nvs_page.cpp 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "nvs_page.hpp"
  15. #if defined(ESP_PLATFORM)
  16. #include <esp32/rom/crc.h>
  17. #else
  18. #include "crc.h"
  19. #endif
  20. #include <cstdio>
  21. #include <cstring>
  22. #include "nvs_ops.hpp"
  23. namespace nvs
  24. {
  25. uint32_t Page::Header::calculateCrc32()
  26. {
  27. return crc32_le(0xffffffff,
  28. reinterpret_cast<uint8_t*>(this) + offsetof(Header, mSeqNumber),
  29. offsetof(Header, mCrc32) - offsetof(Header, mSeqNumber));
  30. }
  31. esp_err_t Page::load(uint32_t sectorNumber)
  32. {
  33. mBaseAddress = sectorNumber * SEC_SIZE;
  34. mUsedEntryCount = 0;
  35. mErasedEntryCount = 0;
  36. Header header;
  37. auto rc = spi_flash_read(mBaseAddress, &header, sizeof(header));
  38. if (rc != ESP_OK) {
  39. mState = PageState::INVALID;
  40. return rc;
  41. }
  42. if (header.mState == PageState::UNINITIALIZED) {
  43. mState = header.mState;
  44. // check if the whole page is really empty
  45. // reading the whole page takes ~40 times less than erasing it
  46. const int BLOCK_SIZE = 128;
  47. uint32_t* block = new (std::nothrow) uint32_t[BLOCK_SIZE];
  48. if (!block) return ESP_ERR_NO_MEM;
  49. for (uint32_t i = 0; i < SPI_FLASH_SEC_SIZE; i += 4 * BLOCK_SIZE) {
  50. rc = spi_flash_read(mBaseAddress + i, block, 4 * BLOCK_SIZE);
  51. if (rc != ESP_OK) {
  52. mState = PageState::INVALID;
  53. delete[] block;
  54. return rc;
  55. }
  56. if (std::any_of(block, block + BLOCK_SIZE, [](uint32_t val) -> bool { return val != 0xffffffff; })) {
  57. // page isn't as empty after all, mark it as corrupted
  58. mState = PageState::CORRUPT;
  59. break;
  60. }
  61. }
  62. delete[] block;
  63. } else if (header.mCrc32 != header.calculateCrc32()) {
  64. header.mState = PageState::CORRUPT;
  65. } else {
  66. mState = header.mState;
  67. mSeqNumber = header.mSeqNumber;
  68. if(header.mVersion < NVS_VERSION) {
  69. return ESP_ERR_NVS_NEW_VERSION_FOUND;
  70. } else {
  71. mVersion = header.mVersion;
  72. }
  73. }
  74. switch (mState) {
  75. case PageState::UNINITIALIZED:
  76. break;
  77. case PageState::FULL:
  78. case PageState::ACTIVE:
  79. case PageState::FREEING:
  80. mLoadEntryTable();
  81. break;
  82. default:
  83. mState = PageState::CORRUPT;
  84. break;
  85. }
  86. return ESP_OK;
  87. }
  88. esp_err_t Page::writeEntry(const Item& item)
  89. {
  90. esp_err_t err;
  91. err = nvs_flash_write(getEntryAddress(mNextFreeEntry), &item, sizeof(item));
  92. if (err != ESP_OK) {
  93. mState = PageState::INVALID;
  94. return err;
  95. }
  96. err = alterEntryState(mNextFreeEntry, EntryState::WRITTEN);
  97. if (err != ESP_OK) {
  98. return err;
  99. }
  100. if (mFirstUsedEntry == INVALID_ENTRY) {
  101. mFirstUsedEntry = mNextFreeEntry;
  102. }
  103. ++mUsedEntryCount;
  104. ++mNextFreeEntry;
  105. return ESP_OK;
  106. }
  107. esp_err_t Page::writeEntryData(const uint8_t* data, size_t size)
  108. {
  109. assert(size % ENTRY_SIZE == 0);
  110. assert(mNextFreeEntry != INVALID_ENTRY);
  111. assert(mFirstUsedEntry != INVALID_ENTRY);
  112. const uint16_t count = size / ENTRY_SIZE;
  113. const uint8_t* buf = data;
  114. #ifdef ESP_PLATFORM
  115. /* On the ESP32, data can come from DROM, which is not accessible by spi_flash_write
  116. * function. To work around this, we copy the data to heap if it came from DROM.
  117. * Hopefully this won't happen very often in practice. For data from DRAM, we should
  118. * still be able to write it to flash directly.
  119. * TODO: figure out how to make this platform-specific check nicer (probably by introducing
  120. * a platform-specific flash layer).
  121. */
  122. if ((uint32_t) data < 0x3ff00000) {
  123. buf = (uint8_t*) malloc(size);
  124. if (!buf) {
  125. return ESP_ERR_NO_MEM;
  126. }
  127. memcpy((void*)buf, data, size);
  128. }
  129. #endif //ESP_PLATFORM
  130. auto rc = nvs_flash_write(getEntryAddress(mNextFreeEntry), buf, size);
  131. #ifdef ESP_PLATFORM
  132. if (buf != data) {
  133. free((void*)buf);
  134. }
  135. #endif //ESP_PLATFORM
  136. if (rc != ESP_OK) {
  137. mState = PageState::INVALID;
  138. return rc;
  139. }
  140. auto err = alterEntryRangeState(mNextFreeEntry, mNextFreeEntry + count, EntryState::WRITTEN);
  141. if (err != ESP_OK) {
  142. return err;
  143. }
  144. mUsedEntryCount += count;
  145. mNextFreeEntry += count;
  146. return ESP_OK;
  147. }
  148. esp_err_t Page::writeItem(uint8_t nsIndex, ItemType datatype, const char* key, const void* data, size_t dataSize, uint8_t chunkIdx)
  149. {
  150. Item item;
  151. esp_err_t err;
  152. if (mState == PageState::INVALID) {
  153. return ESP_ERR_NVS_INVALID_STATE;
  154. }
  155. if (mState == PageState::UNINITIALIZED) {
  156. err = initialize();
  157. if (err != ESP_OK) {
  158. return err;
  159. }
  160. }
  161. if (mState == PageState::FULL) {
  162. return ESP_ERR_NVS_PAGE_FULL;
  163. }
  164. const size_t keySize = strlen(key);
  165. if (keySize > Item::MAX_KEY_LENGTH) {
  166. return ESP_ERR_NVS_KEY_TOO_LONG;
  167. }
  168. if (dataSize > Page::CHUNK_MAX_SIZE) {
  169. return ESP_ERR_NVS_VALUE_TOO_LONG;
  170. }
  171. size_t totalSize = ENTRY_SIZE;
  172. size_t entriesCount = 1;
  173. if (isVariableLengthType(datatype)) {
  174. size_t roundedSize = (dataSize + ENTRY_SIZE - 1) & ~(ENTRY_SIZE - 1);
  175. totalSize += roundedSize;
  176. entriesCount += roundedSize / ENTRY_SIZE;
  177. }
  178. // primitive types should fit into one entry
  179. assert(totalSize == ENTRY_SIZE ||
  180. isVariableLengthType(datatype));
  181. if (mNextFreeEntry == INVALID_ENTRY || mNextFreeEntry + entriesCount > ENTRY_COUNT) {
  182. // page will not fit this amount of data
  183. return ESP_ERR_NVS_PAGE_FULL;
  184. }
  185. // write first item
  186. size_t span = (totalSize + ENTRY_SIZE - 1) / ENTRY_SIZE;
  187. item = Item(nsIndex, datatype, span, key, chunkIdx);
  188. err = mHashList.insert(item, mNextFreeEntry);
  189. if (err != ESP_OK) {
  190. return err;
  191. }
  192. if (!isVariableLengthType(datatype)) {
  193. memcpy(item.data, data, dataSize);
  194. item.crc32 = item.calculateCrc32();
  195. err = writeEntry(item);
  196. if (err != ESP_OK) {
  197. return err;
  198. }
  199. } else {
  200. const uint8_t* src = reinterpret_cast<const uint8_t*>(data);
  201. item.varLength.dataCrc32 = Item::calculateCrc32(src, dataSize);
  202. item.varLength.dataSize = dataSize;
  203. item.varLength.reserved = 0xffff;
  204. item.crc32 = item.calculateCrc32();
  205. err = writeEntry(item);
  206. if (err != ESP_OK) {
  207. return err;
  208. }
  209. size_t left = dataSize / ENTRY_SIZE * ENTRY_SIZE;
  210. if (left > 0) {
  211. err = writeEntryData(static_cast<const uint8_t*>(data), left);
  212. if (err != ESP_OK) {
  213. return err;
  214. }
  215. }
  216. size_t tail = dataSize - left;
  217. if (tail > 0) {
  218. std::fill_n(item.rawData, ENTRY_SIZE, 0xff);
  219. memcpy(item.rawData, static_cast<const uint8_t*>(data) + left, tail);
  220. err = writeEntry(item);
  221. if (err != ESP_OK) {
  222. return err;
  223. }
  224. }
  225. }
  226. return ESP_OK;
  227. }
  228. esp_err_t Page::readItem(uint8_t nsIndex, ItemType datatype, const char* key, void* data, size_t dataSize, uint8_t chunkIdx, VerOffset chunkStart)
  229. {
  230. size_t index = 0;
  231. Item item;
  232. if (mState == PageState::INVALID) {
  233. return ESP_ERR_NVS_INVALID_STATE;
  234. }
  235. esp_err_t rc = findItem(nsIndex, datatype, key, index, item, chunkIdx, chunkStart);
  236. if (rc != ESP_OK) {
  237. return rc;
  238. }
  239. if (!isVariableLengthType(datatype)) {
  240. if (dataSize != getAlignmentForType(datatype)) {
  241. return ESP_ERR_NVS_TYPE_MISMATCH;
  242. }
  243. memcpy(data, item.data, dataSize);
  244. return ESP_OK;
  245. }
  246. if (dataSize < static_cast<size_t>(item.varLength.dataSize)) {
  247. return ESP_ERR_NVS_INVALID_LENGTH;
  248. }
  249. uint8_t* dst = reinterpret_cast<uint8_t*>(data);
  250. size_t left = item.varLength.dataSize;
  251. for (size_t i = index + 1; i < index + item.span; ++i) {
  252. Item ditem;
  253. rc = readEntry(i, ditem);
  254. if (rc != ESP_OK) {
  255. return rc;
  256. }
  257. size_t willCopy = ENTRY_SIZE;
  258. willCopy = (left < willCopy)?left:willCopy;
  259. memcpy(dst, ditem.rawData, willCopy);
  260. left -= willCopy;
  261. dst += willCopy;
  262. }
  263. if (Item::calculateCrc32(reinterpret_cast<uint8_t*>(data), item.varLength.dataSize) != item.varLength.dataCrc32) {
  264. rc = eraseEntryAndSpan(index);
  265. if (rc != ESP_OK) {
  266. return rc;
  267. }
  268. return ESP_ERR_NVS_NOT_FOUND;
  269. }
  270. return ESP_OK;
  271. }
  272. esp_err_t Page::cmpItem(uint8_t nsIndex, ItemType datatype, const char* key, const void* data, size_t dataSize, uint8_t chunkIdx, VerOffset chunkStart)
  273. {
  274. size_t index = 0;
  275. Item item;
  276. if (mState == PageState::INVALID) {
  277. return ESP_ERR_NVS_INVALID_STATE;
  278. }
  279. esp_err_t rc = findItem(nsIndex, datatype, key, index, item, chunkIdx, chunkStart);
  280. if (rc != ESP_OK) {
  281. return rc;
  282. }
  283. if (!isVariableLengthType(datatype)) {
  284. if (dataSize != getAlignmentForType(datatype)) {
  285. return ESP_ERR_NVS_TYPE_MISMATCH;
  286. }
  287. if (memcmp(data, item.data, dataSize)) {
  288. return ESP_ERR_NVS_CONTENT_DIFFERS;
  289. }
  290. return ESP_OK;
  291. }
  292. if (dataSize < static_cast<size_t>(item.varLength.dataSize)) {
  293. return ESP_ERR_NVS_INVALID_LENGTH;
  294. }
  295. const uint8_t* dst = reinterpret_cast<const uint8_t*>(data);
  296. size_t left = item.varLength.dataSize;
  297. for (size_t i = index + 1; i < index + item.span; ++i) {
  298. Item ditem;
  299. rc = readEntry(i, ditem);
  300. if (rc != ESP_OK) {
  301. return rc;
  302. }
  303. size_t willCopy = ENTRY_SIZE;
  304. willCopy = (left < willCopy)?left:willCopy;
  305. if (memcmp(dst, ditem.rawData, willCopy)) {
  306. return ESP_ERR_NVS_CONTENT_DIFFERS;
  307. }
  308. left -= willCopy;
  309. dst += willCopy;
  310. }
  311. if (Item::calculateCrc32(reinterpret_cast<const uint8_t*>(data), item.varLength.dataSize) != item.varLength.dataCrc32) {
  312. return ESP_ERR_NVS_NOT_FOUND;
  313. }
  314. return ESP_OK;
  315. }
  316. esp_err_t Page::eraseItem(uint8_t nsIndex, ItemType datatype, const char* key, uint8_t chunkIdx, VerOffset chunkStart)
  317. {
  318. size_t index = 0;
  319. Item item;
  320. esp_err_t rc = findItem(nsIndex, datatype, key, index, item, chunkIdx, chunkStart);
  321. if (rc != ESP_OK) {
  322. return rc;
  323. }
  324. return eraseEntryAndSpan(index);
  325. }
  326. esp_err_t Page::findItem(uint8_t nsIndex, ItemType datatype, const char* key, uint8_t chunkIdx, VerOffset chunkStart)
  327. {
  328. size_t index = 0;
  329. Item item;
  330. return findItem(nsIndex, datatype, key, index, item, chunkIdx, chunkStart);
  331. }
  332. esp_err_t Page::eraseEntryAndSpan(size_t index)
  333. {
  334. auto state = mEntryTable.get(index);
  335. assert(state == EntryState::WRITTEN || state == EntryState::EMPTY);
  336. size_t span = 1;
  337. if (state == EntryState::WRITTEN) {
  338. Item item;
  339. auto rc = readEntry(index, item);
  340. if (rc != ESP_OK) {
  341. return rc;
  342. }
  343. if (item.calculateCrc32() != item.crc32) {
  344. mHashList.erase(index, false);
  345. rc = alterEntryState(index, EntryState::ERASED);
  346. --mUsedEntryCount;
  347. ++mErasedEntryCount;
  348. if (rc != ESP_OK) {
  349. return rc;
  350. }
  351. } else {
  352. mHashList.erase(index);
  353. span = item.span;
  354. for (ptrdiff_t i = index + span - 1; i >= static_cast<ptrdiff_t>(index); --i) {
  355. if (mEntryTable.get(i) == EntryState::WRITTEN) {
  356. --mUsedEntryCount;
  357. }
  358. ++mErasedEntryCount;
  359. }
  360. if (span == 1) {
  361. rc = alterEntryState(index, EntryState::ERASED);
  362. } else {
  363. rc = alterEntryRangeState(index, index + span, EntryState::ERASED);
  364. }
  365. if (rc != ESP_OK) {
  366. return rc;
  367. }
  368. }
  369. } else {
  370. auto rc = alterEntryState(index, EntryState::ERASED);
  371. if (rc != ESP_OK) {
  372. return rc;
  373. }
  374. }
  375. if (index == mFirstUsedEntry) {
  376. updateFirstUsedEntry(index, span);
  377. }
  378. if (index + span > mNextFreeEntry) {
  379. mNextFreeEntry = index + span;
  380. }
  381. return ESP_OK;
  382. }
  383. void Page::updateFirstUsedEntry(size_t index, size_t span)
  384. {
  385. assert(index == mFirstUsedEntry);
  386. mFirstUsedEntry = INVALID_ENTRY;
  387. size_t end = mNextFreeEntry;
  388. if (end > ENTRY_COUNT) {
  389. end = ENTRY_COUNT;
  390. }
  391. for (size_t i = index + span; i < end; ++i) {
  392. if (mEntryTable.get(i) == EntryState::WRITTEN) {
  393. mFirstUsedEntry = i;
  394. break;
  395. }
  396. }
  397. }
  398. esp_err_t Page::copyItems(Page& other)
  399. {
  400. if (mFirstUsedEntry == INVALID_ENTRY) {
  401. return ESP_ERR_NVS_NOT_FOUND;
  402. }
  403. if (other.mState == PageState::UNINITIALIZED) {
  404. auto err = other.initialize();
  405. if (err != ESP_OK) {
  406. return err;
  407. }
  408. }
  409. Item entry;
  410. size_t readEntryIndex = mFirstUsedEntry;
  411. while (readEntryIndex < ENTRY_COUNT) {
  412. if (mEntryTable.get(readEntryIndex) != EntryState::WRITTEN) {
  413. assert(readEntryIndex != mFirstUsedEntry);
  414. readEntryIndex++;
  415. continue;
  416. }
  417. auto err = readEntry(readEntryIndex, entry);
  418. if (err != ESP_OK) {
  419. return err;
  420. }
  421. err = other.mHashList.insert(entry, other.mNextFreeEntry);
  422. if (err != ESP_OK) {
  423. return err;
  424. }
  425. err = other.writeEntry(entry);
  426. if (err != ESP_OK) {
  427. return err;
  428. }
  429. size_t span = entry.span;
  430. size_t end = readEntryIndex + span;
  431. assert(end <= ENTRY_COUNT);
  432. for (size_t i = readEntryIndex + 1; i < end; ++i) {
  433. readEntry(i, entry);
  434. err = other.writeEntry(entry);
  435. if (err != ESP_OK) {
  436. return err;
  437. }
  438. }
  439. readEntryIndex = end;
  440. }
  441. return ESP_OK;
  442. }
  443. esp_err_t Page::mLoadEntryTable()
  444. {
  445. // for states where we actually care about data in the page, read entry state table
  446. if (mState == PageState::ACTIVE ||
  447. mState == PageState::FULL ||
  448. mState == PageState::FREEING) {
  449. auto rc = spi_flash_read(mBaseAddress + ENTRY_TABLE_OFFSET, mEntryTable.data(),
  450. mEntryTable.byteSize());
  451. if (rc != ESP_OK) {
  452. mState = PageState::INVALID;
  453. return rc;
  454. }
  455. }
  456. mErasedEntryCount = 0;
  457. mUsedEntryCount = 0;
  458. for (size_t i = 0; i < ENTRY_COUNT; ++i) {
  459. auto s = mEntryTable.get(i);
  460. if (s == EntryState::WRITTEN) {
  461. if (mFirstUsedEntry == INVALID_ENTRY) {
  462. mFirstUsedEntry = i;
  463. }
  464. ++mUsedEntryCount;
  465. } else if (s == EntryState::ERASED) {
  466. ++mErasedEntryCount;
  467. }
  468. }
  469. // for PageState::ACTIVE, we may have more data written to this page
  470. // as such, we need to figure out where the first unused entry is
  471. if (mState == PageState::ACTIVE) {
  472. for (size_t i = 0; i < ENTRY_COUNT; ++i) {
  473. if (mEntryTable.get(i) == EntryState::EMPTY) {
  474. mNextFreeEntry = i;
  475. break;
  476. }
  477. }
  478. // however, if power failed after some data was written into the entry.
  479. // but before the entry state table was altered, the entry locacted via
  480. // entry state table may actually be half-written.
  481. // this is easy to check by reading EntryHeader (i.e. first word)
  482. while (mNextFreeEntry < ENTRY_COUNT) {
  483. uint32_t entryAddress = getEntryAddress(mNextFreeEntry);
  484. uint32_t header;
  485. auto rc = spi_flash_read(entryAddress, &header, sizeof(header));
  486. if (rc != ESP_OK) {
  487. mState = PageState::INVALID;
  488. return rc;
  489. }
  490. if (header != 0xffffffff) {
  491. auto oldState = mEntryTable.get(mNextFreeEntry);
  492. auto err = alterEntryState(mNextFreeEntry, EntryState::ERASED);
  493. if (err != ESP_OK) {
  494. mState = PageState::INVALID;
  495. return err;
  496. }
  497. ++mNextFreeEntry;
  498. if (oldState == EntryState::WRITTEN) {
  499. --mUsedEntryCount;
  500. }
  501. ++mErasedEntryCount;
  502. }
  503. else {
  504. break;
  505. }
  506. }
  507. // check that all variable-length items are written or erased fully
  508. Item item;
  509. size_t lastItemIndex = INVALID_ENTRY;
  510. size_t end = mNextFreeEntry;
  511. if (end > ENTRY_COUNT) {
  512. end = ENTRY_COUNT;
  513. }
  514. size_t span;
  515. for (size_t i = 0; i < end; i += span) {
  516. span = 1;
  517. if (mEntryTable.get(i) == EntryState::ERASED) {
  518. lastItemIndex = INVALID_ENTRY;
  519. continue;
  520. }
  521. lastItemIndex = i;
  522. auto err = readEntry(i, item);
  523. if (err != ESP_OK) {
  524. mState = PageState::INVALID;
  525. return err;
  526. }
  527. if (item.crc32 != item.calculateCrc32()) {
  528. err = eraseEntryAndSpan(i);
  529. if (err != ESP_OK) {
  530. mState = PageState::INVALID;
  531. return err;
  532. }
  533. continue;
  534. }
  535. err = mHashList.insert(item, i);
  536. if (err != ESP_OK) {
  537. mState = PageState::INVALID;
  538. return err;
  539. }
  540. // search for potential duplicate item
  541. size_t duplicateIndex = mHashList.find(0, item);
  542. if (isVariableLengthType(item.datatype)) {
  543. span = item.span;
  544. bool needErase = false;
  545. for (size_t j = i; j < i + span; ++j) {
  546. if (mEntryTable.get(j) != EntryState::WRITTEN) {
  547. needErase = true;
  548. lastItemIndex = INVALID_ENTRY;
  549. break;
  550. }
  551. }
  552. if (needErase) {
  553. eraseEntryAndSpan(i);
  554. continue;
  555. }
  556. }
  557. /* Note that logic for duplicate detections works fine even
  558. * when old-format blob is present along with new-format blob-index
  559. * for same key on active page. Since datatype is not used in hash calculation,
  560. * old-format blob will be removed.*/
  561. if (duplicateIndex < i) {
  562. eraseEntryAndSpan(duplicateIndex);
  563. }
  564. }
  565. // check that last item is not duplicate
  566. if (lastItemIndex != INVALID_ENTRY) {
  567. size_t findItemIndex = 0;
  568. Item dupItem;
  569. if (findItem(item.nsIndex, item.datatype, item.key, findItemIndex, dupItem) == ESP_OK) {
  570. if (findItemIndex < lastItemIndex) {
  571. auto err = eraseEntryAndSpan(findItemIndex);
  572. if (err != ESP_OK) {
  573. mState = PageState::INVALID;
  574. return err;
  575. }
  576. }
  577. }
  578. }
  579. } else if (mState == PageState::FULL || mState == PageState::FREEING) {
  580. // We have already filled mHashList for page in active state.
  581. // Do the same for the case when page is in full or freeing state.
  582. Item item;
  583. for (size_t i = mFirstUsedEntry; i < ENTRY_COUNT; ++i) {
  584. if (mEntryTable.get(i) != EntryState::WRITTEN) {
  585. continue;
  586. }
  587. auto err = readEntry(i, item);
  588. if (err != ESP_OK) {
  589. mState = PageState::INVALID;
  590. return err;
  591. }
  592. if (item.crc32 != item.calculateCrc32()) {
  593. err = eraseEntryAndSpan(i);
  594. if (err != ESP_OK) {
  595. mState = PageState::INVALID;
  596. return err;
  597. }
  598. continue;
  599. }
  600. assert(item.span > 0);
  601. err = mHashList.insert(item, i);
  602. if (err != ESP_OK) {
  603. mState = PageState::INVALID;
  604. return err;
  605. }
  606. size_t span = item.span;
  607. if (isVariableLengthType(item.datatype)) {
  608. for (size_t j = i + 1; j < i + span; ++j) {
  609. if (mEntryTable.get(j) != EntryState::WRITTEN) {
  610. eraseEntryAndSpan(i);
  611. break;
  612. }
  613. }
  614. }
  615. i += span - 1;
  616. }
  617. }
  618. return ESP_OK;
  619. }
  620. esp_err_t Page::initialize()
  621. {
  622. assert(mState == PageState::UNINITIALIZED);
  623. mState = PageState::ACTIVE;
  624. Header header;
  625. header.mState = mState;
  626. header.mSeqNumber = mSeqNumber;
  627. header.mVersion = mVersion;
  628. header.mCrc32 = header.calculateCrc32();
  629. auto rc = spi_flash_write(mBaseAddress, &header, sizeof(header));
  630. if (rc != ESP_OK) {
  631. mState = PageState::INVALID;
  632. return rc;
  633. }
  634. mNextFreeEntry = 0;
  635. std::fill_n(mEntryTable.data(), mEntryTable.byteSize() / sizeof(uint32_t), 0xffffffff);
  636. return ESP_OK;
  637. }
  638. esp_err_t Page::alterEntryState(size_t index, EntryState state)
  639. {
  640. assert(index < ENTRY_COUNT);
  641. mEntryTable.set(index, state);
  642. size_t wordToWrite = mEntryTable.getWordIndex(index);
  643. uint32_t word = mEntryTable.data()[wordToWrite];
  644. auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordToWrite) * 4,
  645. &word, sizeof(word));
  646. if (rc != ESP_OK) {
  647. mState = PageState::INVALID;
  648. return rc;
  649. }
  650. return ESP_OK;
  651. }
  652. esp_err_t Page::alterEntryRangeState(size_t begin, size_t end, EntryState state)
  653. {
  654. assert(end <= ENTRY_COUNT);
  655. assert(end > begin);
  656. size_t wordIndex = mEntryTable.getWordIndex(end - 1);
  657. for (ptrdiff_t i = end - 1; i >= static_cast<ptrdiff_t>(begin); --i) {
  658. mEntryTable.set(i, state);
  659. size_t nextWordIndex;
  660. if (i == static_cast<ptrdiff_t>(begin)) {
  661. nextWordIndex = (size_t) -1;
  662. } else {
  663. nextWordIndex = mEntryTable.getWordIndex(i - 1);
  664. }
  665. if (nextWordIndex != wordIndex) {
  666. uint32_t word = mEntryTable.data()[wordIndex];
  667. auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordIndex) * 4,
  668. &word, 4);
  669. if (rc != ESP_OK) {
  670. return rc;
  671. }
  672. }
  673. wordIndex = nextWordIndex;
  674. }
  675. return ESP_OK;
  676. }
  677. esp_err_t Page::alterPageState(PageState state)
  678. {
  679. uint32_t state_val = static_cast<uint32_t>(state);
  680. auto rc = spi_flash_write(mBaseAddress, &state_val, sizeof(state));
  681. if (rc != ESP_OK) {
  682. mState = PageState::INVALID;
  683. return rc;
  684. }
  685. mState = (PageState) state;
  686. return ESP_OK;
  687. }
  688. esp_err_t Page::readEntry(size_t index, Item& dst) const
  689. {
  690. auto rc = nvs_flash_read(getEntryAddress(index), &dst, sizeof(dst));
  691. if (rc != ESP_OK) {
  692. return rc;
  693. }
  694. return ESP_OK;
  695. }
  696. esp_err_t Page::findItem(uint8_t nsIndex, ItemType datatype, const char* key, size_t &itemIndex, Item& item, uint8_t chunkIdx, VerOffset chunkStart)
  697. {
  698. if (mState == PageState::CORRUPT || mState == PageState::INVALID || mState == PageState::UNINITIALIZED) {
  699. return ESP_ERR_NVS_NOT_FOUND;
  700. }
  701. size_t findBeginIndex = itemIndex;
  702. if (findBeginIndex >= ENTRY_COUNT) {
  703. return ESP_ERR_NVS_NOT_FOUND;
  704. }
  705. size_t start = mFirstUsedEntry;
  706. if (findBeginIndex > mFirstUsedEntry && findBeginIndex < ENTRY_COUNT) {
  707. start = findBeginIndex;
  708. }
  709. size_t end = mNextFreeEntry;
  710. if (end > ENTRY_COUNT) {
  711. end = ENTRY_COUNT;
  712. }
  713. if (nsIndex != NS_ANY && datatype != ItemType::ANY && key != NULL) {
  714. size_t cachedIndex = mHashList.find(start, Item(nsIndex, datatype, 0, key, chunkIdx));
  715. if (cachedIndex < ENTRY_COUNT) {
  716. start = cachedIndex;
  717. } else {
  718. return ESP_ERR_NVS_NOT_FOUND;
  719. }
  720. }
  721. size_t next;
  722. for (size_t i = start; i < end; i = next) {
  723. next = i + 1;
  724. if (mEntryTable.get(i) != EntryState::WRITTEN) {
  725. continue;
  726. }
  727. auto rc = readEntry(i, item);
  728. if (rc != ESP_OK) {
  729. mState = PageState::INVALID;
  730. return rc;
  731. }
  732. auto crc32 = item.calculateCrc32();
  733. if (item.crc32 != crc32) {
  734. rc = eraseEntryAndSpan(i);
  735. if (rc != ESP_OK) {
  736. mState = PageState::INVALID;
  737. return rc;
  738. }
  739. continue;
  740. }
  741. if (isVariableLengthType(item.datatype)) {
  742. next = i + item.span;
  743. }
  744. if (nsIndex != NS_ANY && item.nsIndex != nsIndex) {
  745. continue;
  746. }
  747. if (key != nullptr && strncmp(key, item.key, Item::MAX_KEY_LENGTH) != 0) {
  748. continue;
  749. }
  750. /* For blob data, chunkIndex should match*/
  751. if (chunkIdx != CHUNK_ANY
  752. && datatype == ItemType::BLOB_DATA
  753. && item.chunkIndex != chunkIdx) {
  754. continue;
  755. }
  756. /* Blob-index will match the <ns,key> with blob data.
  757. * Skip data chunks when searching for blob index*/
  758. if (datatype == ItemType::BLOB_IDX
  759. && item.chunkIndex != CHUNK_ANY) {
  760. continue;
  761. }
  762. /* Match the version for blob-index*/
  763. if (datatype == ItemType::BLOB_IDX
  764. && chunkStart != VerOffset::VER_ANY
  765. && item.blobIndex.chunkStart != chunkStart) {
  766. continue;
  767. }
  768. if (datatype != ItemType::ANY && item.datatype != datatype) {
  769. if (key == nullptr && nsIndex == NS_ANY && chunkIdx == CHUNK_ANY) {
  770. continue; // continue for bruteforce search on blob indices.
  771. }
  772. itemIndex = i;
  773. return ESP_ERR_NVS_TYPE_MISMATCH;
  774. }
  775. itemIndex = i;
  776. return ESP_OK;
  777. }
  778. return ESP_ERR_NVS_NOT_FOUND;
  779. }
  780. esp_err_t Page::getSeqNumber(uint32_t& seqNumber) const
  781. {
  782. if (mState != PageState::UNINITIALIZED && mState != PageState::INVALID && mState != PageState::CORRUPT) {
  783. seqNumber = mSeqNumber;
  784. return ESP_OK;
  785. }
  786. return ESP_ERR_NVS_NOT_INITIALIZED;
  787. }
  788. esp_err_t Page::setSeqNumber(uint32_t seqNumber)
  789. {
  790. if (mState != PageState::UNINITIALIZED) {
  791. return ESP_ERR_NVS_INVALID_STATE;
  792. }
  793. mSeqNumber = seqNumber;
  794. return ESP_OK;
  795. }
  796. esp_err_t Page::setVersion(uint8_t ver)
  797. {
  798. if (mState != PageState::UNINITIALIZED) {
  799. return ESP_ERR_NVS_INVALID_STATE;
  800. }
  801. mVersion = ver;
  802. return ESP_OK;
  803. }
  804. esp_err_t Page::erase()
  805. {
  806. auto sector = mBaseAddress / SPI_FLASH_SEC_SIZE;
  807. auto rc = spi_flash_erase_sector(sector);
  808. if (rc != ESP_OK) {
  809. mState = PageState::INVALID;
  810. return rc;
  811. }
  812. mUsedEntryCount = 0;
  813. mErasedEntryCount = 0;
  814. mFirstUsedEntry = INVALID_ENTRY;
  815. mNextFreeEntry = INVALID_ENTRY;
  816. mState = PageState::UNINITIALIZED;
  817. mHashList.clear();
  818. return ESP_OK;
  819. }
  820. esp_err_t Page::markFreeing()
  821. {
  822. if (mState != PageState::FULL && mState != PageState::ACTIVE) {
  823. return ESP_ERR_NVS_INVALID_STATE;
  824. }
  825. return alterPageState(PageState::FREEING);
  826. }
  827. esp_err_t Page::markFull()
  828. {
  829. if (mState != PageState::ACTIVE) {
  830. return ESP_ERR_NVS_INVALID_STATE;
  831. }
  832. return alterPageState(PageState::FULL);
  833. }
  834. size_t Page::getVarDataTailroom() const
  835. {
  836. if (mState == PageState::UNINITIALIZED) {
  837. return CHUNK_MAX_SIZE;
  838. } else if (mState == PageState::FULL) {
  839. return 0;
  840. }
  841. /* Skip one entry for header*/
  842. return ((mNextFreeEntry < (ENTRY_COUNT-1)) ? ((ENTRY_COUNT - mNextFreeEntry - 1) * ENTRY_SIZE): 0);
  843. }
  844. const char* Page::pageStateToName(PageState ps)
  845. {
  846. switch (ps) {
  847. case PageState::CORRUPT:
  848. return "CORRUPT";
  849. case PageState::ACTIVE:
  850. return "ACTIVE";
  851. case PageState::FREEING:
  852. return "FREEING";
  853. case PageState::FULL:
  854. return "FULL";
  855. case PageState::INVALID:
  856. return "INVALID";
  857. case PageState::UNINITIALIZED:
  858. return "UNINITIALIZED";
  859. default:
  860. assert(0 && "invalid state value");
  861. return "";
  862. }
  863. }
  864. void Page::debugDump() const
  865. {
  866. printf("state=%x (%s) addr=%x seq=%d\nfirstUsed=%d nextFree=%d used=%d erased=%d\n", (uint32_t) mState, pageStateToName(mState), mBaseAddress, mSeqNumber, static_cast<int>(mFirstUsedEntry), static_cast<int>(mNextFreeEntry), mUsedEntryCount, mErasedEntryCount);
  867. size_t skip = 0;
  868. for (size_t i = 0; i < ENTRY_COUNT; ++i) {
  869. printf("%3d: ", static_cast<int>(i));
  870. EntryState state = mEntryTable.get(i);
  871. if (state == EntryState::EMPTY) {
  872. printf("E\n");
  873. } else if (state == EntryState::ERASED) {
  874. printf("X\n");
  875. } else if (state == EntryState::WRITTEN) {
  876. Item item;
  877. readEntry(i, item);
  878. if (skip == 0) {
  879. printf("W ns=%2u type=%2u span=%3u key=\"%s\" chunkIdx=%d len=%d\n", item.nsIndex, static_cast<unsigned>(item.datatype), item.span, item.key, item.chunkIndex, (item.span != 1)?((int)item.varLength.dataSize):-1);
  880. if (item.span > 0 && item.span <= ENTRY_COUNT - i) {
  881. skip = item.span - 1;
  882. } else {
  883. skip = 0;
  884. }
  885. } else {
  886. printf("D\n");
  887. skip--;
  888. }
  889. }
  890. }
  891. }
  892. esp_err_t Page::calcEntries(nvs_stats_t &nvsStats)
  893. {
  894. assert(mState != PageState::FREEING);
  895. nvsStats.total_entries += ENTRY_COUNT;
  896. switch (mState) {
  897. case PageState::UNINITIALIZED:
  898. case PageState::CORRUPT:
  899. nvsStats.free_entries += ENTRY_COUNT;
  900. break;
  901. case PageState::FULL:
  902. case PageState::ACTIVE:
  903. nvsStats.used_entries += mUsedEntryCount;
  904. nvsStats.free_entries += ENTRY_COUNT - mUsedEntryCount; // it's equivalent free + erase entries.
  905. break;
  906. case PageState::INVALID:
  907. return ESP_ERR_INVALID_STATE;
  908. break;
  909. default:
  910. assert(false && "Unhandled state");
  911. break;
  912. }
  913. return ESP_OK;
  914. }
  915. } // namespace nvs