pm_esp32.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
  1. // Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <stdbool.h>
  16. #include <string.h>
  17. #include <sys/param.h>
  18. #include "esp_attr.h"
  19. #include "esp_err.h"
  20. #include "esp_pm.h"
  21. #include "esp_log.h"
  22. #include "esp32/clk.h"
  23. #include "esp_private/crosscore_int.h"
  24. #include "soc/rtc.h"
  25. #include "freertos/FreeRTOS.h"
  26. #include "freertos/task.h"
  27. #include "freertos/xtensa_timer.h"
  28. #include "xtensa/core-macros.h"
  29. #include "esp_private/pm_impl.h"
  30. #include "esp_private/pm_trace.h"
  31. #include "esp_private/esp_timer_private.h"
  32. #include "esp32/pm.h"
  33. #include "esp_sleep.h"
  34. /* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
  35. * for the purpose of detecting a deadlock.
  36. */
  37. #define CCOMPARE_UPDATE_TIMEOUT 1000000
  38. /* When changing CCOMPARE, don't allow changes if the difference is less
  39. * than this. This is to prevent setting CCOMPARE below CCOUNT.
  40. */
  41. #define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
  42. /* When light sleep is used, wake this number of microseconds earlier than
  43. * the next tick.
  44. */
  45. #define LIGHT_SLEEP_EARLY_WAKEUP_US 100
  46. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  47. #define REF_CLK_DIV_MIN 10
  48. #define MHZ 1000000
  49. #ifdef CONFIG_PM_PROFILING
  50. #define WITH_PROFILING
  51. #endif
  52. static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
  53. /* The following state variables are protected using s_switch_lock: */
  54. /* Current sleep mode; When switching, contains old mode until switch is complete */
  55. static pm_mode_t s_mode = PM_MODE_CPU_MAX;
  56. /* True when switch is in progress */
  57. static volatile bool s_is_switching;
  58. /* When switch is in progress, this is the mode we are switching into */
  59. static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
  60. /* Number of times each mode was locked */
  61. static size_t s_mode_lock_counts[PM_MODE_COUNT];
  62. /* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
  63. static uint32_t s_mode_mask;
  64. /* Divider and multiplier used to adjust (ccompare - ccount) duration.
  65. * Only set to non-zero values when switch is in progress.
  66. */
  67. static uint32_t s_ccount_div;
  68. static uint32_t s_ccount_mul;
  69. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  70. /* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
  71. * This in turn gets used in IDLE hook to decide if `waiti` needs
  72. * to be invoked or not.
  73. */
  74. static bool s_skipped_light_sleep[portNUM_PROCESSORS];
  75. #if portNUM_PROCESSORS == 2
  76. /* When light sleep is finished on one CPU, it is possible that the other CPU
  77. * will enter light sleep again very soon, before interrupts on the first CPU
  78. * get a chance to run. To avoid such situation, set a flag for the other CPU to
  79. * skip light sleep attempt.
  80. */
  81. static bool s_skip_light_sleep[portNUM_PROCESSORS];
  82. #endif // portNUM_PROCESSORS == 2
  83. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  84. /* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
  85. * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
  86. */
  87. static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
  88. /* A flag indicating that Idle hook has run on a given CPU;
  89. * Next interrupt on the same CPU will take s_rtos_lock_handle.
  90. */
  91. static bool s_core_idle[portNUM_PROCESSORS];
  92. /* When no RTOS tasks are active, these locks are released to allow going into
  93. * a lower power mode. Used by ISR hook and idle hook.
  94. */
  95. static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
  96. /* Lookup table of CPU frequency configs to be used in each mode.
  97. * Initialized by esp_pm_impl_init and modified by esp_pm_configure.
  98. */
  99. rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
  100. /* Whether automatic light sleep is enabled */
  101. static bool s_light_sleep_en = false;
  102. /* When configuration is changed, current frequency may not match the
  103. * newly configured frequency for the current mode. This is an indicator
  104. * to the mode switch code to get the actual current frequency instead of
  105. * relying on the current mode.
  106. */
  107. static bool s_config_changed = false;
  108. #ifdef WITH_PROFILING
  109. /* Time, in microseconds, spent so far in each mode */
  110. static pm_time_t s_time_in_mode[PM_MODE_COUNT];
  111. /* Timestamp, in microseconds, when the mode switch last happened */
  112. static pm_time_t s_last_mode_change_time;
  113. /* User-readable mode names, used by esp_pm_impl_dump_stats */
  114. static const char* s_mode_names[] = {
  115. "SLEEP",
  116. "APB_MIN",
  117. "APB_MAX",
  118. "CPU_MAX"
  119. };
  120. #endif // WITH_PROFILING
  121. static const char* TAG = "pm_esp32";
  122. static void update_ccompare(void);
  123. static void do_switch(pm_mode_t new_mode);
  124. static void leave_idle(void);
  125. static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
  126. pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
  127. {
  128. (void) arg;
  129. if (type == ESP_PM_CPU_FREQ_MAX) {
  130. return PM_MODE_CPU_MAX;
  131. } else if (type == ESP_PM_APB_FREQ_MAX) {
  132. return PM_MODE_APB_MAX;
  133. } else if (type == ESP_PM_NO_LIGHT_SLEEP) {
  134. return PM_MODE_APB_MIN;
  135. } else {
  136. // unsupported mode
  137. abort();
  138. }
  139. }
  140. esp_err_t esp_pm_configure(const void* vconfig)
  141. {
  142. #ifndef CONFIG_PM_ENABLE
  143. return ESP_ERR_NOT_SUPPORTED;
  144. #endif
  145. const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
  146. #ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  147. if (config->light_sleep_enable) {
  148. return ESP_ERR_NOT_SUPPORTED;
  149. }
  150. #endif
  151. int min_freq_mhz = config->min_freq_mhz;
  152. int max_freq_mhz = config->max_freq_mhz;
  153. if (min_freq_mhz > max_freq_mhz) {
  154. return ESP_ERR_INVALID_ARG;
  155. }
  156. rtc_cpu_freq_config_t freq_config;
  157. if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
  158. ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
  159. return ESP_ERR_INVALID_ARG;
  160. }
  161. int xtal_freq_mhz = (int) rtc_clk_xtal_freq_get();
  162. if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
  163. ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
  164. return ESP_ERR_INVALID_ARG;
  165. }
  166. if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
  167. ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
  168. return ESP_ERR_INVALID_ARG;
  169. }
  170. int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
  171. if (max_freq_mhz == 240) {
  172. /* We can't switch between 240 and 80/160 without disabling PLL,
  173. * so use 240MHz CPU frequency when 80MHz APB frequency is requested.
  174. */
  175. apb_max_freq = 240;
  176. } else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
  177. /* Otherwise, can use 80MHz
  178. * CPU frequency when 80MHz APB frequency is requested.
  179. */
  180. apb_max_freq = 80;
  181. }
  182. apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
  183. ESP_LOGI(TAG, "Frequency switching config: "
  184. "CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
  185. max_freq_mhz,
  186. apb_max_freq,
  187. min_freq_mhz,
  188. config->light_sleep_enable ? "ENABLED" : "DISABLED");
  189. portENTER_CRITICAL(&s_switch_lock);
  190. rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
  191. rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
  192. rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
  193. s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
  194. s_light_sleep_en = config->light_sleep_enable;
  195. s_config_changed = true;
  196. portEXIT_CRITICAL(&s_switch_lock);
  197. return ESP_OK;
  198. }
  199. esp_err_t esp_pm_get_configuration(void* vconfig)
  200. {
  201. if (vconfig == NULL) {
  202. return ESP_ERR_INVALID_ARG;
  203. }
  204. esp_pm_config_esp32_t* config = (esp_pm_config_esp32_t*) vconfig;
  205. portENTER_CRITICAL(&s_switch_lock);
  206. config->light_sleep_enable = s_light_sleep_en;
  207. config->max_freq_mhz = s_cpu_freq_by_mode[PM_MODE_CPU_MAX].freq_mhz;
  208. config->min_freq_mhz = s_cpu_freq_by_mode[PM_MODE_APB_MIN].freq_mhz;
  209. portEXIT_CRITICAL(&s_switch_lock);
  210. return ESP_OK;
  211. }
  212. static pm_mode_t IRAM_ATTR get_lowest_allowed_mode(void)
  213. {
  214. /* TODO: optimize using ffs/clz */
  215. if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
  216. return PM_MODE_CPU_MAX;
  217. } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
  218. return PM_MODE_APB_MAX;
  219. } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
  220. return PM_MODE_APB_MIN;
  221. } else {
  222. return PM_MODE_LIGHT_SLEEP;
  223. }
  224. }
  225. void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
  226. pm_mode_switch_t lock_or_unlock, pm_time_t now)
  227. {
  228. bool need_switch = false;
  229. uint32_t mode_mask = BIT(mode);
  230. portENTER_CRITICAL_SAFE(&s_switch_lock);
  231. uint32_t count;
  232. if (lock_or_unlock == MODE_LOCK) {
  233. count = ++s_mode_lock_counts[mode];
  234. } else {
  235. count = s_mode_lock_counts[mode]--;
  236. }
  237. if (count == 1) {
  238. if (lock_or_unlock == MODE_LOCK) {
  239. s_mode_mask |= mode_mask;
  240. } else {
  241. s_mode_mask &= ~mode_mask;
  242. }
  243. need_switch = true;
  244. }
  245. pm_mode_t new_mode = s_mode;
  246. if (need_switch) {
  247. new_mode = get_lowest_allowed_mode();
  248. #ifdef WITH_PROFILING
  249. if (s_last_mode_change_time != 0) {
  250. pm_time_t diff = now - s_last_mode_change_time;
  251. s_time_in_mode[s_mode] += diff;
  252. }
  253. s_last_mode_change_time = now;
  254. #endif // WITH_PROFILING
  255. }
  256. portEXIT_CRITICAL_SAFE(&s_switch_lock);
  257. if (need_switch && new_mode != s_mode) {
  258. do_switch(new_mode);
  259. }
  260. }
  261. /**
  262. * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
  263. * values on both CPUs.
  264. * @param old_ticks_per_us old CPU frequency
  265. * @param ticks_per_us new CPU frequency
  266. */
  267. static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
  268. {
  269. uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
  270. uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
  271. /* Update APB frequency value used by the timer */
  272. if (old_apb_ticks_per_us != apb_ticks_per_us) {
  273. esp_timer_private_update_apb_freq(apb_ticks_per_us);
  274. }
  275. /* Calculate new tick divisor */
  276. _xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
  277. int core_id = xPortGetCoreID();
  278. if (s_rtos_lock_handle[core_id] != NULL) {
  279. ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
  280. /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
  281. * to calculate new CCOMPARE value.
  282. */
  283. s_ccount_div = old_ticks_per_us;
  284. s_ccount_mul = ticks_per_us;
  285. /* Update CCOMPARE value on this CPU */
  286. update_ccompare();
  287. #if portNUM_PROCESSORS == 2
  288. /* Send interrupt to the other CPU to update CCOMPARE value */
  289. int other_core_id = (core_id == 0) ? 1 : 0;
  290. s_need_update_ccompare[other_core_id] = true;
  291. esp_crosscore_int_send_freq_switch(other_core_id);
  292. int timeout = 0;
  293. while (s_need_update_ccompare[other_core_id]) {
  294. if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
  295. assert(false && "failed to update CCOMPARE, possible deadlock");
  296. }
  297. }
  298. #endif // portNUM_PROCESSORS == 2
  299. s_ccount_mul = 0;
  300. s_ccount_div = 0;
  301. ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
  302. }
  303. }
  304. /**
  305. * Perform the switch to new power mode.
  306. * Currently only changes the CPU frequency and adjusts clock dividers.
  307. * No light sleep yet.
  308. * @param new_mode mode to switch to
  309. */
  310. static void IRAM_ATTR do_switch(pm_mode_t new_mode)
  311. {
  312. const int core_id = xPortGetCoreID();
  313. do {
  314. portENTER_CRITICAL_ISR(&s_switch_lock);
  315. if (!s_is_switching) {
  316. break;
  317. }
  318. if (s_new_mode <= new_mode) {
  319. portEXIT_CRITICAL_ISR(&s_switch_lock);
  320. return;
  321. }
  322. if (s_need_update_ccompare[core_id]) {
  323. s_need_update_ccompare[core_id] = false;
  324. }
  325. portEXIT_CRITICAL_ISR(&s_switch_lock);
  326. } while (true);
  327. s_new_mode = new_mode;
  328. s_is_switching = true;
  329. bool config_changed = s_config_changed;
  330. s_config_changed = false;
  331. portEXIT_CRITICAL_ISR(&s_switch_lock);
  332. rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
  333. rtc_cpu_freq_config_t old_config;
  334. if (!config_changed) {
  335. old_config = s_cpu_freq_by_mode[s_mode];
  336. } else {
  337. rtc_clk_cpu_freq_get_config(&old_config);
  338. }
  339. if (new_config.freq_mhz != old_config.freq_mhz) {
  340. uint32_t old_ticks_per_us = old_config.freq_mhz;
  341. uint32_t new_ticks_per_us = new_config.freq_mhz;
  342. bool switch_down = new_ticks_per_us < old_ticks_per_us;
  343. ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
  344. if (switch_down) {
  345. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  346. }
  347. rtc_clk_cpu_freq_set_config_fast(&new_config);
  348. if (!switch_down) {
  349. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  350. }
  351. ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
  352. }
  353. portENTER_CRITICAL_ISR(&s_switch_lock);
  354. s_mode = new_mode;
  355. s_is_switching = false;
  356. portEXIT_CRITICAL_ISR(&s_switch_lock);
  357. }
  358. /**
  359. * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
  360. *
  361. * Adjusts CCOMPARE value so that the interrupt happens at the same time as it
  362. * would happen without the frequency change.
  363. * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
  364. */
  365. static void IRAM_ATTR update_ccompare(void)
  366. {
  367. uint32_t ccount = XTHAL_GET_CCOUNT();
  368. uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
  369. if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
  370. uint32_t diff = ccompare - ccount;
  371. uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
  372. if (diff_scaled < _xt_tick_divisor) {
  373. uint32_t new_ccompare = ccount + diff_scaled;
  374. XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
  375. }
  376. }
  377. }
  378. static void IRAM_ATTR leave_idle(void)
  379. {
  380. int core_id = xPortGetCoreID();
  381. if (s_core_idle[core_id]) {
  382. // TODO: possible optimization: raise frequency here first
  383. esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
  384. s_core_idle[core_id] = false;
  385. }
  386. }
  387. void esp_pm_impl_idle_hook(void)
  388. {
  389. int core_id = xPortGetCoreID();
  390. uint32_t state = portENTER_CRITICAL_NESTED();
  391. if (!s_core_idle[core_id]) {
  392. esp_pm_lock_release(s_rtos_lock_handle[core_id]);
  393. s_core_idle[core_id] = true;
  394. }
  395. portEXIT_CRITICAL_NESTED(state);
  396. ESP_PM_TRACE_ENTER(IDLE, core_id);
  397. }
  398. void IRAM_ATTR esp_pm_impl_isr_hook(void)
  399. {
  400. int core_id = xPortGetCoreID();
  401. ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
  402. /* Prevent higher level interrupts (than the one this function was called from)
  403. * from happening in this section, since they will also call into esp_pm_impl_isr_hook.
  404. */
  405. uint32_t state = portENTER_CRITICAL_NESTED();
  406. #if portNUM_PROCESSORS == 2
  407. if (s_need_update_ccompare[core_id]) {
  408. update_ccompare();
  409. s_need_update_ccompare[core_id] = false;
  410. } else {
  411. leave_idle();
  412. }
  413. #else
  414. leave_idle();
  415. #endif // portNUM_PROCESSORS == 2
  416. portEXIT_CRITICAL_NESTED(state);
  417. ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
  418. }
  419. void esp_pm_impl_waiti(void)
  420. {
  421. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  422. int core_id = xPortGetCoreID();
  423. if (s_skipped_light_sleep[core_id]) {
  424. asm("waiti 0");
  425. /* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
  426. * is now taken. However since we are back to idle task, we can release
  427. * the lock so that vApplicationSleep can attempt to enter light sleep.
  428. */
  429. esp_pm_impl_idle_hook();
  430. s_skipped_light_sleep[core_id] = false;
  431. }
  432. #else
  433. asm("waiti 0");
  434. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  435. }
  436. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  437. static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
  438. {
  439. #if portNUM_PROCESSORS == 2
  440. if (s_skip_light_sleep[core_id]) {
  441. s_skip_light_sleep[core_id] = false;
  442. s_skipped_light_sleep[core_id] = true;
  443. return true;
  444. }
  445. #endif // portNUM_PROCESSORS == 2
  446. if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching) {
  447. s_skipped_light_sleep[core_id] = true;
  448. } else {
  449. s_skipped_light_sleep[core_id] = false;
  450. }
  451. return s_skipped_light_sleep[core_id];
  452. }
  453. static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
  454. {
  455. #if portNUM_PROCESSORS == 2
  456. s_skip_light_sleep[!core_id] = true;
  457. #endif
  458. }
  459. void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
  460. {
  461. portENTER_CRITICAL(&s_switch_lock);
  462. int core_id = xPortGetCoreID();
  463. if (!should_skip_light_sleep(core_id)) {
  464. /* Calculate how much we can sleep */
  465. int64_t next_esp_timer_alarm = esp_timer_get_next_alarm();
  466. int64_t now = esp_timer_get_time();
  467. int64_t time_until_next_alarm = next_esp_timer_alarm - now;
  468. int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
  469. int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
  470. if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
  471. esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
  472. #ifdef CONFIG_PM_TRACE
  473. /* to force tracing GPIOs to keep state */
  474. esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
  475. #endif
  476. /* Enter sleep */
  477. ESP_PM_TRACE_ENTER(SLEEP, core_id);
  478. int64_t sleep_start = esp_timer_get_time();
  479. esp_light_sleep_start();
  480. int64_t slept_us = esp_timer_get_time() - sleep_start;
  481. ESP_PM_TRACE_EXIT(SLEEP, core_id);
  482. uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
  483. if (slept_ticks > 0) {
  484. /* Adjust RTOS tick count based on the amount of time spent in sleep */
  485. vTaskStepTick(slept_ticks);
  486. /* Trigger tick interrupt, since sleep time was longer
  487. * than portTICK_PERIOD_MS. Note that setting INTSET does not
  488. * work for timer interrupt, and changing CCOMPARE would clear
  489. * the interrupt flag.
  490. */
  491. XTHAL_SET_CCOUNT(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
  492. while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
  493. ;
  494. }
  495. }
  496. other_core_should_skip_light_sleep(core_id);
  497. }
  498. }
  499. portEXIT_CRITICAL(&s_switch_lock);
  500. }
  501. #endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
  502. #ifdef WITH_PROFILING
  503. void esp_pm_impl_dump_stats(FILE* out)
  504. {
  505. pm_time_t time_in_mode[PM_MODE_COUNT];
  506. portENTER_CRITICAL_ISR(&s_switch_lock);
  507. memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
  508. pm_time_t last_mode_change_time = s_last_mode_change_time;
  509. pm_mode_t cur_mode = s_mode;
  510. pm_time_t now = pm_get_time();
  511. portEXIT_CRITICAL_ISR(&s_switch_lock);
  512. time_in_mode[cur_mode] += now - last_mode_change_time;
  513. fprintf(out, "Mode stats:\n");
  514. for (int i = 0; i < PM_MODE_COUNT; ++i) {
  515. if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
  516. /* don't display light sleep mode if it's not enabled */
  517. continue;
  518. }
  519. fprintf(out, "%8s %3dM %12lld %2d%%\n",
  520. s_mode_names[i],
  521. s_cpu_freq_by_mode[i].freq_mhz,
  522. time_in_mode[i],
  523. (int) (time_in_mode[i] * 100 / now));
  524. }
  525. }
  526. #endif // WITH_PROFILING
  527. void esp_pm_impl_init(void)
  528. {
  529. #ifdef CONFIG_PM_TRACE
  530. esp_pm_trace_init();
  531. #endif
  532. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
  533. &s_rtos_lock_handle[0]));
  534. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
  535. #if portNUM_PROCESSORS == 2
  536. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
  537. &s_rtos_lock_handle[1]));
  538. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
  539. #endif // portNUM_PROCESSORS == 2
  540. /* Configure all modes to use the default CPU frequency.
  541. * This will be modified later by a call to esp_pm_configure.
  542. */
  543. rtc_cpu_freq_config_t default_config;
  544. if (!rtc_clk_cpu_freq_mhz_to_config(CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ, &default_config)) {
  545. assert(false && "unsupported frequency");
  546. }
  547. for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
  548. s_cpu_freq_by_mode[i] = default_config;
  549. }
  550. }