len;
  926. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  927. //Mainly for applications that uses flow control or small ring buffer.
  928. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  929. p_uart->rx_buffer_full_flg = true;
  930. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  931. if (uart_event.type == UART_PATTERN_DET) {
  932. if (rx_fifo_len < pat_num) {
  933. //some of the characters are read out in last interrupt
  934. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  935. } else {
  936. uart_pattern_enqueue(uart_num,
  937. pat_idx <= -1 ?
  938. //can not find the pattern in buffer,
  939. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  940. // find the pattern in buffer
  941. p_uart->rx_buffered_len + pat_idx);
  942. }
  943. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  944. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  945. }
  946. }
  947. uart_event.type = UART_BUFFER_FULL;
  948. } else {
  949. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  950. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  951. if (rx_fifo_len < pat_num) {
  952. //some of the characters are read out in last interrupt
  953. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  954. } else if (pat_idx >= 0) {
  955. // find pattern in statsh buffer.
  956. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  957. }
  958. }
  959. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  960. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  961. }
  962. } else {
  963. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  964. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  965. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  966. uart_reg->int_clr.at_cmd_char_det = 1;
  967. uart_event.type = UART_PATTERN_DET;
  968. uart_event.size = rx_fifo_len;
  969. pat_flg = 1;
  970. }
  971. }
  972. } else if (uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  973. // When fifo overflows, we reset the fifo.
  974. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  975. uart_reset_rx_fifo(uart_num);
  976. uart_reg->int_clr.rxfifo_ovf = 1;
  977. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  978. uart_event.type = UART_FIFO_OVF;
  979. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  980. if (p_uart->uart_select_notif_callback) {
  981. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  982. }
  983. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  984. } else if (uart_intr_status & UART_BRK_DET_INT_ST_M) {
  985. uart_reg->int_clr.brk_det = 1;
  986. uart_event.type = UART_BREAK;
  987. } else if (uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  988. uart_reg->int_clr.frm_err = 1;
  989. uart_event.type = UART_FRAME_ERR;
  990. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  991. if (p_uart->uart_select_notif_callback) {
  992. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  993. }
  994. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  995. } else if (uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  996. uart_reg->int_clr.parity_err = 1;
  997. uart_event.type = UART_PARITY_ERR;
  998. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  999. if (p_uart->uart_select_notif_callback) {
  1000. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  1001. }
  1002. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  1003. } else if (uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  1004. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1005. uart_reg->conf0.txd_brk = 0;
  1006. uart_reg->int_ena.tx_brk_done = 0;
  1007. uart_reg->int_clr.tx_brk_done = 1;
  1008. if (p_uart->tx_brk_flg == 1) {
  1009. uart_reg->int_ena.txfifo_empty = 1;
  1010. }
  1011. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1012. if (p_uart->tx_brk_flg == 1) {
  1013. p_uart->tx_brk_flg = 0;
  1014. p_uart->tx_waiting_brk = 0;
  1015. } else {
  1016. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  1017. }
  1018. } else if (uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  1019. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  1020. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  1021. } else if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  1022. uart_reg->int_clr.at_cmd_char_det = 1;
  1023. uart_event.type = UART_PATTERN_DET;
  1024. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  1025. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  1026. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  1027. // RS485 collision or frame error interrupt triggered
  1028. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  1029. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1030. uart_reset_rx_fifo(uart_num);
  1031. // Set collision detection flag
  1032. p_uart_obj[uart_num]->coll_det_flg = true;
  1033. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1034. uart_event.type = UART_EVENT_MAX;
  1035. } else if (uart_intr_status & UART_TX_DONE_INT_ST_M) {
  1036. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  1037. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  1038. // If RS485 half duplex mode is enable then reset FIFO and
  1039. // reset RTS pin to start receiver driver
  1040. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1041. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1042. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  1043. uart_reg->conf0.sw_rts = 1;
  1044. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1045. }
  1046. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  1047. } else {
  1048. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  1049. uart_event.type = UART_EVENT_MAX;
  1050. }
  1051. if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  1052. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  1053. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  1054. }
  1055. }
  1056. }
  1057. if(HPTaskAwoken == pdTRUE) {
  1058. portYIELD_FROM_ISR();
  1059. }
  1060. }
  1061. /**************************************************************/
  1062. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1063. {
  1064. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1065. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1066. BaseType_t res;
  1067. portTickType ticks_start = xTaskGetTickCount();
  1068. //Take tx_mux
  1069. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1070. if (res == pdFALSE) {
  1071. return ESP_ERR_TIMEOUT;
  1072. }
  1073. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1074. typeof(UART0.status) status = UART[uart_num]->status;
  1075. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  1076. #ifdef CONFIG_IDF_TARGET_ESP32
  1077. if (status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  1078. #else /* TODO: check transmitter state machine on ESP32S2Beta */
  1079. if (status.txfifo_cnt == 0) {
  1080. #endif
  1081. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1082. return ESP_OK;
  1083. }
  1084. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1085. TickType_t ticks_end = xTaskGetTickCount();
  1086. if (ticks_end - ticks_start > ticks_to_wait) {
  1087. ticks_to_wait = 0;
  1088. } else {
  1089. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1090. }
  1091. //take 2nd tx_done_sem, wait given from ISR
  1092. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1093. if (res == pdFALSE) {
  1094. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1095. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1096. return ESP_ERR_TIMEOUT;
  1097. }
  1098. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1099. return ESP_OK;
  1100. }
  1101. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1102. {
  1103. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1104. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1105. UART[uart_num]->conf0.txd_brk = 1;
  1106. UART[uart_num]->int_clr.tx_brk_done = 1;
  1107. UART[uart_num]->int_ena.tx_brk_done = 1;
  1108. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1109. return ESP_OK;
  1110. }
  1111. //Fill UART tx_fifo and return a number,
  1112. //This function by itself is not thread-safe, always call from within a muxed section.
  1113. static int uart_fill_fifo(uart_port_t uart_num, const char *buffer, uint32_t len)
  1114. {
  1115. uint8_t i = 0;
  1116. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1117. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1118. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1119. // Set the RTS pin if RS485 mode is enabled
  1120. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1121. UART[uart_num]->conf0.sw_rts = 0;
  1122. UART[uart_num]->int_ena.tx_done = 1;
  1123. }
  1124. for (i = 0; i < copy_cnt; i++) {
  1125. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1126. }
  1127. return copy_cnt;
  1128. }
  1129. int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
  1130. {
  1131. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1132. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1133. UART_CHECK(buffer, "buffer null", (-1));
  1134. if (len == 0) {
  1135. return 0;
  1136. }
  1137. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1138. int tx_len = uart_fill_fifo(uart_num, (const char *) buffer, len);
  1139. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1140. return tx_len;
  1141. }
  1142. static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
  1143. {
  1144. if (size == 0) {
  1145. return 0;
  1146. }
  1147. size_t original_size = size;
  1148. //lock for uart_tx
  1149. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1150. p_uart_obj[uart_num]->coll_det_flg = false;
  1151. if (p_uart_obj[uart_num]->tx_buf_size > 0) {
  1152. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1153. int offset = 0;
  1154. uart_tx_data_t evt;
  1155. evt.tx_data.size = size;
  1156. evt.tx_data.brk_len = brk_len;
  1157. if (brk_en) {
  1158. evt.type = UART_DATA_BREAK;
  1159. } else {
  1160. evt.type = UART_DATA;
  1161. }
  1162. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1163. while (size > 0) {
  1164. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1165. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
  1166. size -= send_size;
  1167. offset += send_size;
  1168. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1169. }
  1170. } else {
  1171. while (size) {
  1172. //semaphore for tx_fifo available
  1173. if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1174. size_t sent = uart_fill_fifo(uart_num, (char *) src, size);
  1175. if (sent < size) {
  1176. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1177. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1178. }
  1179. size -= sent;
  1180. src += sent;
  1181. }
  1182. }
  1183. if (brk_en) {
  1184. uart_set_break(uart_num, brk_len);
  1185. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1186. }
  1187. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1188. }
  1189. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1190. return original_size;
  1191. }
  1192. int uart_write_bytes(uart_port_t uart_num, const char *src, size_t size)
  1193. {
  1194. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1195. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1196. UART_CHECK(src, "buffer null", (-1));
  1197. return uart_tx_all(uart_num, src, size, 0, 0);
  1198. }
  1199. int uart_write_bytes_with_break(uart_port_t uart_num, const char *src, size_t size, int brk_len)
  1200. {
  1201. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1202. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1203. UART_CHECK((size > 0), "uart size error", (-1));
  1204. UART_CHECK((src), "uart data null", (-1));
  1205. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1206. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1207. }
  1208. static bool uart_check_buf_full(uart_port_t uart_num)
  1209. {
  1210. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1211. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1212. if (res == pdTRUE) {
  1213. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1214. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1215. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1216. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1217. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1218. return true;
  1219. }
  1220. }
  1221. return false;
  1222. }
  1223. int uart_read_bytes(uart_port_t uart_num, uint8_t *buf, uint32_t length, TickType_t ticks_to_wait)
  1224. {
  1225. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1226. UART_CHECK((buf), "uart data null", (-1));
  1227. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1228. uint8_t *data = NULL;
  1229. size_t size;
  1230. size_t copy_len = 0;
  1231. int len_tmp;
  1232. if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
  1233. return -1;
  1234. }
  1235. while (length) {
  1236. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1237. data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1238. if (data) {
  1239. p_uart_obj[uart_num]->rx_head_ptr = data;
  1240. p_uart_obj[uart_num]->rx_ptr = data;
  1241. p_uart_obj[uart_num]->rx_cur_remain = size;
  1242. } else {
  1243. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1244. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1245. //to solve the possible asynchronous issues.
  1246. if (uart_check_buf_full(uart_num)) {
  1247. //This condition will never be true if `uart_read_bytes`
  1248. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1249. continue;
  1250. } else {
  1251. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1252. return copy_len;
  1253. }
  1254. }
  1255. }
  1256. if (p_uart_obj[uart_num]->rx_cur_remain > length) {
  1257. len_tmp = length;
  1258. } else {
  1259. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1260. }
  1261. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1262. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1263. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1264. uart_pattern_queue_update(uart_num, len_tmp);
  1265. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1266. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1267. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1268. copy_len += len_tmp;
  1269. length -= len_tmp;
  1270. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1271. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1272. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1273. p_uart_obj[uart_num]->rx_ptr = NULL;
  1274. uart_check_buf_full(uart_num);
  1275. }
  1276. }
  1277. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1278. return copy_len;
  1279. }
  1280. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
  1281. {
  1282. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1283. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1284. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1285. return ESP_OK;
  1286. }
  1287. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1288. esp_err_t uart_flush_input(uart_port_t uart_num)
  1289. {
  1290. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1291. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1292. uart_obj_t *p_uart = p_uart_obj[uart_num];
  1293. uint8_t *data;
  1294. size_t size;
  1295. //rx sem protect the ring buffer read related functions
  1296. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1297. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1298. while (true) {
  1299. if (p_uart->rx_head_ptr) {
  1300. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1301. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1302. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1303. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1304. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1305. p_uart->rx_ptr = NULL;
  1306. p_uart->rx_cur_remain = 0;
  1307. p_uart->rx_head_ptr = NULL;
  1308. }
  1309. data = (uint8_t *) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1310. if (data == NULL) {
  1311. if ( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1312. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1313. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1314. }
  1315. //We also need to clear the `rx_buffer_full_flg` here.
  1316. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1317. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1318. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1319. break;
  1320. }
  1321. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1322. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1323. uart_pattern_queue_update(uart_num, size);
  1324. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1325. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1326. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1327. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1328. if (res == pdTRUE) {
  1329. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1330. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1331. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1332. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1333. }
  1334. }
  1335. }
  1336. p_uart->rx_ptr = NULL;
  1337. p_uart->rx_cur_remain = 0;
  1338. p_uart->rx_head_ptr = NULL;
  1339. uart_reset_rx_fifo(uart_num);
  1340. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1341. xSemaphoreGive(p_uart->rx_mux);
  1342. return ESP_OK;
  1343. }
  1344. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1345. {
  1346. esp_err_t r;
  1347. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1348. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1349. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1350. #if CONFIG_UART_ISR_IN_IRAM
  1351. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0,
  1352. "should set ESP_INTR_FLAG_IRAM flag when CONFIG_UART_ISR_IN_IRAM is enabled", ESP_FAIL);
  1353. #else
  1354. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0,
  1355. "should not set ESP_INTR_FLAG_IRAM when CONFIG_UART_ISR_IN_IRAM is not enabled", ESP_FAIL);
  1356. #endif
  1357. if (p_uart_obj[uart_num] == NULL) {
  1358. p_uart_obj[uart_num] = (uart_obj_t *) calloc(1, sizeof(uart_obj_t));
  1359. if (p_uart_obj[uart_num] == NULL) {
  1360. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1361. return ESP_FAIL;
  1362. }
  1363. p_uart_obj[uart_num]->uart_num = uart_num;
  1364. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1365. p_uart_obj[uart_num]->coll_det_flg = false;
  1366. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1367. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1368. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1369. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1370. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1371. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1372. p_uart_obj[uart_num]->queue_size = queue_size;
  1373. p_uart_obj[uart_num]->tx_ptr = NULL;
  1374. p_uart_obj[uart_num]->tx_head = NULL;
  1375. p_uart_obj[uart_num]->tx_len_tot = 0;
  1376. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1377. p_uart_obj[uart_num]->tx_brk_len = 0;
  1378. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1379. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1380. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1381. if (uart_queue) {
  1382. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1383. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1384. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1385. } else {
  1386. p_uart_obj[uart_num]->xQueueUart = NULL;
  1387. }
  1388. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1389. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1390. p_uart_obj[uart_num]->rx_ptr = NULL;
  1391. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1392. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1393. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1394. if (tx_buffer_size > 0) {
  1395. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1396. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1397. } else {
  1398. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1399. p_uart_obj[uart_num]->tx_buf_size = 0;
  1400. }
  1401. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1402. } else {
  1403. ESP_LOGE(UART_TAG, "UART driver already installed");
  1404. return ESP_FAIL;
  1405. }
  1406. r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1407. if (r != ESP_OK) {
  1408. goto err;
  1409. }
  1410. uart_intr_config_t uart_intr = {
  1411. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1412. | UART_RXFIFO_TOUT_INT_ENA_M
  1413. | UART_FRM_ERR_INT_ENA_M
  1414. | UART_RXFIFO_OVF_INT_ENA_M
  1415. | UART_BRK_DET_INT_ENA_M
  1416. | UART_PARITY_ERR_INT_ENA_M,
  1417. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1418. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1419. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1420. };
  1421. r = uart_intr_config(uart_num, &uart_intr);
  1422. if (r != ESP_OK) {
  1423. goto err;
  1424. }
  1425. return r;
  1426. err:
  1427. uart_driver_delete(uart_num);
  1428. return r;
  1429. }
  1430. //Make sure no other tasks are still using UART before you call this function
  1431. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1432. {
  1433. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1434. if (p_uart_obj[uart_num] == NULL) {
  1435. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1436. return ESP_OK;
  1437. }
  1438. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1439. uart_disable_rx_intr(uart_num);
  1440. uart_disable_tx_intr(uart_num);
  1441. uart_pattern_link_free(uart_num);
  1442. if (p_uart_obj[uart_num]->tx_fifo_sem) {
  1443. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1444. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1445. }
  1446. if (p_uart_obj[uart_num]->tx_done_sem) {
  1447. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1448. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1449. }
  1450. if (p_uart_obj[uart_num]->tx_brk_sem) {
  1451. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1452. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1453. }
  1454. if (p_uart_obj[uart_num]->tx_mux) {
  1455. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1456. p_uart_obj[uart_num]->tx_mux = NULL;
  1457. }
  1458. if (p_uart_obj[uart_num]->rx_mux) {
  1459. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1460. p_uart_obj[uart_num]->rx_mux = NULL;
  1461. }
  1462. if (p_uart_obj[uart_num]->xQueueUart) {
  1463. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1464. p_uart_obj[uart_num]->xQueueUart = NULL;
  1465. }
  1466. if (p_uart_obj[uart_num]->rx_ring_buf) {
  1467. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1468. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1469. }
  1470. if (p_uart_obj[uart_num]->tx_ring_buf) {
  1471. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1472. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1473. }
  1474. free(p_uart_obj[uart_num]);
  1475. p_uart_obj[uart_num] = NULL;
  1476. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  1477. periph_module_t periph_module = get_periph_module(uart_num);
  1478. periph_module_disable(periph_module);
  1479. }
  1480. return ESP_OK;
  1481. }
  1482. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1483. {
  1484. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1485. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1486. }
  1487. }
  1488. portMUX_TYPE *uart_get_selectlock(void)
  1489. {
  1490. return &uart_selectlock;
  1491. }
  1492. // Set UART mode
  1493. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1494. {
  1495. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1496. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1497. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1498. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1499. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1500. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1501. }
  1502. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1503. UART[uart_num]->rs485_conf.en = 0;
  1504. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1505. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1506. UART[uart_num]->conf0.irda_en = 0;
  1507. UART[uart_num]->conf0.sw_rts = 0;
  1508. switch (mode) {
  1509. case UART_MODE_UART:
  1510. break;
  1511. case UART_MODE_RS485_COLLISION_DETECT:
  1512. // This mode allows read while transmitting that allows collision detection
  1513. p_uart_obj[uart_num]->coll_det_flg = false;
  1514. // Transmitter’s output signal loop back to the receiver’s input signal
  1515. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1516. // Transmitter should send data when its receiver is busy
  1517. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1518. UART[uart_num]->rs485_conf.en = 1;
  1519. // Enable collision detection interrupts
  1520. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1521. | UART_RXFIFO_FULL_INT_ENA
  1522. | UART_RS485_CLASH_INT_ENA
  1523. | UART_RS485_FRM_ERR_INT_ENA
  1524. | UART_RS485_PARITY_ERR_INT_ENA);
  1525. break;
  1526. case UART_MODE_RS485_APP_CTRL:
  1527. // Application software control, remove echo
  1528. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1529. UART[uart_num]->rs485_conf.en = 1;
  1530. break;
  1531. case UART_MODE_RS485_HALF_DUPLEX:
  1532. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1533. UART[uart_num]->conf0.sw_rts = 1;
  1534. UART[uart_num]->rs485_conf.en = 1;
  1535. // Must be set to 0 to automatically remove echo
  1536. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1537. // This is to void collision
  1538. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1539. break;
  1540. case UART_MODE_IRDA:
  1541. UART[uart_num]->conf0.irda_en = 1;
  1542. break;
  1543. default:
  1544. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1545. break;
  1546. }
  1547. p_uart_obj[uart_num]->uart_mode = mode;
  1548. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1549. return ESP_OK;
  1550. }
  1551. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1552. {
  1553. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1554. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1555. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1556. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1557. // transmission time of one symbol (~11 bit) on current baudrate
  1558. if (tout_thresh > 0) {
  1559. #if CONFIG_IDF_TARGET_ESP32
  1560. //ESP32 hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1561. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1562. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1563. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  1564. } else {
  1565. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1566. }
  1567. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  1568. UART[uart_num]->mem_conf.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1569. #endif
  1570. UART[uart_num]->conf1.rx_tout_en = 1;
  1571. } else {
  1572. UART[uart_num]->conf1.rx_tout_en = 0;
  1573. }
  1574. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1575. return ESP_OK;
  1576. }
  1577. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
  1578. {
  1579. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1580. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1581. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1582. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1583. "wrong mode", ESP_ERR_INVALID_ARG);
  1584. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1585. return ESP_OK;
  1586. }
  1587. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1588. {
  1589. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1590. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1591. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1592. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1593. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1594. return ESP_OK;
  1595. }
  1596. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
  1597. {
  1598. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1599. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1600. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1601. return ESP_OK;
  1602. }
  1603. void uart_wait_tx_idle_polling(uart_port_t uart_num)
  1604. {
  1605. uint32_t status;
  1606. do {
  1607. status = READ_PERI_REG(UART_STATUS_REG(uart_num));
  1608. /* either tx count or state is non-zero */
  1609. } while ((status & (UART_ST_UTX_OUT_M | UART_TXFIFO_CNT_M)) != 0);
  1610. }