rmt.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222
  1. // Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <sys/lock.h>
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "driver/gpio.h"
  20. #include "driver/periph_ctrl.h"
  21. #include "driver/rmt.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/task.h"
  24. #include "freertos/semphr.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/soc_memory_layout.h"
  27. #include "hal/rmt_hal.h"
  28. #include "hal/rmt_ll.h"
  29. #define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
  30. #define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
  31. #define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
  32. #define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
  33. #define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
  34. #define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
  35. #define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
  36. #define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
  37. #define RMT_MODE_ERROR_STR "RMT MODE ERROR"
  38. #define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
  39. #define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
  40. #define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
  41. #define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram"
  42. #define RMT_TRANSLATOR_NULL_STR "RMT translator is null"
  43. #define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init"
  44. #define RMT_PARAM_ERR_STR "RMT param error"
  45. static const char *RMT_TAG = "rmt";
  46. #define RMT_CHECK(a, str, ret_val) \
  47. if (!(a)) \
  48. { \
  49. ESP_LOGE(RMT_TAG, "%s(%d): %s", __FUNCTION__, __LINE__, str); \
  50. return (ret_val); \
  51. }
  52. // Spinlock for protecting concurrent register-level access only
  53. #define RMT_ENTER_CRITICAL() portENTER_CRITICAL_SAFE(&(rmt_contex.rmt_spinlock))
  54. #define RMT_EXIT_CRITICAL() portEXIT_CRITICAL_SAFE(&(rmt_contex.rmt_spinlock))
  55. typedef struct {
  56. rmt_hal_context_t hal;
  57. _lock_t rmt_driver_isr_lock;
  58. portMUX_TYPE rmt_spinlock; // Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
  59. rmt_isr_handle_t rmt_driver_intr_handle;
  60. rmt_tx_end_callback_t rmt_tx_end_callback;// Event called when transmission is ended
  61. uint8_t rmt_driver_channels; // Bitmask of installed drivers' channels
  62. bool rmt_module_enabled;
  63. } rmt_contex_t;
  64. typedef struct {
  65. size_t tx_offset;
  66. size_t tx_len_rem;
  67. size_t tx_sub_len;
  68. bool translator;
  69. bool wait_done; //Mark whether wait tx done.
  70. rmt_channel_t channel;
  71. const rmt_item32_t *tx_data;
  72. xSemaphoreHandle tx_sem;
  73. #if CONFIG_SPIRAM_USE_MALLOC
  74. int intr_alloc_flags;
  75. StaticSemaphore_t tx_sem_buffer;
  76. #endif
  77. rmt_item32_t *tx_buf;
  78. RingbufHandle_t rx_buf;
  79. #if SOC_RMT_SUPPORT_RX_PINGPONG
  80. rmt_item32_t *rx_item_buf;
  81. uint32_t rx_item_buf_size;
  82. uint32_t rx_item_len;
  83. uint32_t rx_item_start_idx;
  84. #endif
  85. sample_to_rmt_t sample_to_rmt;
  86. size_t sample_size_remain;
  87. const uint8_t *sample_cur;
  88. } rmt_obj_t;
  89. static rmt_contex_t rmt_contex = {
  90. .hal.regs = RMT_LL_HW_BASE,
  91. .hal.mem = RMT_LL_MEM_BASE,
  92. .rmt_spinlock = portMUX_INITIALIZER_UNLOCKED,
  93. .rmt_driver_intr_handle = NULL,
  94. .rmt_tx_end_callback = {
  95. .function = NULL,
  96. },
  97. .rmt_driver_channels = 0,
  98. .rmt_module_enabled = false,
  99. };
  100. static rmt_obj_t *p_rmt_obj[RMT_CHANNEL_MAX] = {0};
  101. //Enable RMT module
  102. static void rmt_module_enable(void)
  103. {
  104. RMT_ENTER_CRITICAL();
  105. if (rmt_contex.rmt_module_enabled == false) {
  106. periph_module_reset(PERIPH_RMT_MODULE);
  107. periph_module_enable(PERIPH_RMT_MODULE);
  108. rmt_contex.rmt_module_enabled = true;
  109. }
  110. RMT_EXIT_CRITICAL();
  111. }
  112. //Disable RMT module
  113. static void rmt_module_disable(void)
  114. {
  115. RMT_ENTER_CRITICAL();
  116. if (rmt_contex.rmt_module_enabled == true) {
  117. periph_module_disable(PERIPH_RMT_MODULE);
  118. rmt_contex.rmt_module_enabled = false;
  119. }
  120. RMT_EXIT_CRITICAL();
  121. }
  122. esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
  123. {
  124. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  125. RMT_ENTER_CRITICAL();
  126. rmt_ll_set_counter_clock_div(rmt_contex.hal.regs, channel, div_cnt);
  127. RMT_EXIT_CRITICAL();
  128. return ESP_OK;
  129. }
  130. esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t *div_cnt)
  131. {
  132. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  133. RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  134. RMT_ENTER_CRITICAL();
  135. *div_cnt = (uint8_t)rmt_ll_get_counter_clock_div(rmt_contex.hal.regs, channel);
  136. RMT_EXIT_CRITICAL();
  137. return ESP_OK;
  138. }
  139. esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
  140. {
  141. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  142. RMT_ENTER_CRITICAL();
  143. rmt_ll_set_rx_idle_thres(rmt_contex.hal.regs, channel, thresh);
  144. RMT_EXIT_CRITICAL();
  145. return ESP_OK;
  146. }
  147. esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
  148. {
  149. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  150. RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  151. RMT_ENTER_CRITICAL();
  152. *thresh = (uint16_t)rmt_ll_get_rx_idle_thres(rmt_contex.hal.regs, channel);
  153. RMT_EXIT_CRITICAL();
  154. return ESP_OK;
  155. }
  156. esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
  157. {
  158. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  159. RMT_CHECK(rmt_mem_num <= RMT_CHANNEL_MAX - channel, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  160. RMT_ENTER_CRITICAL();
  161. rmt_ll_set_mem_blocks(rmt_contex.hal.regs, channel, rmt_mem_num);
  162. RMT_EXIT_CRITICAL();
  163. return ESP_OK;
  164. }
  165. esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t *rmt_mem_num)
  166. {
  167. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  168. RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  169. RMT_ENTER_CRITICAL();
  170. *rmt_mem_num = (uint8_t)rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel);
  171. RMT_EXIT_CRITICAL();
  172. return ESP_OK;
  173. }
  174. esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
  175. rmt_carrier_level_t carrier_level)
  176. {
  177. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  178. RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
  179. RMT_ENTER_CRITICAL();
  180. rmt_ll_set_tx_carrier_high_low_ticks(rmt_contex.hal.regs, channel, high_level, low_level);
  181. rmt_ll_set_carrier_on_level(rmt_contex.hal.regs, channel, carrier_level);
  182. rmt_ll_enable_carrier(rmt_contex.hal.regs, channel, carrier_en);
  183. RMT_EXIT_CRITICAL();
  184. return ESP_OK;
  185. }
  186. esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
  187. {
  188. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  189. RMT_ENTER_CRITICAL();
  190. rmt_ll_power_down_mem(rmt_contex.hal.regs, pd_en);
  191. RMT_EXIT_CRITICAL();
  192. return ESP_OK;
  193. }
  194. esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool *pd_en)
  195. {
  196. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  197. RMT_ENTER_CRITICAL();
  198. *pd_en = rmt_ll_is_mem_power_down(rmt_contex.hal.regs);
  199. RMT_EXIT_CRITICAL();
  200. return ESP_OK;
  201. }
  202. esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
  203. {
  204. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  205. RMT_ENTER_CRITICAL();
  206. if (tx_idx_rst) {
  207. rmt_ll_reset_tx_pointer(rmt_contex.hal.regs, channel);
  208. }
  209. rmt_ll_clear_tx_end_interrupt(rmt_contex.hal.regs, channel);
  210. // enable tx end interrupt in non-loop mode
  211. if (!rmt_ll_is_tx_loop_enabled(rmt_contex.hal.regs, channel)) {
  212. rmt_ll_enable_tx_end_interrupt(rmt_contex.hal.regs, channel, true);
  213. } else {
  214. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  215. rmt_ll_reset_tx_loop(rmt_contex.hal.regs, channel);
  216. rmt_ll_enable_tx_loop_count(rmt_contex.hal.regs, channel, true);
  217. rmt_ll_clear_tx_loop_interrupt(rmt_contex.hal.regs, channel);
  218. rmt_ll_enable_tx_loop_interrupt(rmt_contex.hal.regs, channel, true);
  219. #endif
  220. }
  221. rmt_ll_start_tx(rmt_contex.hal.regs, channel);
  222. RMT_EXIT_CRITICAL();
  223. return ESP_OK;
  224. }
  225. esp_err_t rmt_tx_stop(rmt_channel_t channel)
  226. {
  227. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  228. RMT_ENTER_CRITICAL();
  229. rmt_ll_stop_tx(rmt_contex.hal.regs, channel);
  230. rmt_ll_reset_tx_pointer(rmt_contex.hal.regs, channel);
  231. RMT_EXIT_CRITICAL();
  232. return ESP_OK;
  233. }
  234. esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
  235. {
  236. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  237. RMT_ENTER_CRITICAL();
  238. rmt_ll_enable_rx(rmt_contex.hal.regs, channel, false);
  239. if (rx_idx_rst) {
  240. rmt_ll_reset_rx_pointer(rmt_contex.hal.regs, channel);
  241. }
  242. rmt_ll_clear_rx_end_interrupt(rmt_contex.hal.regs, channel);
  243. rmt_ll_enable_rx_end_interrupt(rmt_contex.hal.regs, channel, true);
  244. #if SOC_RMT_SUPPORT_RX_PINGPONG
  245. const uint32_t item_block_len = rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM;
  246. p_rmt_obj[channel]->rx_item_start_idx = 0;
  247. p_rmt_obj[channel]->rx_item_len = 0;
  248. rmt_set_rx_thr_intr_en(channel, true, item_block_len / 2);
  249. #endif
  250. rmt_ll_enable_rx(rmt_contex.hal.regs, channel, true);
  251. RMT_EXIT_CRITICAL();
  252. return ESP_OK;
  253. }
  254. esp_err_t rmt_rx_stop(rmt_channel_t channel)
  255. {
  256. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  257. RMT_ENTER_CRITICAL();
  258. rmt_ll_enable_rx_end_interrupt(rmt_contex.hal.regs, channel, false);
  259. rmt_ll_enable_rx(rmt_contex.hal.regs, channel, false);
  260. rmt_ll_reset_rx_pointer(rmt_contex.hal.regs, channel);
  261. #if SOC_RMT_SUPPORT_RX_PINGPONG
  262. rmt_ll_enable_rx_thres_interrupt(rmt_contex.hal.regs, channel, false);
  263. #endif
  264. RMT_EXIT_CRITICAL();
  265. return ESP_OK;
  266. }
  267. esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
  268. {
  269. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  270. RMT_ENTER_CRITICAL();
  271. rmt_ll_reset_tx_pointer(rmt_contex.hal.regs, channel);
  272. rmt_ll_reset_rx_pointer(rmt_contex.hal.regs, channel);
  273. RMT_EXIT_CRITICAL();
  274. return ESP_OK;
  275. }
  276. esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
  277. {
  278. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  279. RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  280. RMT_ENTER_CRITICAL();
  281. rmt_ll_set_mem_owner(rmt_contex.hal.regs, channel, owner);
  282. RMT_EXIT_CRITICAL();
  283. return ESP_OK;
  284. }
  285. esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t *owner)
  286. {
  287. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  288. RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  289. RMT_ENTER_CRITICAL();
  290. *owner = (rmt_mem_owner_t)rmt_ll_get_mem_owner(rmt_contex.hal.regs, channel);
  291. RMT_EXIT_CRITICAL();
  292. return ESP_OK;
  293. }
  294. esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
  295. {
  296. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  297. RMT_ENTER_CRITICAL();
  298. rmt_ll_enable_tx_loop(rmt_contex.hal.regs, channel, loop_en);
  299. RMT_EXIT_CRITICAL();
  300. return ESP_OK;
  301. }
  302. esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool *loop_en)
  303. {
  304. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  305. RMT_ENTER_CRITICAL();
  306. *loop_en = rmt_ll_is_tx_loop_enabled(rmt_contex.hal.regs, channel);
  307. RMT_EXIT_CRITICAL();
  308. return ESP_OK;
  309. }
  310. esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
  311. {
  312. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  313. RMT_ENTER_CRITICAL();
  314. rmt_ll_enable_rx_filter(rmt_contex.hal.regs, channel, rx_filter_en);
  315. rmt_ll_set_rx_filter_thres(rmt_contex.hal.regs, channel, thresh);
  316. RMT_EXIT_CRITICAL();
  317. return ESP_OK;
  318. }
  319. esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
  320. {
  321. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  322. RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
  323. RMT_ENTER_CRITICAL();
  324. rmt_ll_set_counter_clock_src(rmt_contex.hal.regs, channel, base_clk);
  325. RMT_EXIT_CRITICAL();
  326. return ESP_OK;
  327. }
  328. esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t *src_clk)
  329. {
  330. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  331. RMT_ENTER_CRITICAL();
  332. *src_clk = (rmt_source_clk_t)rmt_ll_get_counter_clock_src(rmt_contex.hal.regs, channel);
  333. RMT_EXIT_CRITICAL();
  334. return ESP_OK;
  335. }
  336. esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
  337. {
  338. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  339. RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
  340. RMT_ENTER_CRITICAL();
  341. rmt_ll_enable_tx_idle(rmt_contex.hal.regs, channel, idle_out_en);
  342. rmt_ll_set_tx_idle_level(rmt_contex.hal.regs, channel, level);
  343. RMT_EXIT_CRITICAL();
  344. return ESP_OK;
  345. }
  346. esp_err_t rmt_get_idle_level(rmt_channel_t channel, bool *idle_out_en, rmt_idle_level_t *level)
  347. {
  348. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  349. RMT_ENTER_CRITICAL();
  350. *idle_out_en = rmt_ll_is_tx_idle_enabled(rmt_contex.hal.regs, channel);
  351. *level = rmt_ll_get_tx_idle_level(rmt_contex.hal.regs, channel);
  352. RMT_EXIT_CRITICAL();
  353. return ESP_OK;
  354. }
  355. esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t *status)
  356. {
  357. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  358. RMT_ENTER_CRITICAL();
  359. *status = rmt_ll_get_channel_status(rmt_contex.hal.regs, channel);
  360. RMT_EXIT_CRITICAL();
  361. return ESP_OK;
  362. }
  363. void rmt_set_intr_enable_mask(uint32_t mask)
  364. {
  365. RMT_ENTER_CRITICAL();
  366. rmt_ll_set_intr_enable_mask(mask);
  367. RMT_EXIT_CRITICAL();
  368. }
  369. void rmt_clr_intr_enable_mask(uint32_t mask)
  370. {
  371. RMT_ENTER_CRITICAL();
  372. rmt_ll_clr_intr_enable_mask(mask);
  373. RMT_EXIT_CRITICAL();
  374. }
  375. esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
  376. {
  377. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  378. RMT_ENTER_CRITICAL();
  379. rmt_ll_enable_rx_end_interrupt(rmt_contex.hal.regs, channel, en);
  380. RMT_EXIT_CRITICAL();
  381. return ESP_OK;
  382. }
  383. #if SOC_RMT_SUPPORT_RX_PINGPONG
  384. esp_err_t rmt_set_rx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  385. {
  386. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  387. if (en) {
  388. uint32_t item_block_len = rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM;
  389. RMT_CHECK(evt_thresh <= item_block_len, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
  390. RMT_ENTER_CRITICAL();
  391. rmt_ll_set_rx_limit(rmt_contex.hal.regs, channel, evt_thresh);
  392. rmt_ll_enable_rx_thres_interrupt(rmt_contex.hal.regs, channel, true);
  393. RMT_EXIT_CRITICAL();
  394. } else {
  395. RMT_ENTER_CRITICAL();
  396. rmt_ll_enable_rx_thres_interrupt(rmt_contex.hal.regs, channel, false);
  397. RMT_EXIT_CRITICAL();
  398. }
  399. return ESP_OK;
  400. }
  401. #endif
  402. esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
  403. {
  404. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  405. RMT_ENTER_CRITICAL();
  406. rmt_ll_enable_err_interrupt(rmt_contex.hal.regs, channel, en);
  407. RMT_EXIT_CRITICAL();
  408. return ESP_OK;
  409. }
  410. esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
  411. {
  412. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  413. RMT_ENTER_CRITICAL();
  414. rmt_ll_enable_tx_end_interrupt(rmt_contex.hal.regs, channel, en);
  415. RMT_EXIT_CRITICAL();
  416. return ESP_OK;
  417. }
  418. esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  419. {
  420. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  421. if (en) {
  422. uint32_t item_block_len = rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM;
  423. RMT_CHECK(evt_thresh <= item_block_len, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
  424. RMT_ENTER_CRITICAL();
  425. rmt_ll_set_tx_limit(rmt_contex.hal.regs, channel, evt_thresh);
  426. rmt_ll_enable_tx_thres_interrupt(rmt_contex.hal.regs, channel, true);
  427. RMT_EXIT_CRITICAL();
  428. } else {
  429. RMT_ENTER_CRITICAL();
  430. rmt_ll_enable_tx_thres_interrupt(rmt_contex.hal.regs, channel, false);
  431. RMT_EXIT_CRITICAL();
  432. }
  433. return ESP_OK;
  434. }
  435. esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
  436. {
  437. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  438. RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
  439. RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) ||
  440. (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
  441. RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  442. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  443. if (mode == RMT_MODE_TX) {
  444. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  445. gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
  446. } else {
  447. gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
  448. gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
  449. }
  450. return ESP_OK;
  451. }
  452. static esp_err_t rmt_internal_config(rmt_dev_t *dev, const rmt_config_t *rmt_param)
  453. {
  454. uint8_t mode = rmt_param->rmt_mode;
  455. uint8_t channel = rmt_param->channel;
  456. uint8_t gpio_num = rmt_param->gpio_num;
  457. uint8_t mem_cnt = rmt_param->mem_block_num;
  458. uint8_t clk_div = rmt_param->clk_div;
  459. uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
  460. bool carrier_en = rmt_param->tx_config.carrier_en;
  461. uint32_t rmt_source_clk_hz;
  462. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  463. RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  464. RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
  465. if (mode == RMT_MODE_TX) {
  466. RMT_CHECK((!carrier_en || carrier_freq_hz > 0), "RMT carrier frequency can't be zero", ESP_ERR_INVALID_ARG);
  467. }
  468. RMT_ENTER_CRITICAL();
  469. rmt_ll_set_counter_clock_div(dev, channel, clk_div);
  470. rmt_ll_enable_mem_access(dev, true);
  471. rmt_ll_reset_tx_pointer(dev, channel);
  472. rmt_ll_reset_rx_pointer(dev, channel);
  473. if (rmt_param->flags & RMT_CHANNEL_FLAGS_ALWAYS_ON) {
  474. // clock src: REF_CLK
  475. rmt_source_clk_hz = REF_CLK_FREQ;
  476. rmt_ll_set_counter_clock_src(dev, channel, RMT_BASECLK_REF);
  477. } else {
  478. // clock src: APB_CLK
  479. rmt_source_clk_hz = APB_CLK_FREQ;
  480. rmt_ll_set_counter_clock_src(dev, channel, RMT_BASECLK_APB);
  481. }
  482. rmt_ll_set_mem_blocks(dev, channel, mem_cnt);
  483. rmt_ll_set_mem_owner(dev, channel, RMT_MEM_OWNER_HW);
  484. RMT_EXIT_CRITICAL();
  485. if (mode == RMT_MODE_TX) {
  486. uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
  487. uint8_t carrier_level = rmt_param->tx_config.carrier_level;
  488. uint8_t idle_level = rmt_param->tx_config.idle_level;
  489. RMT_ENTER_CRITICAL();
  490. rmt_ll_enable_tx_loop(dev, channel, rmt_param->tx_config.loop_en);
  491. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  492. if (rmt_param->tx_config.loop_en) {
  493. rmt_ll_set_tx_loop_count(dev, channel, rmt_param->tx_config.loop_count);
  494. }
  495. #endif
  496. /* always enable tx ping-pong */
  497. rmt_ll_enable_tx_pingpong(dev, true);
  498. /*Set idle level */
  499. rmt_ll_enable_tx_idle(dev, channel, rmt_param->tx_config.idle_output_en);
  500. rmt_ll_set_tx_idle_level(dev, channel, idle_level);
  501. /*Set carrier*/
  502. rmt_ll_enable_carrier(dev, channel, carrier_en);
  503. if (carrier_en) {
  504. uint32_t duty_div, duty_h, duty_l;
  505. duty_div = rmt_source_clk_hz / carrier_freq_hz;
  506. duty_h = duty_div * carrier_duty_percent / 100;
  507. duty_l = duty_div - duty_h;
  508. rmt_ll_set_carrier_on_level(dev, channel, carrier_level);
  509. rmt_ll_set_tx_carrier_high_low_ticks(dev, channel, duty_h, duty_l);
  510. } else {
  511. rmt_ll_set_carrier_on_level(dev, channel, 0);
  512. rmt_ll_set_tx_carrier_high_low_ticks(dev, channel, 0, 0);
  513. }
  514. RMT_EXIT_CRITICAL();
  515. ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
  516. channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
  517. } else if (RMT_MODE_RX == mode) {
  518. uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
  519. uint16_t threshold = rmt_param->rx_config.idle_threshold;
  520. RMT_ENTER_CRITICAL();
  521. /*Set idle threshold*/
  522. rmt_ll_set_rx_idle_thres(dev, channel, threshold);
  523. /* Set RX filter */
  524. rmt_ll_set_rx_filter_thres(dev, channel, filter_cnt);
  525. rmt_ll_enable_rx_filter(dev, channel, rmt_param->rx_config.filter_en);
  526. #if SOC_RMT_SUPPORT_RX_PINGPONG
  527. /* always enable rx ping-pong */
  528. rmt_ll_enable_rx_pingpong(dev, channel, true);
  529. #endif
  530. #if SOC_RMT_SUPPORT_RX_DEMODULATION
  531. rmt_ll_enable_carrier(dev, channel, rmt_param->rx_config.rm_carrier);
  532. if (rmt_param->rx_config.rm_carrier) {
  533. uint32_t duty_total = rmt_source_clk_hz / rmt_ll_get_counter_clock_div(dev, channel) / rmt_param->rx_config.carrier_freq_hz;
  534. uint32_t duty_high = duty_total * rmt_param->rx_config.carrier_duty_percent / 100;
  535. // there could be residual in timing the carrier pulse, so double enlarge the theoretical value
  536. rmt_ll_set_rx_carrier_high_low_ticks(dev, channel, duty_high * 2, (duty_total - duty_high) * 2);
  537. rmt_ll_set_carrier_on_level(dev, channel, rmt_param->rx_config.carrier_level);
  538. }
  539. #endif
  540. RMT_EXIT_CRITICAL();
  541. ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
  542. channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
  543. }
  544. return ESP_OK;
  545. }
  546. esp_err_t rmt_config(const rmt_config_t *rmt_param)
  547. {
  548. rmt_module_enable();
  549. RMT_CHECK(rmt_set_pin(rmt_param->channel, rmt_param->rmt_mode, rmt_param->gpio_num) == ESP_OK,
  550. "set gpio for RMT driver failed", ESP_ERR_INVALID_ARG);
  551. RMT_CHECK(rmt_internal_config(&RMT, rmt_param) == ESP_OK,
  552. "initialize RMT driver failed", ESP_ERR_INVALID_ARG);
  553. return ESP_OK;
  554. }
  555. static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t *item,
  556. uint16_t item_num, uint16_t mem_offset)
  557. {
  558. RMT_ENTER_CRITICAL();
  559. rmt_ll_set_mem_owner(rmt_contex.hal.regs, channel, RMT_MEM_OWNER_SW);
  560. rmt_ll_write_memory(rmt_contex.hal.mem, channel, item, item_num, mem_offset);
  561. rmt_ll_set_mem_owner(rmt_contex.hal.regs, channel, RMT_MEM_OWNER_HW);
  562. RMT_EXIT_CRITICAL();
  563. }
  564. esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t *item, uint16_t item_num, uint16_t mem_offset)
  565. {
  566. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
  567. RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  568. RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  569. /*Each block has 64 x 32 bits of data*/
  570. uint8_t mem_cnt = rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel);
  571. RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
  572. rmt_fill_memory(channel, item, item_num, mem_offset);
  573. return ESP_OK;
  574. }
  575. esp_err_t rmt_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
  576. {
  577. RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  578. RMT_CHECK(rmt_contex.rmt_driver_channels == 0, "RMT driver installed, can not install generic ISR handler", ESP_FAIL);
  579. return esp_intr_alloc(ETS_RMT_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  580. }
  581. esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
  582. {
  583. return esp_intr_free(handle);
  584. }
  585. static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
  586. {
  587. int block_num = rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel);
  588. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  589. volatile rmt_item32_t *data = (rmt_item32_t *)RMTMEM.chan[channel].data32;
  590. int idx;
  591. for (idx = 0; idx < item_block_len; idx++) {
  592. if (data[idx].duration0 == 0) {
  593. return idx;
  594. } else if (data[idx].duration1 == 0) {
  595. return idx + 1;
  596. }
  597. }
  598. return idx;
  599. }
  600. static void IRAM_ATTR rmt_driver_isr_default(void *arg)
  601. {
  602. uint32_t status = 0;
  603. rmt_item32_t volatile *addr = NULL;
  604. uint8_t channel = 0;
  605. rmt_hal_context_t *hal = (rmt_hal_context_t *)arg;
  606. portBASE_TYPE HPTaskAwoken = pdFALSE;
  607. // Tx end interrupt
  608. status = rmt_ll_get_tx_end_interrupt_status(hal->regs);
  609. while (status) {
  610. channel = __builtin_ffs(status) - 1;
  611. status &= ~(1 << channel);
  612. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  613. if (p_rmt) {
  614. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  615. rmt_ll_reset_tx_pointer(rmt_contex.hal.regs, channel);
  616. p_rmt->tx_data = NULL;
  617. p_rmt->tx_len_rem = 0;
  618. p_rmt->tx_offset = 0;
  619. p_rmt->tx_sub_len = 0;
  620. p_rmt->sample_cur = NULL;
  621. p_rmt->translator = false;
  622. if (rmt_contex.rmt_tx_end_callback.function != NULL) {
  623. rmt_contex.rmt_tx_end_callback.function(channel, rmt_contex.rmt_tx_end_callback.arg);
  624. }
  625. }
  626. rmt_ll_clear_tx_end_interrupt(hal->regs, channel);
  627. }
  628. // Tx thres interrupt
  629. status = rmt_ll_get_tx_thres_interrupt_status(hal->regs);
  630. while (status) {
  631. channel = __builtin_ffs(status) - 1;
  632. status &= ~(1 << channel);
  633. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  634. if (p_rmt) {
  635. if (p_rmt->translator) {
  636. if (p_rmt->sample_size_remain > 0) {
  637. size_t translated_size = 0;
  638. p_rmt->sample_to_rmt((void *)p_rmt->sample_cur,
  639. p_rmt->tx_buf,
  640. p_rmt->sample_size_remain,
  641. p_rmt->tx_sub_len,
  642. &translated_size,
  643. &p_rmt->tx_len_rem);
  644. p_rmt->sample_size_remain -= translated_size;
  645. p_rmt->sample_cur += translated_size;
  646. p_rmt->tx_data = p_rmt->tx_buf;
  647. } else {
  648. p_rmt->sample_cur = NULL;
  649. p_rmt->translator = false;
  650. }
  651. }
  652. const rmt_item32_t *pdata = p_rmt->tx_data;
  653. int len_rem = p_rmt->tx_len_rem;
  654. if (len_rem >= p_rmt->tx_sub_len) {
  655. rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
  656. p_rmt->tx_data += p_rmt->tx_sub_len;
  657. p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
  658. } else if (len_rem == 0) {
  659. rmt_item32_t stop_data = {0};
  660. rmt_ll_write_memory(rmt_contex.hal.mem, channel, &stop_data, 1, p_rmt->tx_offset);
  661. } else {
  662. rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
  663. rmt_item32_t stop_data = {0};
  664. rmt_ll_write_memory(rmt_contex.hal.mem, channel, &stop_data, 1, p_rmt->tx_offset + len_rem);
  665. p_rmt->tx_data += len_rem;
  666. p_rmt->tx_len_rem -= len_rem;
  667. }
  668. if (p_rmt->tx_offset == 0) {
  669. p_rmt->tx_offset = p_rmt->tx_sub_len;
  670. } else {
  671. p_rmt->tx_offset = 0;
  672. }
  673. }
  674. rmt_ll_clear_tx_thres_interrupt(hal->regs, channel);
  675. }
  676. // Rx end interrupt
  677. status = rmt_ll_get_rx_end_interrupt_status(hal->regs);
  678. while (status) {
  679. channel = __builtin_ffs(status) - 1;
  680. status &= ~(1 << channel);
  681. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  682. if (p_rmt) {
  683. rmt_ll_enable_rx(rmt_contex.hal.regs, channel, false);
  684. int item_len = rmt_get_mem_len(channel);
  685. rmt_ll_set_mem_owner(rmt_contex.hal.regs, channel, RMT_MEM_OWNER_SW);
  686. if (p_rmt->rx_buf) {
  687. addr = RMTMEM.chan[channel].data32;
  688. #if SOC_RMT_SUPPORT_RX_PINGPONG
  689. if (item_len > p_rmt->rx_item_start_idx) {
  690. item_len = item_len - p_rmt->rx_item_start_idx;
  691. }
  692. memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(addr + p_rmt->rx_item_start_idx), item_len * 4);
  693. p_rmt->rx_item_len += item_len;
  694. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)(p_rmt->rx_item_buf), p_rmt->rx_item_len * 4, &HPTaskAwoken);
  695. #else
  696. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)addr, item_len * 4, &HPTaskAwoken);
  697. #endif
  698. if (res == pdFALSE) {
  699. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
  700. }
  701. } else {
  702. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR");
  703. }
  704. #if SOC_RMT_SUPPORT_RX_PINGPONG
  705. p_rmt->rx_item_start_idx = 0;
  706. p_rmt->rx_item_len = 0;
  707. memset((void *)p_rmt->rx_item_buf, 0, p_rmt->rx_item_buf_size);
  708. #endif
  709. rmt_ll_reset_rx_pointer(rmt_contex.hal.regs, channel);
  710. rmt_ll_set_mem_owner(rmt_contex.hal.regs, channel, RMT_MEM_OWNER_HW);
  711. rmt_ll_enable_rx(rmt_contex.hal.regs, channel, true);
  712. }
  713. rmt_ll_clear_rx_end_interrupt(hal->regs, channel);
  714. }
  715. #if SOC_RMT_SUPPORT_RX_PINGPONG
  716. // Rx thres interrupt
  717. status = rmt_ll_get_rx_thres_interrupt_status(hal->regs);
  718. while (status) {
  719. channel = __builtin_ffs(status) - 1;
  720. status &= ~(1 << channel);
  721. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  722. int mem_item_size = rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM;
  723. int rx_thres_lim = rmt_ll_get_rx_limit(rmt_contex.hal.regs, channel);
  724. int item_len = (p_rmt->rx_item_start_idx == 0) ? rx_thres_lim : (mem_item_size - rx_thres_lim);
  725. if ((p_rmt->rx_item_len + item_len) < (p_rmt->rx_item_buf_size / 4)) {
  726. rmt_ll_set_mem_owner(rmt_contex.hal.regs, channel, RMT_MEM_OWNER_SW);
  727. memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(RMTMEM.chan[channel].data32 + p_rmt->rx_item_start_idx), item_len * 4);
  728. rmt_ll_set_mem_owner(rmt_contex.hal.regs, channel, RMT_MEM_OWNER_HW);
  729. p_rmt->rx_item_len += item_len;
  730. p_rmt->rx_item_start_idx += item_len;
  731. if (p_rmt->rx_item_start_idx >= mem_item_size) {
  732. p_rmt->rx_item_start_idx = 0;
  733. }
  734. } else {
  735. ESP_EARLY_LOGE(RMT_TAG, "---RX buffer too small: %d", sizeof(p_rmt->rx_item_buf));
  736. }
  737. rmt_ll_clear_rx_thres_interrupt(hal->regs, channel);
  738. }
  739. #endif
  740. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  741. // loop count interrupt
  742. status = rmt_ll_get_tx_loop_interrupt_status(hal->regs);
  743. while (status) {
  744. channel = __builtin_ffs(status) - 1;
  745. status &= ~(1 << channel);
  746. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  747. if (p_rmt) {
  748. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  749. if (rmt_contex.rmt_tx_end_callback.function != NULL) {
  750. rmt_contex.rmt_tx_end_callback.function(channel, rmt_contex.rmt_tx_end_callback.arg);
  751. }
  752. }
  753. rmt_ll_clear_tx_loop_interrupt(hal->regs, channel);
  754. }
  755. #endif
  756. // Err interrupt
  757. status = rmt_ll_get_err_interrupt_status(hal->regs);
  758. while (status) {
  759. channel = __builtin_ffs(status) - 1;
  760. status &= ~(1 << channel);
  761. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  762. if (p_rmt) {
  763. // Reset the receiver/transmitter's write/read addresses to prevent endless err interrupts.
  764. rmt_ll_reset_tx_pointer(rmt_contex.hal.regs, channel);
  765. rmt_ll_reset_rx_pointer(rmt_contex.hal.regs, channel);
  766. ESP_EARLY_LOGD(RMT_TAG, "RMT[%d] ERR", channel);
  767. ESP_EARLY_LOGD(RMT_TAG, "status: 0x%08x", rmt_ll_get_channel_status(rmt_contex.hal.regs, channel));
  768. }
  769. rmt_ll_clear_err_interrupt(hal->regs, channel);
  770. }
  771. if (HPTaskAwoken == pdTRUE) {
  772. portYIELD_FROM_ISR();
  773. }
  774. }
  775. esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
  776. {
  777. esp_err_t err = ESP_OK;
  778. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  779. RMT_CHECK((rmt_contex.rmt_driver_channels & BIT(channel)) != 0, "No RMT driver for this channel", ESP_ERR_INVALID_STATE);
  780. if (p_rmt_obj[channel] == NULL) {
  781. return ESP_OK;
  782. }
  783. //Avoid blocking here(when the interrupt is disabled and do not wait tx done).
  784. if (p_rmt_obj[channel]->wait_done) {
  785. xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
  786. }
  787. rmt_set_rx_intr_en(channel, 0);
  788. rmt_set_err_intr_en(channel, 0);
  789. rmt_set_tx_intr_en(channel, 0);
  790. rmt_set_tx_thr_intr_en(channel, false, 0xffff);
  791. #if SOC_RMT_SUPPORT_RX_PINGPONG
  792. rmt_set_rx_thr_intr_en(channel, false, 0xffff);
  793. #endif
  794. _lock_acquire_recursive(&(rmt_contex.rmt_driver_isr_lock));
  795. rmt_contex.rmt_driver_channels &= ~BIT(channel);
  796. if (rmt_contex.rmt_driver_channels == 0) {
  797. rmt_module_disable();
  798. // all channels have driver disabled
  799. err = rmt_isr_deregister(rmt_contex.rmt_driver_intr_handle);
  800. rmt_contex.rmt_driver_intr_handle = NULL;
  801. }
  802. _lock_release_recursive(&(rmt_contex.rmt_driver_isr_lock));
  803. if (err != ESP_OK) {
  804. return err;
  805. }
  806. if (p_rmt_obj[channel]->tx_sem) {
  807. vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
  808. p_rmt_obj[channel]->tx_sem = NULL;
  809. }
  810. if (p_rmt_obj[channel]->rx_buf) {
  811. vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
  812. p_rmt_obj[channel]->rx_buf = NULL;
  813. }
  814. if (p_rmt_obj[channel]->tx_buf) {
  815. free(p_rmt_obj[channel]->tx_buf);
  816. p_rmt_obj[channel]->tx_buf = NULL;
  817. }
  818. if (p_rmt_obj[channel]->sample_to_rmt) {
  819. p_rmt_obj[channel]->sample_to_rmt = NULL;
  820. }
  821. #if SOC_RMT_SUPPORT_RX_PINGPONG
  822. if (p_rmt_obj[channel]->rx_item_buf) {
  823. free(p_rmt_obj[channel]->rx_item_buf);
  824. p_rmt_obj[channel]->rx_item_buf = NULL;
  825. p_rmt_obj[channel]->rx_item_buf_size = 0;
  826. }
  827. #endif
  828. free(p_rmt_obj[channel]);
  829. p_rmt_obj[channel] = NULL;
  830. return ESP_OK;
  831. }
  832. esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
  833. {
  834. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  835. RMT_CHECK((rmt_contex.rmt_driver_channels & BIT(channel)) == 0,
  836. "RMT driver already installed for channel", ESP_ERR_INVALID_STATE);
  837. esp_err_t err = ESP_OK;
  838. if (p_rmt_obj[channel] != NULL) {
  839. ESP_LOGD(RMT_TAG, "RMT driver already installed");
  840. return ESP_ERR_INVALID_STATE;
  841. }
  842. #if !CONFIG_SPIRAM_USE_MALLOC
  843. p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t));
  844. #else
  845. if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  846. p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t));
  847. } else {
  848. p_rmt_obj[channel] = heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  849. }
  850. #endif
  851. if (p_rmt_obj[channel] == NULL) {
  852. ESP_LOGE(RMT_TAG, "RMT driver malloc error");
  853. return ESP_ERR_NO_MEM;
  854. }
  855. p_rmt_obj[channel]->tx_len_rem = 0;
  856. p_rmt_obj[channel]->tx_data = NULL;
  857. p_rmt_obj[channel]->channel = channel;
  858. p_rmt_obj[channel]->tx_offset = 0;
  859. p_rmt_obj[channel]->tx_sub_len = 0;
  860. p_rmt_obj[channel]->wait_done = false;
  861. p_rmt_obj[channel]->translator = false;
  862. p_rmt_obj[channel]->sample_to_rmt = NULL;
  863. if (p_rmt_obj[channel]->tx_sem == NULL) {
  864. #if !CONFIG_SPIRAM_USE_MALLOC
  865. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  866. #else
  867. p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags;
  868. if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  869. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  870. } else {
  871. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer);
  872. }
  873. #endif
  874. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  875. }
  876. if (p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
  877. p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
  878. }
  879. #if SOC_RMT_SUPPORT_RX_PINGPONG
  880. if (p_rmt_obj[channel]->rx_item_buf == NULL && rx_buf_size > 0) {
  881. #if !CONFIG_SPIRAM_USE_MALLOC
  882. p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size);
  883. #else
  884. if (!(p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  885. p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size);
  886. } else {
  887. p_rmt_obj[channel]->rx_item_buf = heap_caps_calloc(1, rx_buf_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  888. }
  889. #endif
  890. if (p_rmt_obj[channel]->rx_item_buf == NULL) {
  891. ESP_LOGE(RMT_TAG, "RMT malloc fail");
  892. return ESP_FAIL;
  893. }
  894. p_rmt_obj[channel]->rx_item_buf_size = rx_buf_size;
  895. }
  896. #endif
  897. _lock_acquire_recursive(&(rmt_contex.rmt_driver_isr_lock));
  898. if (rmt_contex.rmt_driver_channels == 0) {
  899. // first RMT channel using driver
  900. err = rmt_isr_register(rmt_driver_isr_default, &rmt_contex.hal, intr_alloc_flags, &(rmt_contex.rmt_driver_intr_handle));
  901. }
  902. if (err == ESP_OK) {
  903. rmt_contex.rmt_driver_channels |= BIT(channel);
  904. }
  905. _lock_release_recursive(&(rmt_contex.rmt_driver_isr_lock));
  906. rmt_module_enable();
  907. rmt_set_err_intr_en(channel, 0);
  908. rmt_hal_channel_reset(&rmt_contex.hal, channel);
  909. rmt_set_err_intr_en(channel, 1);
  910. return err;
  911. }
  912. esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t *rmt_item, int item_num, bool wait_tx_done)
  913. {
  914. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  915. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  916. RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
  917. RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  918. #if CONFIG_SPIRAM_USE_MALLOC
  919. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  920. if (!esp_ptr_internal(rmt_item)) {
  921. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  922. return ESP_ERR_INVALID_ARG;
  923. }
  924. }
  925. #endif
  926. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  927. int block_num = rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel);
  928. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  929. int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
  930. int len_rem = item_num;
  931. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  932. // fill the memory block first
  933. if (item_num >= item_block_len) {
  934. rmt_fill_memory(channel, rmt_item, item_block_len, 0);
  935. len_rem -= item_block_len;
  936. rmt_set_tx_loop_mode(channel, false);
  937. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  938. p_rmt->tx_data = rmt_item + item_block_len;
  939. p_rmt->tx_len_rem = len_rem;
  940. p_rmt->tx_offset = 0;
  941. p_rmt->tx_sub_len = item_sub_len;
  942. } else {
  943. rmt_fill_memory(channel, rmt_item, len_rem, 0);
  944. rmt_item32_t stop_data = {0};
  945. rmt_ll_write_memory(rmt_contex.hal.mem, channel, &stop_data, 1, len_rem);
  946. p_rmt->tx_len_rem = 0;
  947. }
  948. rmt_tx_start(channel, true);
  949. p_rmt->wait_done = wait_tx_done;
  950. if (wait_tx_done) {
  951. // wait loop done
  952. if (rmt_ll_is_tx_loop_enabled(rmt_contex.hal.regs, channel)) {
  953. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  954. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  955. xSemaphoreGive(p_rmt->tx_sem);
  956. #endif
  957. } else {
  958. // wait tx end
  959. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  960. xSemaphoreGive(p_rmt->tx_sem);
  961. }
  962. }
  963. return ESP_OK;
  964. }
  965. esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
  966. {
  967. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  968. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  969. if (xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
  970. p_rmt_obj[channel]->wait_done = false;
  971. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  972. return ESP_OK;
  973. } else {
  974. if (wait_time != 0) {
  975. // Don't emit error message if just polling.
  976. ESP_LOGE(RMT_TAG, "Timeout on wait_tx_done");
  977. }
  978. return ESP_ERR_TIMEOUT;
  979. }
  980. }
  981. esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t *buf_handle)
  982. {
  983. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  984. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  985. RMT_CHECK(buf_handle != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  986. *buf_handle = p_rmt_obj[channel]->rx_buf;
  987. return ESP_OK;
  988. }
  989. rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
  990. {
  991. rmt_tx_end_callback_t previous = rmt_contex.rmt_tx_end_callback;
  992. rmt_contex.rmt_tx_end_callback.function = function;
  993. rmt_contex.rmt_tx_end_callback.arg = arg;
  994. return previous;
  995. }
  996. esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn)
  997. {
  998. RMT_CHECK(fn != NULL, RMT_TRANSLATOR_NULL_STR, ESP_ERR_INVALID_ARG);
  999. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  1000. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  1001. const uint32_t block_size = rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel) *
  1002. RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t);
  1003. if (p_rmt_obj[channel]->tx_buf == NULL) {
  1004. #if !CONFIG_SPIRAM_USE_MALLOC
  1005. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  1006. #else
  1007. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  1008. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  1009. } else {
  1010. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  1011. }
  1012. #endif
  1013. if (p_rmt_obj[channel]->tx_buf == NULL) {
  1014. ESP_LOGE(RMT_TAG, "RMT translator buffer create fail");
  1015. return ESP_FAIL;
  1016. }
  1017. }
  1018. p_rmt_obj[channel]->sample_to_rmt = fn;
  1019. p_rmt_obj[channel]->sample_size_remain = 0;
  1020. p_rmt_obj[channel]->sample_cur = NULL;
  1021. ESP_LOGD(RMT_TAG, "RMT translator init done");
  1022. return ESP_OK;
  1023. }
  1024. esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done)
  1025. {
  1026. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  1027. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  1028. RMT_CHECK(p_rmt_obj[channel]->sample_to_rmt != NULL, RMT_TRANSLATOR_UNINIT_STR, ESP_FAIL);
  1029. #if CONFIG_SPIRAM_USE_MALLOC
  1030. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  1031. if (!esp_ptr_internal(src)) {
  1032. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  1033. return ESP_ERR_INVALID_ARG;
  1034. }
  1035. }
  1036. #endif
  1037. size_t item_num = 0;
  1038. size_t translated_size = 0;
  1039. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  1040. const uint32_t item_block_len = rmt_ll_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM;
  1041. const uint32_t item_sub_len = item_block_len / 2;
  1042. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1043. p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &item_num);
  1044. p_rmt->sample_size_remain = src_size - translated_size;
  1045. p_rmt->sample_cur = src + translated_size;
  1046. rmt_fill_memory(channel, p_rmt->tx_buf, item_num, 0);
  1047. if (item_num == item_block_len) {
  1048. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  1049. p_rmt->tx_data = p_rmt->tx_buf;
  1050. p_rmt->tx_offset = 0;
  1051. p_rmt->tx_sub_len = item_sub_len;
  1052. p_rmt->translator = true;
  1053. } else {
  1054. rmt_item32_t stop_data = {0};
  1055. rmt_ll_write_memory(rmt_contex.hal.mem, channel, &stop_data, 1, item_num);
  1056. p_rmt->tx_len_rem = 0;
  1057. p_rmt->sample_cur = NULL;
  1058. p_rmt->translator = false;
  1059. }
  1060. rmt_tx_start(channel, true);
  1061. p_rmt->wait_done = wait_tx_done;
  1062. if (wait_tx_done) {
  1063. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1064. xSemaphoreGive(p_rmt->tx_sem);
  1065. }
  1066. return ESP_OK;
  1067. }
  1068. esp_err_t rmt_get_channel_status(rmt_channel_status_result_t *channel_status)
  1069. {
  1070. RMT_CHECK(channel_status != NULL, RMT_PARAM_ERR_STR, ESP_ERR_INVALID_ARG);
  1071. for (int i = 0; i < RMT_CHANNEL_MAX; i++) {
  1072. channel_status->status[i] = RMT_CHANNEL_UNINIT;
  1073. if (p_rmt_obj[i] != NULL) {
  1074. if (p_rmt_obj[i]->tx_sem != NULL) {
  1075. if (xSemaphoreTake(p_rmt_obj[i]->tx_sem, (TickType_t)0) == pdTRUE) {
  1076. channel_status->status[i] = RMT_CHANNEL_IDLE;
  1077. xSemaphoreGive(p_rmt_obj[i]->tx_sem);
  1078. } else {
  1079. channel_status->status[i] = RMT_CHANNEL_BUSY;
  1080. }
  1081. }
  1082. }
  1083. }
  1084. return ESP_OK;
  1085. }
  1086. esp_err_t rmt_get_counter_clock(rmt_channel_t channel, uint32_t *clock_hz)
  1087. {
  1088. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  1089. RMT_CHECK(clock_hz, "parameter clock_hz can't be null", ESP_ERR_INVALID_ARG);
  1090. RMT_ENTER_CRITICAL();
  1091. if (rmt_ll_get_counter_clock_src(rmt_contex.hal.regs, channel) == RMT_BASECLK_REF) {
  1092. *clock_hz = rmt_hal_get_counter_clock(&rmt_contex.hal, channel, REF_CLK_FREQ);
  1093. } else {
  1094. *clock_hz = rmt_hal_get_counter_clock(&rmt_contex.hal, channel, APB_CLK_FREQ);
  1095. }
  1096. RMT_EXIT_CRITICAL();
  1097. return ESP_OK;
  1098. }
  1099. #if SOC_RMT_SUPPORT_TX_GROUP
  1100. esp_err_t rmt_add_channel_to_group(rmt_channel_t channel)
  1101. {
  1102. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  1103. RMT_ENTER_CRITICAL();
  1104. rmt_ll_enable_tx_sync(rmt_contex.hal.regs, true);
  1105. rmt_ll_add_channel_to_group(rmt_contex.hal.regs, channel);
  1106. rmt_ll_reset_counter_clock_div(rmt_contex.hal.regs, channel);
  1107. RMT_EXIT_CRITICAL();
  1108. return ESP_OK;
  1109. }
  1110. esp_err_t rmt_remove_channel_from_group(rmt_channel_t channel)
  1111. {
  1112. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  1113. RMT_ENTER_CRITICAL();
  1114. if (rmt_ll_remove_channel_from_group(rmt_contex.hal.regs, channel) == 0) {
  1115. rmt_ll_enable_tx_sync(rmt_contex.hal.regs, false);
  1116. }
  1117. RMT_EXIT_CRITICAL();
  1118. return ESP_OK;
  1119. }
  1120. #endif