spiram_psram.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077
  1. /*
  2. Driver bits for PSRAM chips (at the moment only the ESP-PSRAM32 chip).
  3. */
  4. // Copyright 2013-2017 Espressif Systems (Shanghai) PTE LTD
  5. //
  6. // Licensed under the Apache License, Version 2.0 (the "License");
  7. // you may not use this file except in compliance with the License.
  8. // You may obtain a copy of the License at
  9. //
  10. // http://www.apache.org/licenses/LICENSE-2.0
  11. //
  12. // Unless required by applicable law or agreed to in writing, software
  13. // distributed under the License is distributed on an "AS IS" BASIS,
  14. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. // See the License for the specific language governing permissions and
  16. // limitations under the License.
  17. #include "sdkconfig.h"
  18. #include "string.h"
  19. #include "esp_attr.h"
  20. #include "esp_err.h"
  21. #include "esp_types.h"
  22. #include "esp_log.h"
  23. #include "spiram_psram.h"
  24. #include "esp32/rom/ets_sys.h"
  25. #include "esp32/rom/spi_flash.h"
  26. #include "esp32/rom/gpio.h"
  27. #include "esp32/rom/cache.h"
  28. #include "esp32/rom/efuse.h"
  29. #include "soc/dport_reg.h"
  30. #include "soc/efuse_periph.h"
  31. #include "soc/spi_caps.h"
  32. #include "driver/gpio.h"
  33. #include "driver/spi_common_internal.h"
  34. #include "driver/periph_ctrl.h"
  35. #include "bootloader_common.h"
  36. #include "bootloader_flash_config.h"
  37. #if CONFIG_SPIRAM
  38. #include "soc/rtc.h"
  39. //Commands for PSRAM chip
  40. #define PSRAM_READ 0x03
  41. #define PSRAM_FAST_READ 0x0B
  42. #define PSRAM_FAST_READ_DUMMY 0x3
  43. #define PSRAM_FAST_READ_QUAD 0xEB
  44. #define PSRAM_FAST_READ_QUAD_DUMMY 0x5
  45. #define PSRAM_WRITE 0x02
  46. #define PSRAM_QUAD_WRITE 0x38
  47. #define PSRAM_ENTER_QMODE 0x35
  48. #define PSRAM_EXIT_QMODE 0xF5
  49. #define PSRAM_RESET_EN 0x66
  50. #define PSRAM_RESET 0x99
  51. #define PSRAM_SET_BURST_LEN 0xC0
  52. #define PSRAM_DEVICE_ID 0x9F
  53. typedef enum {
  54. PSRAM_CLK_MODE_NORM = 0, /*!< Normal SPI mode */
  55. PSRAM_CLK_MODE_DCLK = 1, /*!< Two extra clock cycles after CS is set high level */
  56. } psram_clk_mode_t;
  57. #define PSRAM_ID_KGD_M 0xff
  58. #define PSRAM_ID_KGD_S 8
  59. #define PSRAM_ID_KGD 0x5d
  60. #define PSRAM_ID_EID_M 0xff
  61. #define PSRAM_ID_EID_S 16
  62. // Use the [7:5](bit7~bit5) of EID to distinguish the psram size:
  63. //
  64. // BIT7 | BIT6 | BIT5 | SIZE(MBIT)
  65. // -------------------------------------
  66. // 0 | 0 | 0 | 16
  67. // 0 | 0 | 1 | 32
  68. // 0 | 1 | 0 | 64
  69. #define PSRAM_EID_SIZE_M 0x07
  70. #define PSRAM_EID_SIZE_S 5
  71. typedef enum {
  72. PSRAM_EID_SIZE_16MBITS = 0,
  73. PSRAM_EID_SIZE_32MBITS = 1,
  74. PSRAM_EID_SIZE_64MBITS = 2,
  75. } psram_eid_size_t;
  76. #define PSRAM_KGD(id) (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M)
  77. #define PSRAM_EID(id) (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M)
  78. #define PSRAM_SIZE_ID(id) ((PSRAM_EID(id) >> PSRAM_EID_SIZE_S) & PSRAM_EID_SIZE_M)
  79. #define PSRAM_IS_VALID(id) (PSRAM_KGD(id) == PSRAM_ID_KGD)
  80. // For the old version 32Mbit psram, using the spicial driver */
  81. #define PSRAM_IS_32MBIT_VER0(id) (PSRAM_EID(id) == 0x20)
  82. #define PSRAM_IS_64MBIT_TRIAL(id) (PSRAM_EID(id) == 0x26)
  83. // IO-pins for PSRAM.
  84. // WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
  85. // hardcode the flash pins as well, making this code incompatible with either a setup
  86. // that has the flash on non-standard pins or ESP32s with built-in flash.
  87. #define PSRAM_SPIQ_SD0_IO 7
  88. #define PSRAM_SPID_SD1_IO 8
  89. #define PSRAM_SPIWP_SD3_IO 10
  90. #define PSRAM_SPIHD_SD2_IO 9
  91. #define FLASH_HSPI_CLK_IO 14
  92. #define FLASH_HSPI_CS_IO 15
  93. #define PSRAM_HSPI_SPIQ_SD0_IO 12
  94. #define PSRAM_HSPI_SPID_SD1_IO 13
  95. #define PSRAM_HSPI_SPIWP_SD3_IO 2
  96. #define PSRAM_HSPI_SPIHD_SD2_IO 4
  97. // PSRAM clock and cs IO should be configured based on hardware design.
  98. // For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
  99. // they are the default value for these two configs.
  100. #define D0WD_PSRAM_CLK_IO CONFIG_D0WD_PSRAM_CLK_IO // Default value is 17
  101. #define D0WD_PSRAM_CS_IO CONFIG_D0WD_PSRAM_CS_IO // Default value is 16
  102. #define D2WD_PSRAM_CLK_IO CONFIG_D2WD_PSRAM_CLK_IO // Default value is 9
  103. #define D2WD_PSRAM_CS_IO CONFIG_D2WD_PSRAM_CS_IO // Default value is 10
  104. // For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
  105. #define PICO_PSRAM_CLK_IO 6
  106. #define PICO_PSRAM_CS_IO CONFIG_PICO_PSRAM_CS_IO // Default value is 10
  107. #define PICO_V3_02_PSRAM_CLK_IO 10
  108. #define PICO_V3_02_PSRAM_CS_IO 9
  109. typedef struct {
  110. uint8_t flash_clk_io;
  111. uint8_t flash_cs_io;
  112. uint8_t psram_clk_io;
  113. uint8_t psram_cs_io;
  114. uint8_t psram_spiq_sd0_io;
  115. uint8_t psram_spid_sd1_io;
  116. uint8_t psram_spiwp_sd3_io;
  117. uint8_t psram_spihd_sd2_io;
  118. } psram_io_t;
  119. #define PSRAM_INTERNAL_IO_28 28
  120. #define PSRAM_INTERNAL_IO_29 29
  121. #define PSRAM_IO_MATRIX_DUMMY_40M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_40M
  122. #define PSRAM_IO_MATRIX_DUMMY_80M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_80M
  123. #define _SPI_CACHE_PORT 0
  124. #define _SPI_FLASH_PORT 1
  125. #define _SPI_80M_CLK_DIV 1
  126. #define _SPI_40M_CLK_DIV 2
  127. //For 4MB PSRAM, we need one more SPI host, select which one to use by kconfig
  128. #ifdef CONFIG_SPIRAM_OCCUPY_HSPI_HOST
  129. #define PSRAM_SPI_MODULE PERIPH_HSPI_MODULE
  130. #define PSRAM_SPI_HOST HSPI_HOST
  131. #define PSRAM_CLK_SIGNAL HSPICLK_OUT_IDX
  132. #define PSRAM_SPI_NUM PSRAM_SPI_2
  133. #define PSRAM_SPICLKEN DPORT_SPI2_CLK_EN
  134. #elif defined CONFIG_SPIRAM_OCCUPY_VSPI_HOST
  135. #define PSRAM_SPI_MODULE PERIPH_VSPI_MODULE
  136. #define PSRAM_SPI_HOST VSPI_HOST
  137. #define PSRAM_CLK_SIGNAL VSPICLK_OUT_IDX
  138. #define PSRAM_SPI_NUM PSRAM_SPI_3
  139. #define PSRAM_SPICLKEN DPORT_SPI3_CLK_EN
  140. #else //set to SPI avoid HSPI and VSPI being used
  141. #define PSRAM_SPI_MODULE PERIPH_SPI_MODULE
  142. #define PSRAM_SPI_HOST SPI_HOST
  143. #define PSRAM_CLK_SIGNAL SPICLK_OUT_IDX
  144. #define PSRAM_SPI_NUM PSRAM_SPI_1
  145. #define PSRAM_SPICLKEN DPORT_SPI01_CLK_EN
  146. #endif
  147. static const char* TAG = "psram";
  148. typedef enum {
  149. PSRAM_SPI_1 = 0x1,
  150. PSRAM_SPI_2,
  151. PSRAM_SPI_3,
  152. PSRAM_SPI_MAX ,
  153. } psram_spi_num_t;
  154. static psram_cache_mode_t s_psram_mode = PSRAM_CACHE_MAX;
  155. static psram_clk_mode_t s_clk_mode = PSRAM_CLK_MODE_DCLK;
  156. static uint64_t s_psram_id = 0;
  157. static bool s_2t_mode_enabled = false;
  158. /* dummy_len_plus values defined in ROM for SPI flash configuration */
  159. extern uint8_t g_rom_spiflash_dummy_len_plus[];
  160. static int extra_dummy = 0;
  161. typedef enum {
  162. PSRAM_CMD_QPI,
  163. PSRAM_CMD_SPI,
  164. } psram_cmd_mode_t;
  165. typedef struct {
  166. uint16_t cmd; /*!< Command value */
  167. uint16_t cmdBitLen; /*!< Command byte length*/
  168. uint32_t *addr; /*!< Point to address value*/
  169. uint16_t addrBitLen; /*!< Address byte length*/
  170. uint32_t *txData; /*!< Point to send data buffer*/
  171. uint16_t txDataBitLen; /*!< Send data byte length.*/
  172. uint32_t *rxData; /*!< Point to recevie data buffer*/
  173. uint16_t rxDataBitLen; /*!< Recevie Data byte length.*/
  174. uint32_t dummyBitLen;
  175. } psram_cmd_t;
  176. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode);
  177. static void psram_clear_spi_fifo(psram_spi_num_t spi_num)
  178. {
  179. int i;
  180. for (i = 0; i < 16; i++) {
  181. WRITE_PERI_REG(SPI_W0_REG(spi_num)+i*4, 0);
  182. }
  183. }
  184. //set basic SPI write mode
  185. static void psram_set_basic_write_mode(psram_spi_num_t spi_num)
  186. {
  187. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  188. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  189. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  190. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  191. }
  192. //set QPI write mode
  193. static void psram_set_qio_write_mode(psram_spi_num_t spi_num)
  194. {
  195. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
  196. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
  197. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
  198. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
  199. }
  200. //set QPI read mode
  201. static void psram_set_qio_read_mode(psram_spi_num_t spi_num)
  202. {
  203. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  204. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  205. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  206. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  207. }
  208. //set SPI read mode
  209. static void psram_set_basic_read_mode(psram_spi_num_t spi_num)
  210. {
  211. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
  212. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
  213. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
  214. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
  215. }
  216. //start sending cmd/addr and optionally, receiving data
  217. static void IRAM_ATTR psram_cmd_recv_start(psram_spi_num_t spi_num, uint32_t* pRxData, uint16_t rxByteLen,
  218. psram_cmd_mode_t cmd_mode)
  219. {
  220. //get cs1
  221. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  222. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  223. uint32_t mode_backup = (READ_PERI_REG(SPI_USER_REG(spi_num)) >> SPI_FWRITE_DUAL_S) & 0xf;
  224. uint32_t rd_mode_backup = READ_PERI_REG(SPI_CTRL_REG(spi_num)) & (SPI_FREAD_DIO_M | SPI_FREAD_DUAL_M | SPI_FREAD_QUAD_M | SPI_FREAD_QIO_M);
  225. if (cmd_mode == PSRAM_CMD_SPI) {
  226. psram_set_basic_write_mode(spi_num);
  227. psram_set_basic_read_mode(spi_num);
  228. } else if (cmd_mode == PSRAM_CMD_QPI) {
  229. psram_set_qio_write_mode(spi_num);
  230. psram_set_qio_read_mode(spi_num);
  231. }
  232. //Wait for SPI0 to idle
  233. while ( READ_PERI_REG(SPI_EXT2_REG(0)) != 0);
  234. DPORT_SET_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  235. // Start send data
  236. SET_PERI_REG_MASK(SPI_CMD_REG(spi_num), SPI_USR);
  237. while ((READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR));
  238. DPORT_CLEAR_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
  239. //recover spi mode
  240. SET_PERI_REG_BITS(SPI_USER_REG(spi_num), (pRxData?SPI_FWRITE_DUAL_M:0xf), mode_backup, SPI_FWRITE_DUAL_S);
  241. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), (SPI_FREAD_DIO_M|SPI_FREAD_DUAL_M|SPI_FREAD_QUAD_M|SPI_FREAD_QIO_M));
  242. SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), rd_mode_backup);
  243. //return cs to cs0
  244. SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
  245. CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
  246. if (pRxData) {
  247. int idx = 0;
  248. // Read data out
  249. do {
  250. *pRxData++ = READ_PERI_REG(SPI_W0_REG(spi_num) + (idx << 2));
  251. } while (++idx < ((rxByteLen / 4) + ((rxByteLen % 4) ? 1 : 0)));
  252. }
  253. }
  254. static uint32_t backup_usr[3];
  255. static uint32_t backup_usr1[3];
  256. static uint32_t backup_usr2[3];
  257. //setup spi command/addr/data/dummy in user mode
  258. static int psram_cmd_config(psram_spi_num_t spi_num, psram_cmd_t* pInData)
  259. {
  260. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  261. backup_usr[spi_num]=READ_PERI_REG(SPI_USER_REG(spi_num));
  262. backup_usr1[spi_num]=READ_PERI_REG(SPI_USER1_REG(spi_num));
  263. backup_usr2[spi_num]=READ_PERI_REG(SPI_USER2_REG(spi_num));
  264. // Set command by user.
  265. if (pInData->cmdBitLen != 0) {
  266. // Max command length 16 bits.
  267. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, pInData->cmdBitLen - 1,
  268. SPI_USR_COMMAND_BITLEN_S);
  269. // Enable command
  270. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  271. // Load command,bit15-0 is cmd value.
  272. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_VALUE, pInData->cmd, SPI_USR_COMMAND_VALUE_S);
  273. } else {
  274. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
  275. SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, 0, SPI_USR_COMMAND_BITLEN_S);
  276. }
  277. // Set Address by user.
  278. if (pInData->addrBitLen != 0) {
  279. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, (pInData->addrBitLen - 1), SPI_USR_ADDR_BITLEN_S);
  280. // Enable address
  281. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  282. // Set address
  283. WRITE_PERI_REG(SPI_ADDR_REG(spi_num), *pInData->addr);
  284. } else {
  285. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
  286. SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, 0, SPI_USR_ADDR_BITLEN_S);
  287. }
  288. // Set data by user.
  289. uint32_t* p_tx_val = pInData->txData;
  290. if (pInData->txDataBitLen != 0) {
  291. // Enable MOSI
  292. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  293. // Load send buffer
  294. int len = (pInData->txDataBitLen + 31) / 32;
  295. if (p_tx_val != NULL) {
  296. memcpy((void*)SPI_W0_REG(spi_num), p_tx_val, len * 4);
  297. }
  298. // Set data send buffer length.Max data length 64 bytes.
  299. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, (pInData->txDataBitLen - 1),
  300. SPI_USR_MOSI_DBITLEN_S);
  301. } else {
  302. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
  303. SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, 0, SPI_USR_MOSI_DBITLEN_S);
  304. }
  305. // Set rx data by user.
  306. if (pInData->rxDataBitLen != 0) {
  307. // Enable MOSI
  308. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  309. // Set data send buffer length.Max data length 64 bytes.
  310. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, (pInData->rxDataBitLen - 1),
  311. SPI_USR_MISO_DBITLEN_S);
  312. } else {
  313. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
  314. SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, 0, SPI_USR_MISO_DBITLEN_S);
  315. }
  316. if (pInData->dummyBitLen != 0) {
  317. SET_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  318. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, pInData->dummyBitLen - 1,
  319. SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  320. } else {
  321. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
  322. SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, 0, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  323. }
  324. return 0;
  325. }
  326. static void psram_cmd_end(int spi_num) {
  327. while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
  328. WRITE_PERI_REG(SPI_USER_REG(spi_num), backup_usr[spi_num]);
  329. WRITE_PERI_REG(SPI_USER1_REG(spi_num), backup_usr1[spi_num]);
  330. WRITE_PERI_REG(SPI_USER2_REG(spi_num), backup_usr2[spi_num]);
  331. }
  332. //exit QPI mode(set back to SPI mode)
  333. static void psram_disable_qio_mode(psram_spi_num_t spi_num)
  334. {
  335. psram_cmd_t ps_cmd;
  336. uint32_t cmd_exit_qpi;
  337. cmd_exit_qpi = PSRAM_EXIT_QMODE;
  338. ps_cmd.txDataBitLen = 8;
  339. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  340. switch (s_psram_mode) {
  341. case PSRAM_CACHE_F80M_S80M:
  342. break;
  343. case PSRAM_CACHE_F80M_S40M:
  344. case PSRAM_CACHE_F40M_S40M:
  345. default:
  346. cmd_exit_qpi = PSRAM_EXIT_QMODE << 8;
  347. ps_cmd.txDataBitLen = 16;
  348. break;
  349. }
  350. }
  351. ps_cmd.txData = &cmd_exit_qpi;
  352. ps_cmd.cmd = 0;
  353. ps_cmd.cmdBitLen = 0;
  354. ps_cmd.addr = 0;
  355. ps_cmd.addrBitLen = 0;
  356. ps_cmd.rxData = NULL;
  357. ps_cmd.rxDataBitLen = 0;
  358. ps_cmd.dummyBitLen = 0;
  359. psram_cmd_config(spi_num, &ps_cmd);
  360. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI);
  361. psram_cmd_end(spi_num);
  362. }
  363. //read psram id, should issue `psram_disable_qio_mode` before calling this
  364. static void psram_read_id(psram_spi_num_t spi_num, uint64_t* dev_id)
  365. {
  366. uint32_t dummy_bits = 0 + extra_dummy;
  367. uint32_t psram_id[2] = {0};
  368. psram_cmd_t ps_cmd;
  369. uint32_t addr = 0;
  370. ps_cmd.addrBitLen = 3 * 8;
  371. ps_cmd.cmd = PSRAM_DEVICE_ID;
  372. ps_cmd.cmdBitLen = 8;
  373. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  374. switch (s_psram_mode) {
  375. case PSRAM_CACHE_F80M_S80M:
  376. break;
  377. case PSRAM_CACHE_F80M_S40M:
  378. case PSRAM_CACHE_F40M_S40M:
  379. default:
  380. ps_cmd.cmdBitLen = 2; //this two bits is used to delay 2 clock cycle
  381. ps_cmd.cmd = 0;
  382. addr = (PSRAM_DEVICE_ID << 24) | 0;
  383. ps_cmd.addrBitLen = 4 * 8;
  384. break;
  385. }
  386. }
  387. ps_cmd.addr = &addr;
  388. ps_cmd.txDataBitLen = 0;
  389. ps_cmd.txData = NULL;
  390. ps_cmd.rxDataBitLen = 8 * 8;
  391. ps_cmd.rxData = psram_id;
  392. ps_cmd.dummyBitLen = dummy_bits;
  393. psram_cmd_config(spi_num, &ps_cmd);
  394. psram_clear_spi_fifo(spi_num);
  395. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI);
  396. psram_cmd_end(spi_num);
  397. *dev_id = (uint64_t)(((uint64_t)psram_id[1] << 32) | psram_id[0]);
  398. }
  399. //enter QPI mode
  400. static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num)
  401. {
  402. psram_cmd_t ps_cmd;
  403. uint32_t addr = (PSRAM_ENTER_QMODE << 24) | 0;
  404. ps_cmd.cmdBitLen = 0;
  405. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  406. switch (s_psram_mode) {
  407. case PSRAM_CACHE_F80M_S80M:
  408. break;
  409. case PSRAM_CACHE_F80M_S40M:
  410. case PSRAM_CACHE_F40M_S40M:
  411. default:
  412. ps_cmd.cmdBitLen = 2;
  413. break;
  414. }
  415. }
  416. ps_cmd.cmd = 0;
  417. ps_cmd.addr = &addr;
  418. ps_cmd.addrBitLen = 8;
  419. ps_cmd.txData = NULL;
  420. ps_cmd.txDataBitLen = 0;
  421. ps_cmd.rxData = NULL;
  422. ps_cmd.rxDataBitLen = 0;
  423. ps_cmd.dummyBitLen = 0;
  424. psram_cmd_config(spi_num, &ps_cmd);
  425. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  426. psram_cmd_end(spi_num);
  427. return ESP_OK;
  428. }
  429. #if CONFIG_SPIRAM_2T_MODE
  430. // use SPI user mode to write psram
  431. static void spi_user_psram_write(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
  432. {
  433. uint32_t addr = (PSRAM_QUAD_WRITE << 24) | (address & 0x7fffff);
  434. psram_cmd_t ps_cmd;
  435. ps_cmd.cmdBitLen = 0;
  436. ps_cmd.cmd = 0;
  437. ps_cmd.addr = &addr;
  438. ps_cmd.addrBitLen = 4 * 8;
  439. ps_cmd.txDataBitLen = 32 * 8;
  440. ps_cmd.txData = NULL;
  441. ps_cmd.rxDataBitLen = 0;
  442. ps_cmd.rxData = NULL;
  443. ps_cmd.dummyBitLen = 0;
  444. for(uint32_t i=0; i<data_len; i+=32) {
  445. psram_clear_spi_fifo(spi_num);
  446. addr = (PSRAM_QUAD_WRITE << 24) | ((address & 0x7fffff) + i);
  447. ps_cmd.txData = data_buffer + (i / 4);
  448. psram_cmd_config(spi_num, &ps_cmd);
  449. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
  450. }
  451. psram_cmd_end(spi_num);
  452. }
  453. // use SPI user mode to read psram
  454. static void spi_user_psram_read(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
  455. {
  456. uint32_t addr = (PSRAM_FAST_READ_QUAD << 24) | (address & 0x7fffff);
  457. uint32_t dummy_bits = PSRAM_FAST_READ_QUAD_DUMMY + 1;
  458. psram_cmd_t ps_cmd;
  459. ps_cmd.cmdBitLen = 0;
  460. ps_cmd.cmd = 0;
  461. ps_cmd.addr = &addr;
  462. ps_cmd.addrBitLen = 4 * 8;
  463. ps_cmd.txDataBitLen = 0;
  464. ps_cmd.txData = NULL;
  465. ps_cmd.rxDataBitLen = 32 * 8;
  466. ps_cmd.dummyBitLen = dummy_bits + extra_dummy;
  467. for(uint32_t i=0; i<data_len; i+=32) {
  468. psram_clear_spi_fifo(spi_num);
  469. addr = (PSRAM_FAST_READ_QUAD << 24) | ((address & 0x7fffff) + i);
  470. ps_cmd.rxData = data_buffer + (i / 4);
  471. psram_cmd_config(spi_num, &ps_cmd);
  472. psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
  473. }
  474. psram_cmd_end(spi_num);
  475. }
  476. //enable psram 2T mode
  477. static esp_err_t IRAM_ATTR psram_2t_mode_enable(psram_spi_num_t spi_num)
  478. {
  479. psram_disable_qio_mode(spi_num);
  480. // configure psram clock as 5 MHz
  481. uint32_t div = rtc_clk_apb_freq_get() / 5000000;
  482. esp_rom_spiflash_config_clk(div, spi_num);
  483. psram_cmd_t ps_cmd;
  484. // setp1: send cmd 0x5e
  485. // send one more bit clock after send cmd
  486. ps_cmd.cmd = 0x5e;
  487. ps_cmd.cmdBitLen = 8;
  488. ps_cmd.addrBitLen = 0;
  489. ps_cmd.addr = 0;
  490. ps_cmd.txDataBitLen = 0;
  491. ps_cmd.txData = NULL;
  492. ps_cmd.rxDataBitLen =0;
  493. ps_cmd.rxData = NULL;
  494. ps_cmd.dummyBitLen = 1;
  495. psram_cmd_config(spi_num, &ps_cmd);
  496. psram_clear_spi_fifo(spi_num);
  497. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  498. psram_cmd_end(spi_num);
  499. // setp2: send cmd 0x5f
  500. // send one more bit clock after send cmd
  501. ps_cmd.cmd = 0x5f;
  502. psram_cmd_config(spi_num, &ps_cmd);
  503. psram_clear_spi_fifo(spi_num);
  504. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  505. psram_cmd_end(spi_num);
  506. // setp3: keep cs as high level
  507. // send 128 cycles clock
  508. // send 1 bit high levle in ninth clock from the back to PSRAM SIO1
  509. GPIO_OUTPUT_SET(D0WD_PSRAM_CS_IO, 1);
  510. gpio_matrix_out(D0WD_PSRAM_CS_IO, SIG_GPIO_OUT_IDX, 0, 0);
  511. gpio_matrix_out(PSRAM_SPID_SD1_IO, SPIQ_OUT_IDX, 0, 0);
  512. gpio_matrix_in(PSRAM_SPID_SD1_IO, SPIQ_IN_IDX, 0);
  513. gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPID_OUT_IDX, 0, 0);
  514. gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPID_IN_IDX, 0);
  515. uint32_t w_data_2t[4] = {0x0, 0x0, 0x0, 0x00010000};
  516. ps_cmd.cmd = 0;
  517. ps_cmd.cmdBitLen = 0;
  518. ps_cmd.txDataBitLen = 128;
  519. ps_cmd.txData = w_data_2t;
  520. ps_cmd.dummyBitLen = 0;
  521. psram_clear_spi_fifo(spi_num);
  522. psram_cmd_config(spi_num, &ps_cmd);
  523. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  524. psram_cmd_end(spi_num);
  525. gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPIQ_OUT_IDX, 0, 0);
  526. gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPIQ_IN_IDX, 0);
  527. gpio_matrix_out(PSRAM_SPID_SD1_IO, SPID_OUT_IDX, 0, 0);
  528. gpio_matrix_in(PSRAM_SPID_SD1_IO, SPID_IN_IDX, 0);
  529. gpio_matrix_out(D0WD_PSRAM_CS_IO, SPICS1_OUT_IDX, 0, 0);
  530. // setp4: send cmd 0x5f
  531. // send one more bit clock after send cmd
  532. ps_cmd.cmd = 0x5f;
  533. ps_cmd.cmdBitLen = 8;
  534. ps_cmd.txDataBitLen = 0;
  535. ps_cmd.txData = NULL;
  536. ps_cmd.dummyBitLen = 1;
  537. psram_cmd_config(spi_num, &ps_cmd);
  538. psram_clear_spi_fifo(spi_num);
  539. psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
  540. psram_cmd_end(spi_num);
  541. // configure psram clock back to the default value
  542. switch (s_psram_mode) {
  543. case PSRAM_CACHE_F80M_S40M:
  544. case PSRAM_CACHE_F40M_S40M:
  545. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, spi_num);
  546. break;
  547. case PSRAM_CACHE_F80M_S80M:
  548. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, spi_num);
  549. break;
  550. default:
  551. break;
  552. }
  553. psram_enable_qio_mode(spi_num);
  554. return ESP_OK;
  555. }
  556. #define CHECK_DATA_LEN (1024)
  557. #define CHECK_ADDR_STEP (0x100000)
  558. #define SIZE_32MBIT (0x400000)
  559. #define SIZE_64MBIT (0x800000)
  560. static esp_err_t psram_2t_mode_check(psram_spi_num_t spi_num)
  561. {
  562. uint8_t w_check_data[CHECK_DATA_LEN] = {0};
  563. uint8_t r_check_data[CHECK_DATA_LEN] = {0};
  564. for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
  565. spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
  566. }
  567. memset(w_check_data, 0xff, sizeof(w_check_data));
  568. for (uint32_t addr=SIZE_32MBIT; addr<SIZE_64MBIT; addr+=CHECK_ADDR_STEP) {
  569. spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
  570. }
  571. for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
  572. spi_user_psram_read(spi_num, addr, (uint32_t *)r_check_data, CHECK_DATA_LEN);
  573. for (uint32_t j=0; j<CHECK_DATA_LEN; j++) {
  574. if (r_check_data[j] != 0xff) {
  575. return ESP_FAIL;
  576. }
  577. }
  578. }
  579. return ESP_OK;
  580. }
  581. #endif
  582. void psram_set_cs_timing(psram_spi_num_t spi_num, psram_clk_mode_t clk_mode)
  583. {
  584. if (clk_mode == PSRAM_CLK_MODE_NORM) {
  585. SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  586. // Set cs time.
  587. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_HOLD_TIME_V, 1, SPI_HOLD_TIME_S);
  588. SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_SETUP_TIME_V, 0, SPI_SETUP_TIME_S);
  589. } else {
  590. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
  591. }
  592. }
  593. //spi param init for psram
  594. void IRAM_ATTR psram_spi_init(psram_spi_num_t spi_num, psram_cache_mode_t mode)
  595. {
  596. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_TRANS_DONE << 5);
  597. // SPI_CPOL & SPI_CPHA
  598. CLEAR_PERI_REG_MASK(SPI_PIN_REG(spi_num), SPI_CK_IDLE_EDGE);
  599. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CK_OUT_EDGE);
  600. // SPI bit order
  601. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_WR_BIT_ORDER);
  602. CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_RD_BIT_ORDER);
  603. // SPI bit order
  604. CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_DOUTDIN);
  605. // May be not must to do.
  606. WRITE_PERI_REG(SPI_USER1_REG(spi_num), 0);
  607. // SPI mode type
  608. CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_SLAVE_MODE);
  609. memset((void*)SPI_W0_REG(spi_num), 0, 16 * 4);
  610. psram_set_cs_timing(spi_num, s_clk_mode);
  611. }
  612. //psram gpio init , different working frequency we have different solutions
  613. static void IRAM_ATTR psram_gpio_config(psram_io_t *psram_io, psram_cache_mode_t mode)
  614. {
  615. int spi_cache_dummy = 0;
  616. uint32_t rd_mode_reg = READ_PERI_REG(SPI_CTRL_REG(0));
  617. if (rd_mode_reg & SPI_FREAD_QIO_M) {
  618. spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN;
  619. } else if (rd_mode_reg & SPI_FREAD_DIO_M) {
  620. spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN;
  621. SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_ADDR_BITLEN_V, SPI0_R_DIO_ADDR_BITSLEN, SPI_USR_ADDR_BITLEN_S);
  622. } else if (rd_mode_reg & (SPI_FREAD_QUAD_M | SPI_FREAD_DUAL_M)) {
  623. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  624. } else {
  625. spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
  626. }
  627. switch (mode) {
  628. case PSRAM_CACHE_F80M_S40M:
  629. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  630. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  631. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  632. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  633. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  634. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  635. //set drive ability for clock
  636. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  637. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  638. break;
  639. case PSRAM_CACHE_F80M_S80M:
  640. extra_dummy = PSRAM_IO_MATRIX_DUMMY_80M;
  641. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  642. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
  643. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  644. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
  645. esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_FLASH_PORT);
  646. //set drive ability for clock
  647. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
  648. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 3, FUN_DRV_S);
  649. break;
  650. case PSRAM_CACHE_F40M_S40M:
  651. extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
  652. g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  653. g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
  654. SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
  655. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_CACHE_PORT);
  656. esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
  657. //set drive ability for clock
  658. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 2, FUN_DRV_S);
  659. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
  660. break;
  661. default:
  662. break;
  663. }
  664. SET_PERI_REG_MASK(SPI_USER_REG(0), SPI_USR_DUMMY); // dummy enable
  665. // In bootloader, all the signals are already configured,
  666. // We keep the following code in case the bootloader is some older version.
  667. gpio_matrix_out(psram_io->flash_cs_io, SPICS0_OUT_IDX, 0, 0);
  668. gpio_matrix_out(psram_io->psram_cs_io, SPICS1_OUT_IDX, 0, 0);
  669. gpio_matrix_out(psram_io->psram_spiq_sd0_io, SPIQ_OUT_IDX, 0, 0);
  670. gpio_matrix_in(psram_io->psram_spiq_sd0_io, SPIQ_IN_IDX, 0);
  671. gpio_matrix_out(psram_io->psram_spid_sd1_io, SPID_OUT_IDX, 0, 0);
  672. gpio_matrix_in(psram_io->psram_spid_sd1_io, SPID_IN_IDX, 0);
  673. gpio_matrix_out(psram_io->psram_spiwp_sd3_io, SPIWP_OUT_IDX, 0, 0);
  674. gpio_matrix_in(psram_io->psram_spiwp_sd3_io, SPIWP_IN_IDX, 0);
  675. gpio_matrix_out(psram_io->psram_spihd_sd2_io, SPIHD_OUT_IDX, 0, 0);
  676. gpio_matrix_in(psram_io->psram_spihd_sd2_io, SPIHD_IN_IDX, 0);
  677. //select pin function gpio
  678. if ((psram_io->flash_clk_io == SPI_IOMUX_PIN_NUM_CLK) && (psram_io->flash_clk_io != psram_io->psram_clk_io)) {
  679. //flash clock signal should come from IO MUX.
  680. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUNC_SD_CLK_SPICLK);
  681. } else {
  682. //flash clock signal should come from GPIO matrix.
  683. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], PIN_FUNC_GPIO);
  684. }
  685. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], PIN_FUNC_GPIO);
  686. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], PIN_FUNC_GPIO);
  687. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], PIN_FUNC_GPIO);
  688. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], PIN_FUNC_GPIO);
  689. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], PIN_FUNC_GPIO);
  690. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], PIN_FUNC_GPIO);
  691. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], PIN_FUNC_GPIO);
  692. uint32_t flash_id = g_rom_flashchip.device_id;
  693. if (flash_id == FLASH_ID_GD25LQ32C) {
  694. // Set drive ability for 1.8v flash in 80Mhz.
  695. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  696. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  697. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
  698. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
  699. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], FUN_DRV_V, 3, FUN_DRV_S);
  700. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], FUN_DRV_V, 3, FUN_DRV_S);
  701. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], FUN_DRV_V, 3, FUN_DRV_S);
  702. SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], FUN_DRV_V, 3, FUN_DRV_S);
  703. }
  704. }
  705. psram_size_t psram_get_size(void)
  706. {
  707. if ((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id)) {
  708. return s_2t_mode_enabled ? PSRAM_SIZE_32MBITS : PSRAM_SIZE_64MBITS;
  709. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_32MBITS) {
  710. return PSRAM_SIZE_32MBITS;
  711. } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_16MBITS) {
  712. return PSRAM_SIZE_16MBITS;
  713. } else {
  714. return PSRAM_SIZE_MAX;
  715. }
  716. }
  717. //used in UT only
  718. bool psram_is_32mbit_ver0(void)
  719. {
  720. return PSRAM_IS_32MBIT_VER0(s_psram_id);
  721. }
  722. /*
  723. * Psram mode init will overwrite original flash speed mode, so that it is possible to change psram and flash speed after OTA.
  724. * Flash read mode(QIO/QOUT/DIO/DOUT) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
  725. */
  726. esp_err_t IRAM_ATTR psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode) //psram init
  727. {
  728. psram_io_t psram_io={0};
  729. uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
  730. uint32_t pkg_ver = chip_ver & 0x7;
  731. if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
  732. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D2WD");
  733. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  734. if (cfg.tieh != RTC_VDDSDIO_TIEH_1_8V) {
  735. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 1.8V");
  736. return ESP_FAIL;
  737. }
  738. psram_io.psram_clk_io = D2WD_PSRAM_CLK_IO;
  739. psram_io.psram_cs_io = D2WD_PSRAM_CS_IO;
  740. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
  741. ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO");
  742. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  743. if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
  744. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
  745. return ESP_FAIL;
  746. }
  747. s_clk_mode = PSRAM_CLK_MODE_NORM;
  748. psram_io.psram_clk_io = PICO_PSRAM_CLK_IO;
  749. psram_io.psram_cs_io = PICO_PSRAM_CS_IO;
  750. } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) {
  751. ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO-V3-02");
  752. rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
  753. if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
  754. ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
  755. return ESP_FAIL;
  756. }
  757. s_clk_mode = PSRAM_CLK_MODE_NORM;
  758. psram_io.psram_clk_io = PICO_V3_02_PSRAM_CLK_IO;
  759. psram_io.psram_cs_io = PICO_V3_02_PSRAM_CS_IO;
  760. } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)){
  761. ESP_EARLY_LOGI(TAG, "This chip is ESP32-D0WD");
  762. psram_io.psram_clk_io = D0WD_PSRAM_CLK_IO;
  763. psram_io.psram_cs_io = D0WD_PSRAM_CS_IO;
  764. } else {
  765. ESP_EARLY_LOGE(TAG, "Not a valid or known package id: %d", pkg_ver);
  766. abort();
  767. }
  768. const uint32_t spiconfig = ets_efuse_get_spiconfig();
  769. if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) {
  770. psram_io.flash_clk_io = SPI_IOMUX_PIN_NUM_CLK;
  771. psram_io.flash_cs_io = SPI_IOMUX_PIN_NUM_CS;
  772. psram_io.psram_spiq_sd0_io = PSRAM_SPIQ_SD0_IO;
  773. psram_io.psram_spid_sd1_io = PSRAM_SPID_SD1_IO;
  774. psram_io.psram_spiwp_sd3_io = PSRAM_SPIWP_SD3_IO;
  775. psram_io.psram_spihd_sd2_io = PSRAM_SPIHD_SD2_IO;
  776. } else if (spiconfig == EFUSE_SPICONFIG_HSPI_DEFAULTS) {
  777. psram_io.flash_clk_io = FLASH_HSPI_CLK_IO;
  778. psram_io.flash_cs_io = FLASH_HSPI_CS_IO;
  779. psram_io.psram_spiq_sd0_io = PSRAM_HSPI_SPIQ_SD0_IO;
  780. psram_io.psram_spid_sd1_io = PSRAM_HSPI_SPID_SD1_IO;
  781. psram_io.psram_spiwp_sd3_io = PSRAM_HSPI_SPIWP_SD3_IO;
  782. psram_io.psram_spihd_sd2_io = PSRAM_HSPI_SPIHD_SD2_IO;
  783. } else {
  784. psram_io.flash_clk_io = EFUSE_SPICONFIG_RET_SPICLK(spiconfig);
  785. psram_io.flash_cs_io = EFUSE_SPICONFIG_RET_SPICS0(spiconfig);
  786. psram_io.psram_spiq_sd0_io = EFUSE_SPICONFIG_RET_SPIQ(spiconfig);
  787. psram_io.psram_spid_sd1_io = EFUSE_SPICONFIG_RET_SPID(spiconfig);
  788. psram_io.psram_spihd_sd2_io = EFUSE_SPICONFIG_RET_SPIHD(spiconfig);
  789. psram_io.psram_spiwp_sd3_io = bootloader_flash_get_wp_pin();
  790. }
  791. assert(mode < PSRAM_CACHE_MAX && "we don't support any other mode for now.");
  792. s_psram_mode = mode;
  793. WRITE_PERI_REG(SPI_EXT3_REG(0), 0x1);
  794. CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_PREP_HOLD_M);
  795. psram_spi_init(PSRAM_SPI_1, mode);
  796. switch (mode) {
  797. case PSRAM_CACHE_F80M_S80M:
  798. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  799. break;
  800. case PSRAM_CACHE_F80M_S40M:
  801. case PSRAM_CACHE_F40M_S40M:
  802. default:
  803. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  804. /* We need to delay CLK to the PSRAM with respect to the clock signal as output by the SPI peripheral.
  805. We do this by routing it signal to signal 224/225, which are used as a loopback; the extra run through
  806. the GPIO matrix causes the delay. We use GPIO20 (which is not in any package but has pad logic in
  807. silicon) as a temporary pad for this. So the signal path is:
  808. SPI CLK --> GPIO28 --> signal224(in then out) --> internal GPIO29 --> signal225(in then out) --> GPIO17(PSRAM CLK)
  809. */
  810. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SPICLK_OUT_IDX, 0, 0);
  811. gpio_matrix_in(PSRAM_INTERNAL_IO_28, SIG_IN_FUNC224_IDX, 0);
  812. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC224_IDX, 0, 0);
  813. gpio_matrix_in(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC225_IDX, 0);
  814. gpio_matrix_out(psram_io.psram_clk_io, SIG_IN_FUNC225_IDX, 0, 0);
  815. } else {
  816. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  817. }
  818. break;
  819. }
  820. // Rise VDDSIO for 1.8V psram.
  821. bootloader_common_vddsdio_configure();
  822. // GPIO related settings
  823. psram_gpio_config(&psram_io, mode);
  824. psram_spi_num_t spi_num = PSRAM_SPI_1;
  825. psram_disable_qio_mode(spi_num);
  826. psram_read_id(spi_num, &s_psram_id);
  827. if (!PSRAM_IS_VALID(s_psram_id)) {
  828. /* 16Mbit psram ID read error workaround:
  829. * treat the first read id as a dummy one as the pre-condition,
  830. * Send Read ID command again
  831. */
  832. psram_read_id(spi_num, &s_psram_id);
  833. if (!PSRAM_IS_VALID(s_psram_id)) {
  834. ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08x", (uint32_t)s_psram_id);
  835. return ESP_FAIL;
  836. }
  837. }
  838. if (psram_is_32mbit_ver0()) {
  839. s_clk_mode = PSRAM_CLK_MODE_DCLK;
  840. if (mode == PSRAM_CACHE_F80M_S80M) {
  841. #ifdef CONFIG_SPIRAM_OCCUPY_NO_HOST
  842. ESP_EARLY_LOGE(TAG, "This version of PSRAM needs to claim an extra SPI peripheral at 80MHz. Please either: choose lower frequency by SPIRAM_SPEED_, or select one SPI peripheral it by SPIRAM_OCCUPY_*SPI_HOST in the menuconfig.");
  843. abort();
  844. #else
  845. /* note: If the third mode(80Mhz+80Mhz) is enabled for 32MBit 1V8 psram, one of HSPI/VSPI port will be
  846. occupied by the system (according to kconfig).
  847. Application code should never touch HSPI/VSPI hardware in this case. We try to stop applications
  848. from doing this using the drivers by claiming the port for ourselves */
  849. periph_module_enable(PSRAM_SPI_MODULE);
  850. bool r=spicommon_periph_claim(PSRAM_SPI_HOST, "psram");
  851. if (!r) {
  852. return ESP_ERR_INVALID_STATE;
  853. }
  854. gpio_matrix_out(psram_io.psram_clk_io, PSRAM_CLK_SIGNAL, 0, 0);
  855. //use spi3 clock,but use spi1 data/cs wires
  856. //We get a solid 80MHz clock from SPI3 by setting it up, starting a transaction, waiting until it
  857. //is in progress, then cutting the clock (but not the reset!) to that peripheral.
  858. WRITE_PERI_REG(SPI_ADDR_REG(PSRAM_SPI_NUM), 32 << 24);
  859. SET_PERI_REG_MASK(SPI_CMD_REG(PSRAM_SPI_NUM), SPI_FLASH_READ_M);
  860. uint32_t spi_status;
  861. while (1) {
  862. spi_status = READ_PERI_REG(SPI_EXT2_REG(PSRAM_SPI_NUM));
  863. if (spi_status != 0 && spi_status != 1) {
  864. DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, PSRAM_SPICLKEN);
  865. break;
  866. }
  867. }
  868. #endif
  869. }
  870. } else {
  871. // For other psram, we don't need any extra clock cycles after cs get back to high level
  872. s_clk_mode = PSRAM_CLK_MODE_NORM;
  873. gpio_matrix_out(PSRAM_INTERNAL_IO_28, SIG_GPIO_OUT_IDX, 0, 0);
  874. gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_GPIO_OUT_IDX, 0, 0);
  875. gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
  876. }
  877. // Update cs timing according to psram driving method.
  878. psram_set_cs_timing(PSRAM_SPI_1, s_clk_mode);
  879. psram_set_cs_timing(_SPI_CACHE_PORT, s_clk_mode);
  880. psram_enable_qio_mode(PSRAM_SPI_1);
  881. if(((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id))) {
  882. #if CONFIG_SPIRAM_2T_MODE
  883. #if CONFIG_SPIRAM_BANKSWITCH_ENABLE
  884. ESP_EARLY_LOGE(TAG, "PSRAM 2T mode and SPIRAM bank switching can not enabled meanwhile. Please read the help text for SPIRAM_2T_MODE in the project configuration menu.");
  885. abort();
  886. #endif
  887. /* Note: 2T mode command should not be sent twice,
  888. otherwise psram would get back to normal mode. */
  889. if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
  890. psram_2t_mode_enable(PSRAM_SPI_1);
  891. if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
  892. ESP_EARLY_LOGE(TAG, "PSRAM 2T mode enable fail!");
  893. return ESP_FAIL;
  894. }
  895. }
  896. s_2t_mode_enabled = true;
  897. ESP_EARLY_LOGI(TAG, "PSRAM is in 2T mode");
  898. #endif
  899. }
  900. psram_cache_init(mode, vaddrmode);
  901. return ESP_OK;
  902. }
  903. //register initialization for sram cache params and r/w commands
  904. static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode)
  905. {
  906. switch (psram_cache_mode) {
  907. case PSRAM_CACHE_F80M_S80M:
  908. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk,80+40;
  909. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0. FLASH DIV 2+SRAM DIV4
  910. break;
  911. case PSRAM_CACHE_F80M_S40M:
  912. CLEAR_PERI_REG_MASK(SPI_CLOCK_REG(0), SPI_CLK_EQU_SYSCLK_M);
  913. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKDIV_PRE_V, 0, SPI_CLKDIV_PRE_S);
  914. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_N, 1, SPI_CLKCNT_N_S);
  915. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_H, 0, SPI_CLKCNT_H_S);
  916. SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_L, 1, SPI_CLKCNT_L_S);
  917. SET_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  918. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0.
  919. break;
  920. case PSRAM_CACHE_F40M_S40M:
  921. default:
  922. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
  923. CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div
  924. break;
  925. }
  926. CLEAR_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_DIO_M); //disable dio mode for cache command
  927. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_QIO_M); //enable qio mode for cache command
  928. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_RCMD_M); //enable cache read command
  929. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_WCMD_M); //enable cache write command
  930. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_ADDR_BITLEN_V, 23, SPI_SRAM_ADDR_BITLEN_S); //write address for cache command.
  931. SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_RD_SRAM_DUMMY_M); //enable cache read dummy
  932. //config sram cache r/w command
  933. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7,
  934. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S);
  935. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD,
  936. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB
  937. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 7,
  938. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S);
  939. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE,
  940. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38
  941. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  942. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  943. switch (psram_cache_mode) {
  944. case PSRAM_CACHE_F80M_S80M: //in this mode , no delay is needed
  945. break;
  946. case PSRAM_CACHE_F80M_S40M: //if sram is @40M, need 2 cycles of delay
  947. case PSRAM_CACHE_F40M_S40M:
  948. default:
  949. if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
  950. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 15,
  951. SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S); //read command length, 2 bytes(1byte for delay),sending in qio mode in cache
  952. SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, ((PSRAM_FAST_READ_QUAD) << 8),
  953. SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB, read command value,(0x00 for delay,0xeb for cmd)
  954. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 15,
  955. SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S); //write command length,2 bytes(1byte for delay,send in qio mode in cache)
  956. SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, ((PSRAM_QUAD_WRITE) << 8),
  957. SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38, write command value,(0x00 for delay)
  958. SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
  959. SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
  960. }
  961. break;
  962. }
  963. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL|DPORT_PRO_DRAM_SPLIT);
  964. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL|DPORT_APP_DRAM_SPLIT);
  965. if (vaddrmode == PSRAM_VADDR_MODE_LOWHIGH) {
  966. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL);
  967. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL);
  968. } else if (vaddrmode == PSRAM_VADDR_MODE_EVENODD) {
  969. DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_SPLIT);
  970. DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_SPLIT);
  971. }
  972. DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DRAM1|DPORT_PRO_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  973. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  974. DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CMMU_SRAM_PAGE_MODE, 0, DPORT_PRO_CMMU_SRAM_PAGE_MODE_S);
  975. DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1|DPORT_APP_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
  976. //cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
  977. DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CMMU_SRAM_PAGE_MODE, 0, DPORT_APP_CMMU_SRAM_PAGE_MODE_S);
  978. CLEAR_PERI_REG_MASK(SPI_PIN_REG(0), SPI_CS1_DIS_M); //ENABLE SPI0 CS1 TO PSRAM(CS0--FLASH; CS1--SRAM)
  979. }
  980. #endif // CONFIG_SPIRAM