uart.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/ringbuf.h"
  24. #include "hal/uart_hal.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "driver/periph_ctrl.h"
  30. #include "sdkconfig.h"
  31. #if CONFIG_IDF_TARGET_ESP32
  32. #include "esp32/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  34. #include "esp32s2beta/clk.h"
  35. #endif
  36. #ifdef CONFIG_UART_ISR_IN_IRAM
  37. #define UART_ISR_ATTR IRAM_ATTR
  38. #else
  39. #define UART_ISR_ATTR
  40. #endif
  41. #define XOFF (0x13)
  42. #define XON (0x11)
  43. static const char* UART_TAG = "uart";
  44. #define UART_CHECK(a, str, ret_val) \
  45. if (!(a)) { \
  46. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  47. return (ret_val); \
  48. }
  49. #define UART_EMPTY_THRESH_DEFAULT (10)
  50. #define UART_FULL_THRESH_DEFAULT (120)
  51. #define UART_TOUT_THRESH_DEFAULT (10)
  52. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  53. #define UART_TX_IDLE_NUM_DEFAULT (0)
  54. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  55. #define UART_MIN_WAKEUP_THRESH (SOC_UART_MIN_WAKEUP_THRESH)
  56. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  57. | (UART_INTR_RXFIFO_TOUT) \
  58. | (UART_INTR_RXFIFO_OVF) \
  59. | (UART_INTR_BRK_DET) \
  60. | (UART_INTR_PARITY_ERR))
  61. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  62. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  63. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  64. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  65. // Check actual UART mode set
  66. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  67. #define UART_CONTEX_INIT_DEF(uart_num) {\
  68. .hal.dev = UART_LL_GET_HW(uart_num),\
  69. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  70. .hw_enabled = false,\
  71. }
  72. typedef struct {
  73. uart_event_type_t type; /*!< UART TX data type */
  74. struct {
  75. int brk_len;
  76. size_t size;
  77. uint8_t data[0];
  78. } tx_data;
  79. } uart_tx_data_t;
  80. typedef struct {
  81. int wr;
  82. int rd;
  83. int len;
  84. int* data;
  85. } uart_pat_rb_t;
  86. typedef struct {
  87. uart_port_t uart_num; /*!< UART port number*/
  88. int queue_size; /*!< UART event queue size*/
  89. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  90. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  91. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  92. bool coll_det_flg; /*!< UART collision detection flag */
  93. //rx parameters
  94. int rx_buffered_len; /*!< UART cached data length */
  95. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  96. int rx_buf_size; /*!< RX ring buffer size */
  97. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  98. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  99. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  100. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  101. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  102. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  103. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  104. uart_pat_rb_t rx_pattern_pos;
  105. //tx parameters
  106. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  107. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  108. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  109. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  110. int tx_buf_size; /*!< TX ring buffer size */
  111. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  112. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  113. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  114. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  115. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  116. uint32_t tx_len_cur;
  117. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  118. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  119. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  120. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  121. } uart_obj_t;
  122. typedef struct {
  123. uart_hal_context_t hal; /*!< UART hal context*/
  124. portMUX_TYPE spinlock;
  125. bool hw_enabled;
  126. } uart_context_t;
  127. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  128. static uart_context_t uart_context[UART_NUM_MAX] = {
  129. UART_CONTEX_INIT_DEF(UART_NUM_0),
  130. UART_CONTEX_INIT_DEF(UART_NUM_1),
  131. #if UART_NUM_MAX > 2
  132. UART_CONTEX_INIT_DEF(UART_NUM_2),
  133. #endif
  134. };
  135. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  136. static void uart_module_enable(uart_port_t uart_num)
  137. {
  138. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  139. if (uart_context[uart_num].hw_enabled != true) {
  140. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  141. periph_module_reset(uart_periph_signal[uart_num].module);
  142. }
  143. periph_module_enable(uart_periph_signal[uart_num].module);
  144. uart_context[uart_num].hw_enabled = true;
  145. }
  146. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  147. }
  148. static void uart_module_disable(uart_port_t uart_num)
  149. {
  150. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  151. if (uart_context[uart_num].hw_enabled != false) {
  152. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  153. periph_module_disable(uart_periph_signal[uart_num].module);
  154. }
  155. uart_context[uart_num].hw_enabled = false;
  156. }
  157. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  158. }
  159. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  160. {
  161. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  162. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  163. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  164. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  165. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  166. return ESP_OK;
  167. }
  168. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  169. {
  170. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  171. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  172. return ESP_OK;
  173. }
  174. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  175. {
  176. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  177. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  178. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  179. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  180. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  181. return ESP_OK;
  182. }
  183. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  184. {
  185. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  186. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  187. return ESP_OK;
  188. }
  189. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  190. {
  191. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  192. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  193. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  194. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  195. return ESP_OK;
  196. }
  197. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  198. {
  199. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  200. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  201. return ESP_OK;
  202. }
  203. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  204. {
  205. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  206. uart_sclk_t source_clk = 0;
  207. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  208. uart_hal_get_sclk(&(uart_context[uart_num].hal), &source_clk);
  209. uart_hal_set_baudrate(&(uart_context[uart_num].hal), source_clk, baud_rate);
  210. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  211. return ESP_OK;
  212. }
  213. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  214. {
  215. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  216. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  217. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  218. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  219. return ESP_OK;
  220. }
  221. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  222. {
  223. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  224. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  225. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  226. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  227. return ESP_OK;
  228. }
  229. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  230. {
  231. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  232. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  233. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  234. uart_sw_flowctrl_t sw_flow_ctl = {
  235. .xon_char = XON,
  236. .xoff_char = XOFF,
  237. .xon_thrd = rx_thresh_xon,
  238. .xoff_thrd = rx_thresh_xoff,
  239. };
  240. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  241. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  242. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  243. return ESP_OK;
  244. }
  245. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  246. {
  247. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  248. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  249. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  250. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  251. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  252. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  253. return ESP_OK;
  254. }
  255. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  256. {
  257. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  258. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  259. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  260. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  261. return ESP_OK;
  262. }
  263. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  264. {
  265. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  266. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  267. return ESP_OK;
  268. }
  269. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  270. {
  271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  272. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  273. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  274. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  275. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  276. return ESP_OK;
  277. }
  278. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  279. {
  280. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  281. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  282. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  283. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  284. return ESP_OK;
  285. }
  286. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  287. {
  288. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  289. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  290. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  291. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  292. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  293. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  294. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  295. free(pdata);
  296. }
  297. return ESP_OK;
  298. }
  299. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  300. {
  301. esp_err_t ret = ESP_OK;
  302. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  303. int next = p_pos->wr + 1;
  304. if (next >= p_pos->len) {
  305. next = 0;
  306. }
  307. if (next == p_pos->rd) {
  308. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  309. ret = ESP_FAIL;
  310. } else {
  311. p_pos->data[p_pos->wr] = pos;
  312. p_pos->wr = next;
  313. ret = ESP_OK;
  314. }
  315. return ret;
  316. }
  317. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  318. {
  319. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  320. return ESP_ERR_INVALID_STATE;
  321. } else {
  322. esp_err_t ret = ESP_OK;
  323. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  324. if (p_pos->rd == p_pos->wr) {
  325. ret = ESP_FAIL;
  326. } else {
  327. p_pos->rd++;
  328. }
  329. if (p_pos->rd >= p_pos->len) {
  330. p_pos->rd = 0;
  331. }
  332. return ret;
  333. }
  334. }
  335. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  336. {
  337. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  338. int rd = p_pos->rd;
  339. while(rd != p_pos->wr) {
  340. p_pos->data[rd] -= diff_len;
  341. int rd_rec = rd;
  342. rd ++;
  343. if (rd >= p_pos->len) {
  344. rd = 0;
  345. }
  346. if (p_pos->data[rd_rec] < 0) {
  347. p_pos->rd = rd;
  348. }
  349. }
  350. return ESP_OK;
  351. }
  352. int uart_pattern_pop_pos(uart_port_t uart_num)
  353. {
  354. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  355. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  356. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  357. int pos = -1;
  358. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  359. pos = pat_pos->data[pat_pos->rd];
  360. uart_pattern_dequeue(uart_num);
  361. }
  362. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  363. return pos;
  364. }
  365. int uart_pattern_get_pos(uart_port_t uart_num)
  366. {
  367. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  368. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  369. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  370. int pos = -1;
  371. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  372. pos = pat_pos->data[pat_pos->rd];
  373. }
  374. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  375. return pos;
  376. }
  377. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  378. {
  379. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  380. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  381. int* pdata = (int*) malloc(queue_length * sizeof(int));
  382. if(pdata == NULL) {
  383. return ESP_ERR_NO_MEM;
  384. }
  385. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  386. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  387. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  388. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  389. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  390. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  391. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  392. free(ptmp);
  393. return ESP_OK;
  394. }
  395. #if CONFIG_IDF_TARGET_ESP32
  396. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  397. {
  398. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  399. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  400. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  401. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  402. uart_at_cmd_t at_cmd = {0};
  403. at_cmd.cmd_char = pattern_chr;
  404. at_cmd.char_num = chr_num;
  405. at_cmd.gap_tout = chr_tout;
  406. at_cmd.pre_idle = pre_idle;
  407. at_cmd.post_idle = post_idle;
  408. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  409. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  410. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  411. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  412. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  413. return ESP_OK;
  414. }
  415. #endif
  416. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  417. {
  418. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  419. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  420. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  421. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  422. uart_at_cmd_t at_cmd = {0};
  423. at_cmd.cmd_char = pattern_chr;
  424. at_cmd.char_num = chr_num;
  425. #if CONFIG_IDF_TARGET_ESP32
  426. int apb_clk_freq = 0;
  427. uint32_t uart_baud = 0;
  428. uint32_t uart_div = 0;
  429. uart_get_baudrate(uart_num, &uart_baud);
  430. apb_clk_freq = esp_clk_apb_freq();
  431. uart_div = apb_clk_freq / uart_baud;
  432. at_cmd.gap_tout = chr_tout * uart_div;
  433. at_cmd.pre_idle = pre_idle * uart_div;
  434. at_cmd.post_idle = post_idle * uart_div;
  435. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  436. at_cmd.gap_tout = chr_tout;
  437. at_cmd.pre_idle = pre_idle;
  438. at_cmd.post_idle = post_idle;
  439. #endif
  440. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  441. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  442. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  443. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  444. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  445. return ESP_OK;
  446. }
  447. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  448. {
  449. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  450. }
  451. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  452. {
  453. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  454. }
  455. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  456. {
  457. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  458. }
  459. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  460. {
  461. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  462. }
  463. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  464. {
  465. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  466. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  467. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  468. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  469. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  470. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  471. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  472. return ESP_OK;
  473. }
  474. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  475. {
  476. int ret;
  477. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  478. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  479. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  480. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  481. return ret;
  482. }
  483. esp_err_t uart_isr_free(uart_port_t uart_num)
  484. {
  485. esp_err_t ret;
  486. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  487. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  488. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  489. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  490. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  491. p_uart_obj[uart_num]->intr_handle=NULL;
  492. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  493. return ret;
  494. }
  495. //internal signal can be output to multiple GPIO pads
  496. //only one GPIO pad can connect with input signal
  497. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  498. {
  499. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  500. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  501. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  502. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  503. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  504. if(tx_io_num >= 0) {
  505. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  506. gpio_set_level(tx_io_num, 1);
  507. gpio_matrix_out(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  508. }
  509. if(rx_io_num >= 0) {
  510. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  511. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  512. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  513. gpio_matrix_in(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  514. }
  515. if(rts_io_num >= 0) {
  516. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  517. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  518. gpio_matrix_out(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  519. }
  520. if(cts_io_num >= 0) {
  521. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  522. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  523. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  524. gpio_matrix_in(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  525. }
  526. return ESP_OK;
  527. }
  528. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  529. {
  530. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  531. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  532. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  533. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  534. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  535. return ESP_OK;
  536. }
  537. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  538. {
  539. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  540. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  541. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  542. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  543. return ESP_OK;
  544. }
  545. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  546. {
  547. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  548. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  549. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  550. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  551. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  552. return ESP_OK;
  553. }
  554. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  555. {
  556. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  557. UART_CHECK((uart_config), "param null", ESP_FAIL);
  558. UART_CHECK((uart_config->rx_flow_ctrl_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  559. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  560. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  561. uart_module_enable(uart_num);
  562. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  563. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  564. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->source_clk, uart_config->baud_rate);
  565. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  566. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  567. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  568. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  569. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  570. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  571. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  572. return ESP_OK;
  573. }
  574. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  575. {
  576. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  577. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  578. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  579. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  580. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  581. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  582. } else {
  583. //Disable rx_tout intr
  584. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  585. }
  586. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  587. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  588. }
  589. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  590. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  591. }
  592. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  593. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  594. return ESP_OK;
  595. }
  596. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  597. {
  598. int cnt = 0;
  599. int len = length;
  600. while (len >= 0) {
  601. if (buf[len] == pat_chr) {
  602. cnt++;
  603. } else {
  604. cnt = 0;
  605. }
  606. if (cnt >= pat_num) {
  607. break;
  608. }
  609. len --;
  610. }
  611. return len;
  612. }
  613. //internal isr handler for default driver code.
  614. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  615. {
  616. uart_obj_t *p_uart = (uart_obj_t*) param;
  617. uint8_t uart_num = p_uart->uart_num;
  618. int rx_fifo_len = 0;
  619. uint32_t uart_intr_status = 0;
  620. uart_event_t uart_event;
  621. portBASE_TYPE HPTaskAwoken = 0;
  622. static uint8_t pat_flg = 0;
  623. while(1) {
  624. // The `continue statement` may cause the interrupt to loop infinitely
  625. // we exit the interrupt here
  626. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  627. //Exit form while loop
  628. if(uart_intr_status == 0){
  629. break;
  630. }
  631. uart_event.type = UART_EVENT_MAX;
  632. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  633. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  634. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  635. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  636. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  637. if(p_uart->tx_waiting_brk) {
  638. continue;
  639. }
  640. //TX semaphore will only be used when tx_buf_size is zero.
  641. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  642. p_uart->tx_waiting_fifo = false;
  643. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  644. } else {
  645. //We don't use TX ring buffer, because the size is zero.
  646. if(p_uart->tx_buf_size == 0) {
  647. continue;
  648. }
  649. bool en_tx_flg = false;
  650. int tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  651. //We need to put a loop here, in case all the buffer items are very short.
  652. //That would cause a watch_dog reset because empty interrupt happens so often.
  653. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  654. while(tx_fifo_rem) {
  655. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  656. size_t size;
  657. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  658. if(p_uart->tx_head) {
  659. //The first item is the data description
  660. //Get the first item to get the data information
  661. if(p_uart->tx_len_tot == 0) {
  662. p_uart->tx_ptr = NULL;
  663. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  664. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  665. p_uart->tx_brk_flg = 1;
  666. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  667. }
  668. //We have saved the data description from the 1st item, return buffer.
  669. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  670. } else if(p_uart->tx_ptr == NULL) {
  671. //Update the TX item pointer, we will need this to return item to buffer.
  672. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  673. en_tx_flg = true;
  674. p_uart->tx_len_cur = size;
  675. }
  676. } else {
  677. //Can not get data from ring buffer, return;
  678. break;
  679. }
  680. }
  681. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  682. //To fill the TX FIFO.
  683. uint32_t send_len = 0;
  684. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  685. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  686. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  687. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  688. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  689. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  690. }
  691. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  692. (const uint8_t *)p_uart->tx_ptr,
  693. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  694. &send_len);
  695. p_uart->tx_ptr += send_len;
  696. p_uart->tx_len_tot -= send_len;
  697. p_uart->tx_len_cur -= send_len;
  698. tx_fifo_rem -= send_len;
  699. if (p_uart->tx_len_cur == 0) {
  700. //Return item to ring buffer.
  701. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  702. p_uart->tx_head = NULL;
  703. p_uart->tx_ptr = NULL;
  704. //Sending item done, now we need to send break if there is a record.
  705. //Set TX break signal after FIFO is empty
  706. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  707. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  708. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  709. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  710. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  711. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  712. p_uart->tx_waiting_brk = 1;
  713. //do not enable TX empty interrupt
  714. en_tx_flg = false;
  715. } else {
  716. //enable TX empty interrupt
  717. en_tx_flg = true;
  718. }
  719. } else {
  720. //enable TX empty interrupt
  721. en_tx_flg = true;
  722. }
  723. }
  724. }
  725. if (en_tx_flg) {
  726. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  727. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  728. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  729. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  730. }
  731. }
  732. }
  733. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  734. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  735. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  736. ) {
  737. if(pat_flg == 1) {
  738. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  739. pat_flg = 0;
  740. }
  741. if (p_uart->rx_buffer_full_flg == false) {
  742. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  743. uint8_t pat_chr = 0;
  744. uint8_t pat_num = 0;
  745. int pat_idx = -1;
  746. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  747. //Get the buffer from the FIFO
  748. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  749. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  750. uart_event.type = UART_PATTERN_DET;
  751. uart_event.size = rx_fifo_len;
  752. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  753. } else {
  754. //After Copying the Data From FIFO ,Clear intr_status
  755. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  756. uart_event.type = UART_DATA;
  757. uart_event.size = rx_fifo_len;
  758. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  759. if (p_uart->uart_select_notif_callback) {
  760. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  761. }
  762. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  763. }
  764. p_uart->rx_stash_len = rx_fifo_len;
  765. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  766. //Mainly for applications that uses flow control or small ring buffer.
  767. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  768. p_uart->rx_buffer_full_flg = true;
  769. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  770. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  771. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  772. if (uart_event.type == UART_PATTERN_DET) {
  773. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  774. if (rx_fifo_len < pat_num) {
  775. //some of the characters are read out in last interrupt
  776. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  777. } else {
  778. uart_pattern_enqueue(uart_num,
  779. pat_idx <= -1 ?
  780. //can not find the pattern in buffer,
  781. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  782. // find the pattern in buffer
  783. p_uart->rx_buffered_len + pat_idx);
  784. }
  785. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  786. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  787. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  788. }
  789. }
  790. uart_event.type = UART_BUFFER_FULL;
  791. } else {
  792. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  793. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  794. if (rx_fifo_len < pat_num) {
  795. //some of the characters are read out in last interrupt
  796. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  797. } else if(pat_idx >= 0) {
  798. // find the pattern in stash buffer.
  799. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  800. }
  801. }
  802. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  803. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  804. }
  805. } else {
  806. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  807. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  808. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  809. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  810. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  811. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  812. uart_event.type = UART_PATTERN_DET;
  813. uart_event.size = rx_fifo_len;
  814. pat_flg = 1;
  815. }
  816. }
  817. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  818. // When fifo overflows, we reset the fifo.
  819. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  820. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  821. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  822. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  823. if (p_uart->uart_select_notif_callback) {
  824. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  825. }
  826. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  827. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  828. uart_event.type = UART_FIFO_OVF;
  829. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  830. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  831. uart_event.type = UART_BREAK;
  832. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  833. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  834. if (p_uart->uart_select_notif_callback) {
  835. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  836. }
  837. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  838. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  839. uart_event.type = UART_FRAME_ERR;
  840. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  841. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  842. if (p_uart->uart_select_notif_callback) {
  843. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  844. }
  845. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  846. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  847. uart_event.type = UART_PARITY_ERR;
  848. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  849. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  850. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  851. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  852. if(p_uart->tx_brk_flg == 1) {
  853. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  854. }
  855. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  856. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  857. if(p_uart->tx_brk_flg == 1) {
  858. p_uart->tx_brk_flg = 0;
  859. p_uart->tx_waiting_brk = 0;
  860. } else {
  861. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  862. }
  863. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  864. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  865. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  866. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  867. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  868. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  869. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  870. uart_event.type = UART_PATTERN_DET;
  871. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  872. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  873. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  874. // RS485 collision or frame error interrupt triggered
  875. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  876. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  877. // Set collision detection flag
  878. p_uart_obj[uart_num]->coll_det_flg = true;
  879. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  880. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  881. uart_event.type = UART_EVENT_MAX;
  882. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  883. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  884. // The TX_DONE interrupt is triggered but transmit is active
  885. // then postpone interrupt processing for next interrupt
  886. uart_event.type = UART_EVENT_MAX;
  887. } else {
  888. // Workaround for RS485: If the RS485 half duplex mode is active
  889. // and transmitter is in idle state then reset received buffer and reset RTS pin
  890. // skip this behavior for other UART modes
  891. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  892. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  893. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  894. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  895. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  896. }
  897. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  898. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  899. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  900. }
  901. } else {
  902. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  903. uart_event.type = UART_EVENT_MAX;
  904. }
  905. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  906. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  907. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  908. }
  909. }
  910. }
  911. if(HPTaskAwoken == pdTRUE) {
  912. portYIELD_FROM_ISR();
  913. }
  914. }
  915. /**************************************************************/
  916. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  917. {
  918. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  919. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  920. BaseType_t res;
  921. portTickType ticks_start = xTaskGetTickCount();
  922. //Take tx_mux
  923. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  924. if(res == pdFALSE) {
  925. return ESP_ERR_TIMEOUT;
  926. }
  927. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  928. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  929. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  930. return ESP_OK;
  931. }
  932. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  933. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  934. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  935. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  936. TickType_t ticks_end = xTaskGetTickCount();
  937. if (ticks_end - ticks_start > ticks_to_wait) {
  938. ticks_to_wait = 0;
  939. } else {
  940. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  941. }
  942. //take 2nd tx_done_sem, wait given from ISR
  943. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  944. if(res == pdFALSE) {
  945. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  946. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  947. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  948. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  949. }
  950. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  951. return ESP_OK;
  952. }
  953. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  954. {
  955. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  956. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  957. UART_CHECK(buffer, "buffer null", (-1));
  958. if(len == 0) {
  959. return 0;
  960. }
  961. int tx_len = 0;
  962. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  963. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  964. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  965. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  966. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  967. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  968. }
  969. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  970. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  971. return tx_len;
  972. }
  973. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  974. {
  975. if(size == 0) {
  976. return 0;
  977. }
  978. size_t original_size = size;
  979. //lock for uart_tx
  980. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  981. p_uart_obj[uart_num]->coll_det_flg = false;
  982. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  983. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  984. int offset = 0;
  985. uart_tx_data_t evt;
  986. evt.tx_data.size = size;
  987. evt.tx_data.brk_len = brk_len;
  988. if(brk_en) {
  989. evt.type = UART_DATA_BREAK;
  990. } else {
  991. evt.type = UART_DATA;
  992. }
  993. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  994. while(size > 0) {
  995. int send_size = size > max_size / 2 ? max_size / 2 : size;
  996. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  997. size -= send_size;
  998. offset += send_size;
  999. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1000. }
  1001. } else {
  1002. while(size) {
  1003. //semaphore for tx_fifo available
  1004. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1005. uint32_t sent = 0;
  1006. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1007. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1008. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1009. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1010. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1011. }
  1012. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1013. if(sent < size) {
  1014. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1015. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1016. }
  1017. size -= sent;
  1018. src += sent;
  1019. }
  1020. }
  1021. if(brk_en) {
  1022. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1023. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1024. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1025. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1026. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1027. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1028. }
  1029. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1030. }
  1031. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1032. return original_size;
  1033. }
  1034. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1035. {
  1036. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1037. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1038. UART_CHECK(src, "buffer null", (-1));
  1039. return uart_tx_all(uart_num, src, size, 0, 0);
  1040. }
  1041. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1042. {
  1043. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1044. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1045. UART_CHECK((size > 0), "uart size error", (-1));
  1046. UART_CHECK((src), "uart data null", (-1));
  1047. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1048. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1049. }
  1050. static bool uart_check_buf_full(uart_port_t uart_num)
  1051. {
  1052. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1053. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1054. if(res == pdTRUE) {
  1055. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1056. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1057. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1058. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1059. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1060. return true;
  1061. }
  1062. }
  1063. return false;
  1064. }
  1065. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1066. {
  1067. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1068. UART_CHECK((buf), "uart data null", (-1));
  1069. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1070. uint8_t* data = NULL;
  1071. size_t size;
  1072. size_t copy_len = 0;
  1073. int len_tmp;
  1074. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1075. return -1;
  1076. }
  1077. while(length) {
  1078. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1079. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1080. if(data) {
  1081. p_uart_obj[uart_num]->rx_head_ptr = data;
  1082. p_uart_obj[uart_num]->rx_ptr = data;
  1083. p_uart_obj[uart_num]->rx_cur_remain = size;
  1084. } else {
  1085. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1086. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1087. //to solve the possible asynchronous issues.
  1088. if(uart_check_buf_full(uart_num)) {
  1089. //This condition will never be true if `uart_read_bytes`
  1090. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1091. continue;
  1092. } else {
  1093. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1094. return copy_len;
  1095. }
  1096. }
  1097. }
  1098. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1099. len_tmp = length;
  1100. } else {
  1101. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1102. }
  1103. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1104. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1105. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1106. uart_pattern_queue_update(uart_num, len_tmp);
  1107. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1108. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1109. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1110. copy_len += len_tmp;
  1111. length -= len_tmp;
  1112. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1113. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1114. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1115. p_uart_obj[uart_num]->rx_ptr = NULL;
  1116. uart_check_buf_full(uart_num);
  1117. }
  1118. }
  1119. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1120. return copy_len;
  1121. }
  1122. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1123. {
  1124. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1125. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1126. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1127. return ESP_OK;
  1128. }
  1129. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1130. esp_err_t uart_flush_input(uart_port_t uart_num)
  1131. {
  1132. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1133. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1134. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1135. uint8_t* data;
  1136. size_t size;
  1137. //rx sem protect the ring buffer read related functions
  1138. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1139. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1140. while(true) {
  1141. if(p_uart->rx_head_ptr) {
  1142. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1143. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1144. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1145. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1146. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1147. p_uart->rx_ptr = NULL;
  1148. p_uart->rx_cur_remain = 0;
  1149. p_uart->rx_head_ptr = NULL;
  1150. }
  1151. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1152. if(data == NULL) {
  1153. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1154. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1155. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1156. }
  1157. //We also need to clear the `rx_buffer_full_flg` here.
  1158. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1159. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1160. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1161. break;
  1162. }
  1163. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1164. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1165. uart_pattern_queue_update(uart_num, size);
  1166. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1167. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1168. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1169. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1170. if(res == pdTRUE) {
  1171. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1172. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1173. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1174. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1175. }
  1176. }
  1177. }
  1178. p_uart->rx_ptr = NULL;
  1179. p_uart->rx_cur_remain = 0;
  1180. p_uart->rx_head_ptr = NULL;
  1181. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1182. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1183. xSemaphoreGive(p_uart->rx_mux);
  1184. return ESP_OK;
  1185. }
  1186. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1187. {
  1188. esp_err_t r;
  1189. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1190. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1191. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1192. #if CONFIG_UART_ISR_IN_IRAM
  1193. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1194. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1195. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1196. }
  1197. #else
  1198. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1199. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1200. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1201. }
  1202. #endif
  1203. if(p_uart_obj[uart_num] == NULL) {
  1204. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1205. if(p_uart_obj[uart_num] == NULL) {
  1206. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1207. return ESP_FAIL;
  1208. }
  1209. p_uart_obj[uart_num]->uart_num = uart_num;
  1210. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1211. p_uart_obj[uart_num]->coll_det_flg = false;
  1212. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1213. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1214. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1215. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1216. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1217. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1218. p_uart_obj[uart_num]->queue_size = queue_size;
  1219. p_uart_obj[uart_num]->tx_ptr = NULL;
  1220. p_uart_obj[uart_num]->tx_head = NULL;
  1221. p_uart_obj[uart_num]->tx_len_tot = 0;
  1222. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1223. p_uart_obj[uart_num]->tx_brk_len = 0;
  1224. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1225. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1226. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1227. if(uart_queue) {
  1228. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1229. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1230. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1231. } else {
  1232. p_uart_obj[uart_num]->xQueueUart = NULL;
  1233. }
  1234. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1235. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1236. p_uart_obj[uart_num]->rx_ptr = NULL;
  1237. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1238. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1239. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1240. if(tx_buffer_size > 0) {
  1241. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1242. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1243. } else {
  1244. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1245. p_uart_obj[uart_num]->tx_buf_size = 0;
  1246. }
  1247. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1248. } else {
  1249. ESP_LOGE(UART_TAG, "UART driver already installed");
  1250. return ESP_FAIL;
  1251. }
  1252. uart_intr_config_t uart_intr = {
  1253. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1254. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1255. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1256. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1257. };
  1258. uart_module_enable(uart_num);
  1259. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1260. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1261. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1262. if (r!=ESP_OK) goto err;
  1263. r=uart_intr_config(uart_num, &uart_intr);
  1264. if (r!=ESP_OK) goto err;
  1265. return r;
  1266. err:
  1267. uart_driver_delete(uart_num);
  1268. return r;
  1269. }
  1270. int a = 0;
  1271. //Make sure no other tasks are still using UART before you call this function
  1272. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1273. {
  1274. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1275. if(p_uart_obj[uart_num] == NULL) {
  1276. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1277. return ESP_OK;
  1278. }
  1279. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1280. uart_disable_rx_intr(uart_num);
  1281. uart_disable_tx_intr(uart_num);
  1282. uart_pattern_link_free(uart_num);
  1283. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1284. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1285. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1286. }
  1287. if(p_uart_obj[uart_num]->tx_done_sem) {
  1288. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1289. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1290. }
  1291. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1292. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1293. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1294. }
  1295. if(p_uart_obj[uart_num]->tx_mux) {
  1296. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1297. p_uart_obj[uart_num]->tx_mux = NULL;
  1298. }
  1299. if(p_uart_obj[uart_num]->rx_mux) {
  1300. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1301. p_uart_obj[uart_num]->rx_mux = NULL;
  1302. }
  1303. if(p_uart_obj[uart_num]->xQueueUart) {
  1304. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1305. p_uart_obj[uart_num]->xQueueUart = NULL;
  1306. }
  1307. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1308. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1309. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1310. }
  1311. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1312. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1313. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1314. }
  1315. heap_caps_free(p_uart_obj[uart_num]);
  1316. p_uart_obj[uart_num] = NULL;
  1317. uart_module_disable(uart_num);
  1318. return ESP_OK;
  1319. }
  1320. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1321. {
  1322. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1323. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1324. }
  1325. }
  1326. portMUX_TYPE *uart_get_selectlock(void)
  1327. {
  1328. return &uart_selectlock;
  1329. }
  1330. // Set UART mode
  1331. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1332. {
  1333. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1334. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1335. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1336. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1337. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1338. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1339. }
  1340. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1341. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1342. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1343. // This mode allows read while transmitting that allows collision detection
  1344. p_uart_obj[uart_num]->coll_det_flg = false;
  1345. // Enable collision detection interrupts
  1346. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1347. | UART_INTR_RXFIFO_FULL
  1348. | UART_INTR_RS485_CLASH
  1349. | UART_INTR_RS485_FRM_ERR
  1350. | UART_INTR_RS485_PARITY_ERR);
  1351. }
  1352. p_uart_obj[uart_num]->uart_mode = mode;
  1353. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1354. return ESP_OK;
  1355. }
  1356. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1357. {
  1358. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1359. UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
  1360. "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
  1361. if (p_uart_obj[uart_num] == NULL) {
  1362. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1363. return ESP_ERR_INVALID_STATE;
  1364. }
  1365. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1366. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1367. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1368. }
  1369. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1370. return ESP_OK;
  1371. }
  1372. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1373. {
  1374. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1375. UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
  1376. "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
  1377. if (p_uart_obj[uart_num] == NULL) {
  1378. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1379. return ESP_ERR_INVALID_STATE;
  1380. }
  1381. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1382. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1383. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1384. }
  1385. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1386. return ESP_OK;
  1387. }
  1388. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1389. {
  1390. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1391. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1392. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1393. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1394. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1395. return ESP_OK;
  1396. }
  1397. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1398. {
  1399. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1400. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1401. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1402. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1403. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1404. "wrong mode", ESP_ERR_INVALID_ARG);
  1405. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1406. return ESP_OK;
  1407. }
  1408. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1409. {
  1410. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1411. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1412. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1413. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1414. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1415. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1416. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1417. return ESP_OK;
  1418. }
  1419. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1420. {
  1421. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1422. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1423. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1424. return ESP_OK;
  1425. }
  1426. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1427. {
  1428. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1429. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1430. return ESP_OK;
  1431. }
  1432. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1433. {
  1434. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1435. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1436. return ESP_OK;
  1437. }