| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- /******************************************************************************
- *
- * Copyright (C) 2014 The Android Open Source Project
- * Copyright 2003 - 2004 Open Interface North America, Inc. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at:
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- ******************************************************************************/
- /**********************************************************************************
- $Revision: #1 $
- ***********************************************************************************/
- /** @file
- @ingroup codec_internal
- */
- /**@addgroup codec_internal*/
- /**@{*/
- /*
- * Performs an 8-point Type-II scaled DCT using the Arai-Agui-Nakajima
- * factorization. The scaling factors are folded into the windowing
- * constants. 29 adds and 5 16x32 multiplies per 8 samples.
- */
- #include "common/bt_target.h"
- #include "oi_codec_sbc_private.h"
- #if (defined(SBC_DEC_INCLUDED) && SBC_DEC_INCLUDED == TRUE)
- #define AAN_C4_FIX (759250125)/* S1.30 759250125 0.707107*/
- #define AAN_C6_FIX (410903207)/* S1.30 410903207 0.382683*/
- #define AAN_Q0_FIX (581104888)/* S1.30 581104888 0.541196*/
- #define AAN_Q1_FIX (1402911301)/* S1.30 1402911301 1.306563*/
- /** Scales x by y bits to the right, adding a rounding factor.
- */
- #ifndef SCALE
- #define SCALE(x, y) (((x) + (1 <<((y)-1))) >> (y))
- #endif
- /**
- * Default C language implementation of a 32x32->32 multiply. This function may
- * be replaced by a platform-specific version for speed.
- *
- * @param u A signed 32-bit multiplicand
- * @param v A signed 32-bit multiplier
- * @return A signed 32-bit value corresponding to the 32 most significant bits
- * of the 64-bit product of u and v.
- */
- static INLINE OI_INT32 default_mul_32s_32s_hi(OI_INT32 u, OI_INT32 v)
- {
- OI_UINT32 u0, v0;
- OI_INT32 u1, v1, w1, w2, t;
- u0 = u & 0xFFFF; u1 = u >> 16;
- v0 = v & 0xFFFF; v1 = v >> 16;
- t = u0 * v0;
- t = u1 * v0 + ((OI_UINT32)t >> 16);
- w1 = t & 0xFFFF;
- w2 = t >> 16;
- w1 = u0 * v1 + w1;
- return u1 * v1 + w2 + (w1 >> 16);
- }
- #define MUL_32S_32S_HI(_x, _y) default_mul_32s_32s_hi(_x, _y)
- #ifdef DEBUG_DCT
- PRIVATE void float_dct2_8(float *RESTRICT out, OI_INT32 const *RESTRICT in)
- {
- #define FIX(x,bits) (((int)floor(0.5f+((x)*((float)(1<<bits)))))/((float)(1<<bits)))
- #define FLOAT_BUTTERFLY(x,y) x += y; y = x - (y*2); OI_ASSERT(VALID_INT32(x)); OI_ASSERT(VALID_INT32(y));
- #define FLOAT_MULT_DCT(K, sample) (FIX(K,20) * sample)
- #define FLOAT_SCALE(x, y) (((x) / (double)(1 << (y))))
- double L00, L01, L02, L03, L04, L05, L06, L07;
- double L25;
- double in0, in1, in2, in3;
- double in4, in5, in6, in7;
- in0 = FLOAT_SCALE(in[0], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in0));
- in1 = FLOAT_SCALE(in[1], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in1));
- in2 = FLOAT_SCALE(in[2], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in2));
- in3 = FLOAT_SCALE(in[3], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in3));
- in4 = FLOAT_SCALE(in[4], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in4));
- in5 = FLOAT_SCALE(in[5], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in5));
- in6 = FLOAT_SCALE(in[6], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in6));
- in7 = FLOAT_SCALE(in[7], DCTII_8_SHIFT_IN); OI_ASSERT(VALID_INT32(in7));
- L00 = (in0 + in7); OI_ASSERT(VALID_INT32(L00));
- L01 = (in1 + in6); OI_ASSERT(VALID_INT32(L01));
- L02 = (in2 + in5); OI_ASSERT(VALID_INT32(L02));
- L03 = (in3 + in4); OI_ASSERT(VALID_INT32(L03));
- L04 = (in3 - in4); OI_ASSERT(VALID_INT32(L04));
- L05 = (in2 - in5); OI_ASSERT(VALID_INT32(L05));
- L06 = (in1 - in6); OI_ASSERT(VALID_INT32(L06));
- L07 = (in0 - in7); OI_ASSERT(VALID_INT32(L07));
- FLOAT_BUTTERFLY(L00, L03);
- FLOAT_BUTTERFLY(L01, L02);
- L02 += L03; OI_ASSERT(VALID_INT32(L02));
- L02 = FLOAT_MULT_DCT(AAN_C4_FLOAT, L02); OI_ASSERT(VALID_INT32(L02));
- FLOAT_BUTTERFLY(L00, L01);
- out[0] = (float)FLOAT_SCALE(L00, DCTII_8_SHIFT_0); OI_ASSERT(VALID_INT16(out[0]));
- out[4] = (float)FLOAT_SCALE(L01, DCTII_8_SHIFT_4); OI_ASSERT(VALID_INT16(out[4]));
- FLOAT_BUTTERFLY(L03, L02);
- out[6] = (float)FLOAT_SCALE(L02, DCTII_8_SHIFT_6); OI_ASSERT(VALID_INT16(out[6]));
- out[2] = (float)FLOAT_SCALE(L03, DCTII_8_SHIFT_2); OI_ASSERT(VALID_INT16(out[2]));
- L04 += L05; OI_ASSERT(VALID_INT32(L04));
- L05 += L06; OI_ASSERT(VALID_INT32(L05));
- L06 += L07; OI_ASSERT(VALID_INT32(L06));
- L04 /= 2;
- L05 /= 2;
- L06 /= 2;
- L07 /= 2;
- L05 = FLOAT_MULT_DCT(AAN_C4_FLOAT, L05); OI_ASSERT(VALID_INT32(L05));
- L25 = L06 - L04; OI_ASSERT(VALID_INT32(L25));
- L25 = FLOAT_MULT_DCT(AAN_C6_FLOAT, L25); OI_ASSERT(VALID_INT32(L25));
- L04 = FLOAT_MULT_DCT(AAN_Q0_FLOAT, L04); OI_ASSERT(VALID_INT32(L04));
- L04 -= L25; OI_ASSERT(VALID_INT32(L04));
- L06 = FLOAT_MULT_DCT(AAN_Q1_FLOAT, L06); OI_ASSERT(VALID_INT32(L06));
- L06 -= L25; OI_ASSERT(VALID_INT32(L25));
- FLOAT_BUTTERFLY(L07, L05);
- FLOAT_BUTTERFLY(L05, L04);
- out[3] = (float)(FLOAT_SCALE(L04, DCTII_8_SHIFT_3 - 1)); OI_ASSERT(VALID_INT16(out[3]));
- out[5] = (float)(FLOAT_SCALE(L05, DCTII_8_SHIFT_5 - 1)); OI_ASSERT(VALID_INT16(out[5]));
- FLOAT_BUTTERFLY(L07, L06);
- out[7] = (float)(FLOAT_SCALE(L06, DCTII_8_SHIFT_7 - 1)); OI_ASSERT(VALID_INT16(out[7]));
- out[1] = (float)(FLOAT_SCALE(L07, DCTII_8_SHIFT_1 - 1)); OI_ASSERT(VALID_INT16(out[1]));
- }
- #undef BUTTERFLY
- #endif
- /*
- * This function calculates the AAN DCT. Its inputs are in S16.15 format, as
- * returned by OI_SBC_Dequant. In practice, abs(in[x]) < 52429.0 / 1.38
- * (1244918057 integer). The function it computes is an approximation to the array defined
- * by:
- *
- * diag(aan_s) * AAN= C2
- *
- * or
- *
- * AAN = diag(1/aan_s) * C2
- *
- * where C2 is as it is defined in the comment at the head of this file, and
- *
- * aan_s[i] = aan_s = 1/(2*cos(i*pi/16)) with i = 1..7, aan_s[0] = 1;
- *
- * aan_s[i] = [ 1.000 0.510 0.541 0.601 0.707 0.900 1.307 2.563 ]
- *
- * The output ranges are shown as follows:
- *
- * Let Y[0..7] = AAN * X[0..7]
- *
- * Without loss of generality, assume the input vector X consists of elements
- * between -1 and 1. The maximum possible value of a given output element occurs
- * with some particular combination of input vector elements each of which is -1
- * or 1. Consider the computation of Y[i]. Y[i] = sum t=0..7 of AAN[t,i]*X[i]. Y is
- * maximized if the sign of X[i] matches the sign of AAN[t,i], ensuring a
- * positive contribution to the sum. Equivalently, one may simply sum
- * abs(AAN)[t,i] over t to get the maximum possible value of Y[i].
- *
- * This yields approximately [8.00 10.05 9.66 8.52 8.00 5.70 4.00 2.00]
- *
- * Given the maximum magnitude sensible input value of +/-37992, this yields the
- * following vector of maximum output magnitudes:
- *
- * [ 303936 381820 367003 323692 303936 216555 151968 75984 ]
- *
- * Ultimately, these values must fit into 16 bit signed integers, so they must
- * be scaled. A non-uniform scaling helps maximize the kept precision. The
- * relative number of extra bits of precision maintainable with respect to the
- * largest value is given here:
- *
- * [ 0 0 0 0 0 0 1 2 ]
- *
- */
- PRIVATE void dct2_8(SBC_BUFFER_T *RESTRICT out, OI_INT32 const *RESTRICT in)
- {
- #define BUTTERFLY(x,y) x += y; y = x - (y<<1);
- #define FIX_MULT_DCT(K, x) (MUL_32S_32S_HI(K,x)<<2)
- OI_INT32 L00, L01, L02, L03, L04, L05, L06, L07;
- OI_INT32 L25;
- OI_INT32 in0, in1, in2, in3;
- OI_INT32 in4, in5, in6, in7;
- #if DCTII_8_SHIFT_IN != 0
- in0 = SCALE(in[0], DCTII_8_SHIFT_IN);
- in1 = SCALE(in[1], DCTII_8_SHIFT_IN);
- in2 = SCALE(in[2], DCTII_8_SHIFT_IN);
- in3 = SCALE(in[3], DCTII_8_SHIFT_IN);
- in4 = SCALE(in[4], DCTII_8_SHIFT_IN);
- in5 = SCALE(in[5], DCTII_8_SHIFT_IN);
- in6 = SCALE(in[6], DCTII_8_SHIFT_IN);
- in7 = SCALE(in[7], DCTII_8_SHIFT_IN);
- #else
- in0 = in[0];
- in1 = in[1];
- in2 = in[2];
- in3 = in[3];
- in4 = in[4];
- in5 = in[5];
- in6 = in[6];
- in7 = in[7];
- #endif
- L00 = in0 + in7;
- L01 = in1 + in6;
- L02 = in2 + in5;
- L03 = in3 + in4;
- L04 = in3 - in4;
- L05 = in2 - in5;
- L06 = in1 - in6;
- L07 = in0 - in7;
- BUTTERFLY(L00, L03);
- BUTTERFLY(L01, L02);
- L02 += L03;
- L02 = FIX_MULT_DCT(AAN_C4_FIX, L02);
- BUTTERFLY(L00, L01);
- out[0] = (OI_INT16)SCALE(L00, DCTII_8_SHIFT_0);
- out[4] = (OI_INT16)SCALE(L01, DCTII_8_SHIFT_4);
- BUTTERFLY(L03, L02);
- out[6] = (OI_INT16)SCALE(L02, DCTII_8_SHIFT_6);
- out[2] = (OI_INT16)SCALE(L03, DCTII_8_SHIFT_2);
- L04 += L05;
- L05 += L06;
- L06 += L07;
- L04 /= 2;
- L05 /= 2;
- L06 /= 2;
- L07 /= 2;
- L05 = FIX_MULT_DCT(AAN_C4_FIX, L05);
- L25 = L06 - L04;
- L25 = FIX_MULT_DCT(AAN_C6_FIX, L25);
- L04 = FIX_MULT_DCT(AAN_Q0_FIX, L04);
- L04 -= L25;
- L06 = FIX_MULT_DCT(AAN_Q1_FIX, L06);
- L06 -= L25;
- BUTTERFLY(L07, L05);
- BUTTERFLY(L05, L04);
- out[3] = (OI_INT16)SCALE(L04, DCTII_8_SHIFT_3 - 1);
- out[5] = (OI_INT16)SCALE(L05, DCTII_8_SHIFT_5 - 1);
- BUTTERFLY(L07, L06);
- out[7] = (OI_INT16)SCALE(L06, DCTII_8_SHIFT_7 - 1);
- out[1] = (OI_INT16)SCALE(L07, DCTII_8_SHIFT_1 - 1);
- #undef BUTTERFLY
- #ifdef DEBUG_DCT
- {
- float float_out[8];
- float_dct2_8(float_out, in);
- }
- #endif
- }
- /**@}*/
- #endif /* #if (defined(SBC_DEC_INCLUDED) && SBC_DEC_INCLUDED == TRUE) */
|