uart.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/ringbuf.h"
  24. #include "hal/uart_hal.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "driver/periph_ctrl.h"
  30. #include "sdkconfig.h"
  31. #if CONFIG_IDF_TARGET_ESP32
  32. #include "esp32/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32S2
  34. #include "esp32s2/clk.h"
  35. #endif
  36. #ifdef CONFIG_UART_ISR_IN_IRAM
  37. #define UART_ISR_ATTR IRAM_ATTR
  38. #else
  39. #define UART_ISR_ATTR
  40. #endif
  41. #define XOFF (0x13)
  42. #define XON (0x11)
  43. static const char* UART_TAG = "uart";
  44. #define UART_CHECK(a, str, ret_val) \
  45. if (!(a)) { \
  46. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  47. return (ret_val); \
  48. }
  49. #define UART_EMPTY_THRESH_DEFAULT (10)
  50. #define UART_FULL_THRESH_DEFAULT (120)
  51. #define UART_TOUT_THRESH_DEFAULT (10)
  52. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  53. #define UART_TX_IDLE_NUM_DEFAULT (0)
  54. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  55. #define UART_MIN_WAKEUP_THRESH (SOC_UART_MIN_WAKEUP_THRESH)
  56. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  57. | (UART_INTR_RXFIFO_TOUT) \
  58. | (UART_INTR_RXFIFO_OVF) \
  59. | (UART_INTR_BRK_DET) \
  60. | (UART_INTR_PARITY_ERR))
  61. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  62. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  63. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  64. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  65. // Check actual UART mode set
  66. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  67. #define UART_CONTEX_INIT_DEF(uart_num) {\
  68. .hal.dev = UART_LL_GET_HW(uart_num),\
  69. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  70. .hw_enabled = false,\
  71. }
  72. typedef struct {
  73. uart_event_type_t type; /*!< UART TX data type */
  74. struct {
  75. int brk_len;
  76. size_t size;
  77. uint8_t data[0];
  78. } tx_data;
  79. } uart_tx_data_t;
  80. typedef struct {
  81. int wr;
  82. int rd;
  83. int len;
  84. int* data;
  85. } uart_pat_rb_t;
  86. typedef struct {
  87. uart_port_t uart_num; /*!< UART port number*/
  88. int queue_size; /*!< UART event queue size*/
  89. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  90. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  91. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  92. bool coll_det_flg; /*!< UART collision detection flag */
  93. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  94. //rx parameters
  95. int rx_buffered_len; /*!< UART cached data length */
  96. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  97. int rx_buf_size; /*!< RX ring buffer size */
  98. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  99. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  100. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  101. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  102. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  103. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  104. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  105. uart_pat_rb_t rx_pattern_pos;
  106. //tx parameters
  107. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  108. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  109. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  110. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  111. int tx_buf_size; /*!< TX ring buffer size */
  112. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  113. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  114. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  115. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  116. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  117. uint32_t tx_len_cur;
  118. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  119. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  120. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  121. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  122. } uart_obj_t;
  123. typedef struct {
  124. uart_hal_context_t hal; /*!< UART hal context*/
  125. portMUX_TYPE spinlock;
  126. bool hw_enabled;
  127. } uart_context_t;
  128. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  129. static uart_context_t uart_context[UART_NUM_MAX] = {
  130. UART_CONTEX_INIT_DEF(UART_NUM_0),
  131. UART_CONTEX_INIT_DEF(UART_NUM_1),
  132. #if UART_NUM_MAX > 2
  133. UART_CONTEX_INIT_DEF(UART_NUM_2),
  134. #endif
  135. };
  136. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  137. static void uart_module_enable(uart_port_t uart_num)
  138. {
  139. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  140. if (uart_context[uart_num].hw_enabled != true) {
  141. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  142. periph_module_reset(uart_periph_signal[uart_num].module);
  143. }
  144. periph_module_enable(uart_periph_signal[uart_num].module);
  145. uart_context[uart_num].hw_enabled = true;
  146. }
  147. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  148. }
  149. static void uart_module_disable(uart_port_t uart_num)
  150. {
  151. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  152. if (uart_context[uart_num].hw_enabled != false) {
  153. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  154. periph_module_disable(uart_periph_signal[uart_num].module);
  155. }
  156. uart_context[uart_num].hw_enabled = false;
  157. }
  158. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  159. }
  160. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  161. {
  162. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  163. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  164. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  165. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  166. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  167. return ESP_OK;
  168. }
  169. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  170. {
  171. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  172. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  173. return ESP_OK;
  174. }
  175. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  176. {
  177. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  178. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  179. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  180. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  181. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  182. return ESP_OK;
  183. }
  184. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  185. {
  186. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  187. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  188. return ESP_OK;
  189. }
  190. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  191. {
  192. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  193. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  194. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  195. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  196. return ESP_OK;
  197. }
  198. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  199. {
  200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  201. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  202. return ESP_OK;
  203. }
  204. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  205. {
  206. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  207. uart_sclk_t source_clk = 0;
  208. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  209. uart_hal_get_sclk(&(uart_context[uart_num].hal), &source_clk);
  210. uart_hal_set_baudrate(&(uart_context[uart_num].hal), source_clk, baud_rate);
  211. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  212. return ESP_OK;
  213. }
  214. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  215. {
  216. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  217. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  218. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  219. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  220. return ESP_OK;
  221. }
  222. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  223. {
  224. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  225. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  226. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  227. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  228. return ESP_OK;
  229. }
  230. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  231. {
  232. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  233. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  234. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  235. uart_sw_flowctrl_t sw_flow_ctl = {
  236. .xon_char = XON,
  237. .xoff_char = XOFF,
  238. .xon_thrd = rx_thresh_xon,
  239. .xoff_thrd = rx_thresh_xoff,
  240. };
  241. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  242. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  243. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  244. return ESP_OK;
  245. }
  246. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  247. {
  248. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  249. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  250. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  251. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  252. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  253. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  254. return ESP_OK;
  255. }
  256. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  257. {
  258. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  259. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  260. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  261. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  262. return ESP_OK;
  263. }
  264. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  265. {
  266. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  267. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  268. return ESP_OK;
  269. }
  270. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  271. {
  272. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  273. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  274. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  275. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  276. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  277. return ESP_OK;
  278. }
  279. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  280. {
  281. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  282. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  283. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  284. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  285. return ESP_OK;
  286. }
  287. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  288. {
  289. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  290. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  291. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  292. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  293. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  294. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  295. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  296. free(pdata);
  297. }
  298. return ESP_OK;
  299. }
  300. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  301. {
  302. esp_err_t ret = ESP_OK;
  303. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  304. int next = p_pos->wr + 1;
  305. if (next >= p_pos->len) {
  306. next = 0;
  307. }
  308. if (next == p_pos->rd) {
  309. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  310. ret = ESP_FAIL;
  311. } else {
  312. p_pos->data[p_pos->wr] = pos;
  313. p_pos->wr = next;
  314. ret = ESP_OK;
  315. }
  316. return ret;
  317. }
  318. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  319. {
  320. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  321. return ESP_ERR_INVALID_STATE;
  322. } else {
  323. esp_err_t ret = ESP_OK;
  324. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  325. if (p_pos->rd == p_pos->wr) {
  326. ret = ESP_FAIL;
  327. } else {
  328. p_pos->rd++;
  329. }
  330. if (p_pos->rd >= p_pos->len) {
  331. p_pos->rd = 0;
  332. }
  333. return ret;
  334. }
  335. }
  336. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  337. {
  338. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  339. int rd = p_pos->rd;
  340. while(rd != p_pos->wr) {
  341. p_pos->data[rd] -= diff_len;
  342. int rd_rec = rd;
  343. rd ++;
  344. if (rd >= p_pos->len) {
  345. rd = 0;
  346. }
  347. if (p_pos->data[rd_rec] < 0) {
  348. p_pos->rd = rd;
  349. }
  350. }
  351. return ESP_OK;
  352. }
  353. int uart_pattern_pop_pos(uart_port_t uart_num)
  354. {
  355. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  356. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  357. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  358. int pos = -1;
  359. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  360. pos = pat_pos->data[pat_pos->rd];
  361. uart_pattern_dequeue(uart_num);
  362. }
  363. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  364. return pos;
  365. }
  366. int uart_pattern_get_pos(uart_port_t uart_num)
  367. {
  368. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  369. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  370. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  371. int pos = -1;
  372. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  373. pos = pat_pos->data[pat_pos->rd];
  374. }
  375. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  376. return pos;
  377. }
  378. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  379. {
  380. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  381. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  382. int* pdata = (int*) malloc(queue_length * sizeof(int));
  383. if(pdata == NULL) {
  384. return ESP_ERR_NO_MEM;
  385. }
  386. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  387. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  388. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  389. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  390. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  391. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  392. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  393. free(ptmp);
  394. return ESP_OK;
  395. }
  396. #if CONFIG_IDF_TARGET_ESP32
  397. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  398. {
  399. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  400. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  401. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  402. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  403. uart_at_cmd_t at_cmd = {0};
  404. at_cmd.cmd_char = pattern_chr;
  405. at_cmd.char_num = chr_num;
  406. at_cmd.gap_tout = chr_tout;
  407. at_cmd.pre_idle = pre_idle;
  408. at_cmd.post_idle = post_idle;
  409. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  410. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  411. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  412. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  413. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  414. return ESP_OK;
  415. }
  416. #endif
  417. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  418. {
  419. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  420. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  421. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  422. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  423. uart_at_cmd_t at_cmd = {0};
  424. at_cmd.cmd_char = pattern_chr;
  425. at_cmd.char_num = chr_num;
  426. #if CONFIG_IDF_TARGET_ESP32
  427. int apb_clk_freq = 0;
  428. uint32_t uart_baud = 0;
  429. uint32_t uart_div = 0;
  430. uart_get_baudrate(uart_num, &uart_baud);
  431. apb_clk_freq = esp_clk_apb_freq();
  432. uart_div = apb_clk_freq / uart_baud;
  433. at_cmd.gap_tout = chr_tout * uart_div;
  434. at_cmd.pre_idle = pre_idle * uart_div;
  435. at_cmd.post_idle = post_idle * uart_div;
  436. #elif CONFIG_IDF_TARGET_ESP32S2
  437. at_cmd.gap_tout = chr_tout;
  438. at_cmd.pre_idle = pre_idle;
  439. at_cmd.post_idle = post_idle;
  440. #endif
  441. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  442. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  443. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  444. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  445. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  446. return ESP_OK;
  447. }
  448. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  449. {
  450. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  451. }
  452. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  453. {
  454. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  455. }
  456. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  457. {
  458. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  459. }
  460. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  461. {
  462. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  463. }
  464. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  465. {
  466. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  467. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  468. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  469. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  470. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  471. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  472. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  473. return ESP_OK;
  474. }
  475. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  476. {
  477. int ret;
  478. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  479. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  480. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  481. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  482. return ret;
  483. }
  484. esp_err_t uart_isr_free(uart_port_t uart_num)
  485. {
  486. esp_err_t ret;
  487. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  488. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  489. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  490. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  491. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  492. p_uart_obj[uart_num]->intr_handle=NULL;
  493. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  494. return ret;
  495. }
  496. //internal signal can be output to multiple GPIO pads
  497. //only one GPIO pad can connect with input signal
  498. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  499. {
  500. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  501. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  502. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  503. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  504. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  505. if(tx_io_num >= 0) {
  506. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  507. gpio_set_level(tx_io_num, 1);
  508. gpio_matrix_out(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  509. }
  510. if(rx_io_num >= 0) {
  511. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  512. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  513. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  514. gpio_matrix_in(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  515. }
  516. if(rts_io_num >= 0) {
  517. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  518. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  519. gpio_matrix_out(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  520. }
  521. if(cts_io_num >= 0) {
  522. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  523. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  524. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  525. gpio_matrix_in(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  526. }
  527. return ESP_OK;
  528. }
  529. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  530. {
  531. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  532. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  533. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  534. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  535. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  536. return ESP_OK;
  537. }
  538. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  539. {
  540. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  541. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  542. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  543. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  544. return ESP_OK;
  545. }
  546. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  547. {
  548. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  549. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  550. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  551. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  552. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  553. return ESP_OK;
  554. }
  555. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  556. {
  557. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  558. UART_CHECK((uart_config), "param null", ESP_FAIL);
  559. UART_CHECK((uart_config->rx_flow_ctrl_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  560. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  561. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  562. uart_module_enable(uart_num);
  563. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  564. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  565. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->source_clk, uart_config->baud_rate);
  566. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  567. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  568. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  569. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  570. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  571. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  572. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  573. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  574. return ESP_OK;
  575. }
  576. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  577. {
  578. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  579. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  580. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  581. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  582. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  583. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  584. } else {
  585. //Disable rx_tout intr
  586. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  587. }
  588. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  589. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  590. }
  591. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  592. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  593. }
  594. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  595. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  596. return ESP_OK;
  597. }
  598. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  599. {
  600. int cnt = 0;
  601. int len = length;
  602. while (len >= 0) {
  603. if (buf[len] == pat_chr) {
  604. cnt++;
  605. } else {
  606. cnt = 0;
  607. }
  608. if (cnt >= pat_num) {
  609. break;
  610. }
  611. len --;
  612. }
  613. return len;
  614. }
  615. //internal isr handler for default driver code.
  616. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  617. {
  618. uart_obj_t *p_uart = (uart_obj_t*) param;
  619. uint8_t uart_num = p_uart->uart_num;
  620. int rx_fifo_len = 0;
  621. uint32_t uart_intr_status = 0;
  622. uart_event_t uart_event;
  623. portBASE_TYPE HPTaskAwoken = 0;
  624. static uint8_t pat_flg = 0;
  625. while(1) {
  626. // The `continue statement` may cause the interrupt to loop infinitely
  627. // we exit the interrupt here
  628. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  629. //Exit form while loop
  630. if(uart_intr_status == 0){
  631. break;
  632. }
  633. uart_event.type = UART_EVENT_MAX;
  634. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  635. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  636. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  637. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  638. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  639. if(p_uart->tx_waiting_brk) {
  640. continue;
  641. }
  642. //TX semaphore will only be used when tx_buf_size is zero.
  643. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  644. p_uart->tx_waiting_fifo = false;
  645. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  646. } else {
  647. //We don't use TX ring buffer, because the size is zero.
  648. if(p_uart->tx_buf_size == 0) {
  649. continue;
  650. }
  651. bool en_tx_flg = false;
  652. int tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  653. //We need to put a loop here, in case all the buffer items are very short.
  654. //That would cause a watch_dog reset because empty interrupt happens so often.
  655. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  656. while(tx_fifo_rem) {
  657. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  658. size_t size;
  659. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  660. if(p_uart->tx_head) {
  661. //The first item is the data description
  662. //Get the first item to get the data information
  663. if(p_uart->tx_len_tot == 0) {
  664. p_uart->tx_ptr = NULL;
  665. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  666. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  667. p_uart->tx_brk_flg = 1;
  668. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  669. }
  670. //We have saved the data description from the 1st item, return buffer.
  671. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  672. } else if(p_uart->tx_ptr == NULL) {
  673. //Update the TX item pointer, we will need this to return item to buffer.
  674. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  675. en_tx_flg = true;
  676. p_uart->tx_len_cur = size;
  677. }
  678. } else {
  679. //Can not get data from ring buffer, return;
  680. break;
  681. }
  682. }
  683. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  684. //To fill the TX FIFO.
  685. uint32_t send_len = 0;
  686. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  687. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  688. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  689. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  690. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  691. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  692. }
  693. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  694. (const uint8_t *)p_uart->tx_ptr,
  695. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  696. &send_len);
  697. p_uart->tx_ptr += send_len;
  698. p_uart->tx_len_tot -= send_len;
  699. p_uart->tx_len_cur -= send_len;
  700. tx_fifo_rem -= send_len;
  701. if (p_uart->tx_len_cur == 0) {
  702. //Return item to ring buffer.
  703. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  704. p_uart->tx_head = NULL;
  705. p_uart->tx_ptr = NULL;
  706. //Sending item done, now we need to send break if there is a record.
  707. //Set TX break signal after FIFO is empty
  708. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  709. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  710. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  711. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  712. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  713. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  714. p_uart->tx_waiting_brk = 1;
  715. //do not enable TX empty interrupt
  716. en_tx_flg = false;
  717. } else {
  718. //enable TX empty interrupt
  719. en_tx_flg = true;
  720. }
  721. } else {
  722. //enable TX empty interrupt
  723. en_tx_flg = true;
  724. }
  725. }
  726. }
  727. if (en_tx_flg) {
  728. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  729. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  730. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  731. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  732. }
  733. }
  734. }
  735. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  736. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  737. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  738. ) {
  739. if(pat_flg == 1) {
  740. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  741. pat_flg = 0;
  742. }
  743. if (p_uart->rx_buffer_full_flg == false) {
  744. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  745. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  746. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  747. }
  748. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  749. uint8_t pat_chr = 0;
  750. uint8_t pat_num = 0;
  751. int pat_idx = -1;
  752. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  753. //Get the buffer from the FIFO
  754. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  755. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  756. uart_event.type = UART_PATTERN_DET;
  757. uart_event.size = rx_fifo_len;
  758. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  759. } else {
  760. //After Copying the Data From FIFO ,Clear intr_status
  761. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  762. uart_event.type = UART_DATA;
  763. uart_event.size = rx_fifo_len;
  764. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  765. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  766. if (p_uart->uart_select_notif_callback) {
  767. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  768. }
  769. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  770. }
  771. p_uart->rx_stash_len = rx_fifo_len;
  772. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  773. //Mainly for applications that uses flow control or small ring buffer.
  774. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  775. p_uart->rx_buffer_full_flg = true;
  776. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  777. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  778. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  779. if (uart_event.type == UART_PATTERN_DET) {
  780. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  781. if (rx_fifo_len < pat_num) {
  782. //some of the characters are read out in last interrupt
  783. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  784. } else {
  785. uart_pattern_enqueue(uart_num,
  786. pat_idx <= -1 ?
  787. //can not find the pattern in buffer,
  788. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  789. // find the pattern in buffer
  790. p_uart->rx_buffered_len + pat_idx);
  791. }
  792. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  793. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  794. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  795. }
  796. }
  797. uart_event.type = UART_BUFFER_FULL;
  798. } else {
  799. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  800. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  801. if (rx_fifo_len < pat_num) {
  802. //some of the characters are read out in last interrupt
  803. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  804. } else if(pat_idx >= 0) {
  805. // find the pattern in stash buffer.
  806. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  807. }
  808. }
  809. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  810. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  811. }
  812. } else {
  813. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  814. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  815. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  816. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  817. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  818. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  819. uart_event.type = UART_PATTERN_DET;
  820. uart_event.size = rx_fifo_len;
  821. pat_flg = 1;
  822. }
  823. }
  824. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  825. // When fifo overflows, we reset the fifo.
  826. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  827. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  828. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  829. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  830. if (p_uart->uart_select_notif_callback) {
  831. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  832. }
  833. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  834. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  835. uart_event.type = UART_FIFO_OVF;
  836. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  837. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  838. uart_event.type = UART_BREAK;
  839. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  840. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  841. if (p_uart->uart_select_notif_callback) {
  842. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  843. }
  844. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  845. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  846. uart_event.type = UART_FRAME_ERR;
  847. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  848. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  849. if (p_uart->uart_select_notif_callback) {
  850. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  851. }
  852. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  853. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  854. uart_event.type = UART_PARITY_ERR;
  855. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  856. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  857. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  858. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  859. if(p_uart->tx_brk_flg == 1) {
  860. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  861. }
  862. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  863. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  864. if(p_uart->tx_brk_flg == 1) {
  865. p_uart->tx_brk_flg = 0;
  866. p_uart->tx_waiting_brk = 0;
  867. } else {
  868. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  869. }
  870. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  871. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  872. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  873. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  874. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  875. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  876. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  877. uart_event.type = UART_PATTERN_DET;
  878. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  879. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  880. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  881. // RS485 collision or frame error interrupt triggered
  882. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  883. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  884. // Set collision detection flag
  885. p_uart_obj[uart_num]->coll_det_flg = true;
  886. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  887. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  888. uart_event.type = UART_EVENT_MAX;
  889. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  890. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  891. // The TX_DONE interrupt is triggered but transmit is active
  892. // then postpone interrupt processing for next interrupt
  893. uart_event.type = UART_EVENT_MAX;
  894. } else {
  895. // Workaround for RS485: If the RS485 half duplex mode is active
  896. // and transmitter is in idle state then reset received buffer and reset RTS pin
  897. // skip this behavior for other UART modes
  898. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  899. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  900. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  901. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  902. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  903. }
  904. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  905. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  906. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  907. }
  908. } else {
  909. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  910. uart_event.type = UART_EVENT_MAX;
  911. }
  912. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  913. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  914. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  915. }
  916. }
  917. }
  918. if(HPTaskAwoken == pdTRUE) {
  919. portYIELD_FROM_ISR();
  920. }
  921. }
  922. /**************************************************************/
  923. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  924. {
  925. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  926. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  927. BaseType_t res;
  928. portTickType ticks_start = xTaskGetTickCount();
  929. //Take tx_mux
  930. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  931. if(res == pdFALSE) {
  932. return ESP_ERR_TIMEOUT;
  933. }
  934. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  935. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  936. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  937. return ESP_OK;
  938. }
  939. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  940. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  941. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  942. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  943. TickType_t ticks_end = xTaskGetTickCount();
  944. if (ticks_end - ticks_start > ticks_to_wait) {
  945. ticks_to_wait = 0;
  946. } else {
  947. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  948. }
  949. //take 2nd tx_done_sem, wait given from ISR
  950. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  951. if(res == pdFALSE) {
  952. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  953. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  954. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  955. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  956. return ESP_ERR_TIMEOUT;
  957. }
  958. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  959. return ESP_OK;
  960. }
  961. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  962. {
  963. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  964. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  965. UART_CHECK(buffer, "buffer null", (-1));
  966. if(len == 0) {
  967. return 0;
  968. }
  969. int tx_len = 0;
  970. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  971. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  972. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  973. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  974. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  975. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  976. }
  977. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  978. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  979. return tx_len;
  980. }
  981. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  982. {
  983. if(size == 0) {
  984. return 0;
  985. }
  986. size_t original_size = size;
  987. //lock for uart_tx
  988. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  989. p_uart_obj[uart_num]->coll_det_flg = false;
  990. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  991. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  992. int offset = 0;
  993. uart_tx_data_t evt;
  994. evt.tx_data.size = size;
  995. evt.tx_data.brk_len = brk_len;
  996. if(brk_en) {
  997. evt.type = UART_DATA_BREAK;
  998. } else {
  999. evt.type = UART_DATA;
  1000. }
  1001. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1002. while(size > 0) {
  1003. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1004. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1005. size -= send_size;
  1006. offset += send_size;
  1007. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1008. }
  1009. } else {
  1010. while(size) {
  1011. //semaphore for tx_fifo available
  1012. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1013. uint32_t sent = 0;
  1014. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1015. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1016. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1017. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1018. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1019. }
  1020. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1021. if(sent < size) {
  1022. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1023. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1024. }
  1025. size -= sent;
  1026. src += sent;
  1027. }
  1028. }
  1029. if(brk_en) {
  1030. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1031. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1032. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1033. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1034. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1035. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1036. }
  1037. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1038. }
  1039. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1040. return original_size;
  1041. }
  1042. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1043. {
  1044. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1045. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1046. UART_CHECK(src, "buffer null", (-1));
  1047. return uart_tx_all(uart_num, src, size, 0, 0);
  1048. }
  1049. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1050. {
  1051. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1052. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1053. UART_CHECK((size > 0), "uart size error", (-1));
  1054. UART_CHECK((src), "uart data null", (-1));
  1055. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1056. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1057. }
  1058. static bool uart_check_buf_full(uart_port_t uart_num)
  1059. {
  1060. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1061. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1062. if(res == pdTRUE) {
  1063. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1064. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1065. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1066. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1067. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1068. return true;
  1069. }
  1070. }
  1071. return false;
  1072. }
  1073. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1074. {
  1075. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1076. UART_CHECK((buf), "uart data null", (-1));
  1077. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1078. uint8_t* data = NULL;
  1079. size_t size;
  1080. size_t copy_len = 0;
  1081. int len_tmp;
  1082. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1083. return -1;
  1084. }
  1085. while(length) {
  1086. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1087. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1088. if(data) {
  1089. p_uart_obj[uart_num]->rx_head_ptr = data;
  1090. p_uart_obj[uart_num]->rx_ptr = data;
  1091. p_uart_obj[uart_num]->rx_cur_remain = size;
  1092. } else {
  1093. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1094. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1095. //to solve the possible asynchronous issues.
  1096. if(uart_check_buf_full(uart_num)) {
  1097. //This condition will never be true if `uart_read_bytes`
  1098. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1099. continue;
  1100. } else {
  1101. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1102. return copy_len;
  1103. }
  1104. }
  1105. }
  1106. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1107. len_tmp = length;
  1108. } else {
  1109. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1110. }
  1111. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1112. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1113. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1114. uart_pattern_queue_update(uart_num, len_tmp);
  1115. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1116. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1117. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1118. copy_len += len_tmp;
  1119. length -= len_tmp;
  1120. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1121. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1122. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1123. p_uart_obj[uart_num]->rx_ptr = NULL;
  1124. uart_check_buf_full(uart_num);
  1125. }
  1126. }
  1127. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1128. return copy_len;
  1129. }
  1130. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1131. {
  1132. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1133. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1134. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1135. return ESP_OK;
  1136. }
  1137. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1138. esp_err_t uart_flush_input(uart_port_t uart_num)
  1139. {
  1140. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1141. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1142. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1143. uint8_t* data;
  1144. size_t size;
  1145. //rx sem protect the ring buffer read related functions
  1146. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1147. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1148. while(true) {
  1149. if(p_uart->rx_head_ptr) {
  1150. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1151. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1152. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1153. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1154. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1155. p_uart->rx_ptr = NULL;
  1156. p_uart->rx_cur_remain = 0;
  1157. p_uart->rx_head_ptr = NULL;
  1158. }
  1159. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1160. if(data == NULL) {
  1161. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1162. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1163. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1164. }
  1165. //We also need to clear the `rx_buffer_full_flg` here.
  1166. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1167. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1168. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1169. break;
  1170. }
  1171. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1172. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1173. uart_pattern_queue_update(uart_num, size);
  1174. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1175. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1176. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1177. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1178. if(res == pdTRUE) {
  1179. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1180. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1181. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1182. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1183. }
  1184. }
  1185. }
  1186. p_uart->rx_ptr = NULL;
  1187. p_uart->rx_cur_remain = 0;
  1188. p_uart->rx_head_ptr = NULL;
  1189. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1190. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1191. xSemaphoreGive(p_uart->rx_mux);
  1192. return ESP_OK;
  1193. }
  1194. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1195. {
  1196. esp_err_t r;
  1197. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1198. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1199. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1200. #if CONFIG_UART_ISR_IN_IRAM
  1201. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1202. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1203. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1204. }
  1205. #else
  1206. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1207. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1208. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1209. }
  1210. #endif
  1211. if(p_uart_obj[uart_num] == NULL) {
  1212. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1213. if(p_uart_obj[uart_num] == NULL) {
  1214. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1215. return ESP_FAIL;
  1216. }
  1217. p_uart_obj[uart_num]->uart_num = uart_num;
  1218. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1219. p_uart_obj[uart_num]->coll_det_flg = false;
  1220. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1221. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1222. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1223. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1224. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1225. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1226. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1227. p_uart_obj[uart_num]->queue_size = queue_size;
  1228. p_uart_obj[uart_num]->tx_ptr = NULL;
  1229. p_uart_obj[uart_num]->tx_head = NULL;
  1230. p_uart_obj[uart_num]->tx_len_tot = 0;
  1231. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1232. p_uart_obj[uart_num]->tx_brk_len = 0;
  1233. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1234. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1235. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1236. if(uart_queue) {
  1237. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1238. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1239. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1240. } else {
  1241. p_uart_obj[uart_num]->xQueueUart = NULL;
  1242. }
  1243. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1244. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1245. p_uart_obj[uart_num]->rx_ptr = NULL;
  1246. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1247. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1248. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1249. if(tx_buffer_size > 0) {
  1250. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1251. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1252. } else {
  1253. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1254. p_uart_obj[uart_num]->tx_buf_size = 0;
  1255. }
  1256. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1257. } else {
  1258. ESP_LOGE(UART_TAG, "UART driver already installed");
  1259. return ESP_FAIL;
  1260. }
  1261. uart_intr_config_t uart_intr = {
  1262. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1263. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1264. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1265. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1266. };
  1267. uart_module_enable(uart_num);
  1268. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1269. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1270. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1271. if (r!=ESP_OK) goto err;
  1272. r=uart_intr_config(uart_num, &uart_intr);
  1273. if (r!=ESP_OK) goto err;
  1274. return r;
  1275. err:
  1276. uart_driver_delete(uart_num);
  1277. return r;
  1278. }
  1279. //Make sure no other tasks are still using UART before you call this function
  1280. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1281. {
  1282. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1283. if(p_uart_obj[uart_num] == NULL) {
  1284. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1285. return ESP_OK;
  1286. }
  1287. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1288. uart_disable_rx_intr(uart_num);
  1289. uart_disable_tx_intr(uart_num);
  1290. uart_pattern_link_free(uart_num);
  1291. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1292. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1293. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1294. }
  1295. if(p_uart_obj[uart_num]->tx_done_sem) {
  1296. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1297. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1298. }
  1299. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1300. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1301. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1302. }
  1303. if(p_uart_obj[uart_num]->tx_mux) {
  1304. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1305. p_uart_obj[uart_num]->tx_mux = NULL;
  1306. }
  1307. if(p_uart_obj[uart_num]->rx_mux) {
  1308. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1309. p_uart_obj[uart_num]->rx_mux = NULL;
  1310. }
  1311. if(p_uart_obj[uart_num]->xQueueUart) {
  1312. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1313. p_uart_obj[uart_num]->xQueueUart = NULL;
  1314. }
  1315. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1316. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1317. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1318. }
  1319. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1320. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1321. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1322. }
  1323. heap_caps_free(p_uart_obj[uart_num]);
  1324. p_uart_obj[uart_num] = NULL;
  1325. uart_module_disable(uart_num);
  1326. return ESP_OK;
  1327. }
  1328. bool uart_is_driver_installed(uart_port_t uart_num)
  1329. {
  1330. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1331. }
  1332. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1333. {
  1334. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1335. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1336. }
  1337. }
  1338. portMUX_TYPE *uart_get_selectlock(void)
  1339. {
  1340. return &uart_selectlock;
  1341. }
  1342. // Set UART mode
  1343. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1344. {
  1345. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1346. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1347. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1348. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1349. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1350. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1351. }
  1352. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1353. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1354. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1355. // This mode allows read while transmitting that allows collision detection
  1356. p_uart_obj[uart_num]->coll_det_flg = false;
  1357. // Enable collision detection interrupts
  1358. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1359. | UART_INTR_RXFIFO_FULL
  1360. | UART_INTR_RS485_CLASH
  1361. | UART_INTR_RS485_FRM_ERR
  1362. | UART_INTR_RS485_PARITY_ERR);
  1363. }
  1364. p_uart_obj[uart_num]->uart_mode = mode;
  1365. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1366. return ESP_OK;
  1367. }
  1368. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1369. {
  1370. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1371. UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
  1372. "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
  1373. if (p_uart_obj[uart_num] == NULL) {
  1374. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1375. return ESP_ERR_INVALID_STATE;
  1376. }
  1377. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1378. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1379. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1380. }
  1381. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1382. return ESP_OK;
  1383. }
  1384. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1385. {
  1386. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1387. UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
  1388. "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
  1389. if (p_uart_obj[uart_num] == NULL) {
  1390. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1391. return ESP_ERR_INVALID_STATE;
  1392. }
  1393. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1394. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1395. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1396. }
  1397. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1398. return ESP_OK;
  1399. }
  1400. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1401. {
  1402. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1403. // get maximum timeout threshold
  1404. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1405. if (tout_thresh > tout_max_thresh) {
  1406. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1407. return ESP_ERR_INVALID_ARG;
  1408. }
  1409. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1410. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1411. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1412. return ESP_OK;
  1413. }
  1414. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1415. {
  1416. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1417. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1418. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1419. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1420. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1421. "wrong mode", ESP_ERR_INVALID_ARG);
  1422. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1423. return ESP_OK;
  1424. }
  1425. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1426. {
  1427. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1428. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1429. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1430. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1431. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1432. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1433. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1434. return ESP_OK;
  1435. }
  1436. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1437. {
  1438. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1439. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1440. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1441. return ESP_OK;
  1442. }
  1443. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1444. {
  1445. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1446. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1447. return ESP_OK;
  1448. }
  1449. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1450. {
  1451. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1452. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1453. return ESP_OK;
  1454. }
  1455. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1456. {
  1457. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1458. if (rx_tout) {
  1459. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1460. } else {
  1461. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1462. }
  1463. }