| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392 |
- // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <stdint.h>
- #include "esp_types.h"
- #include "driver/adc.h"
- #include "soc/efuse_periph.h"
- #include "esp_err.h"
- #include "assert.h"
- #include "esp_adc_cal.h"
- /* ----------------------------- Configuration ------------------------------ */
- #ifdef CONFIG_ADC_CAL_EFUSE_TP_ENABLE
- #define EFUSE_TP_ENABLED 1
- #else
- #define EFUSE_TP_ENABLED 0
- #endif
- #ifdef CONFIG_ADC_CAL_EFUSE_VREF_ENABLE
- #define EFUSE_VREF_ENABLED 1
- #else
- #define EFUSE_VREF_ENABLED 0
- #endif
- #ifdef CONFIG_ADC_CAL_LUT_ENABLE
- #define LUT_ENABLED 1
- #else
- #define LUT_ENABLED 0
- #endif
- /* ESP32s with both Two Point Values and Vref burned into eFuse are required to
- * also also burn the EFUSE_BLK3_PART_RESERVE flag. A limited set of ESP32s
- * (not available through regular sales channel) DO NOT have the
- * EFUSE_BLK3_PART_RESERVE burned. Moreover, this set of ESP32s represents Vref
- * in Two's Complement format. If this is the case, modify the preprocessor
- * definitions below as follows...
- * #define CHECK_BLK3_FLAG 0 //Do not check BLK3 flag as it is not burned
- * #define VREF_FORMAT 1 //eFuse Vref is in Two's Complement format
- */
- #define CHECK_BLK3_FLAG 1
- #define VREF_FORMAT 0
- /* ------------------------------ eFuse Access ----------------------------- */
- #define BLK3_RESERVED_REG EFUSE_BLK0_RDATA3_REG
- #define VREF_REG EFUSE_BLK0_RDATA4_REG
- #define VREF_MASK 0x1F
- #define VREF_STEP_SIZE 7
- #define VREF_OFFSET 1100
- #define TP_REG EFUSE_BLK3_RDATA3_REG
- #define TP_LOW1_OFFSET 278
- #define TP_LOW2_OFFSET 421
- #define TP_LOW_MASK 0x7F
- #define TP_LOW_VOLTAGE 150
- #define TP_HIGH1_OFFSET 3265
- #define TP_HIGH2_OFFSET 3406
- #define TP_HIGH_MASK 0x1FF
- #define TP_HIGH_VOLTAGE 850
- #define TP_STEP_SIZE 4
- /* ----------------------- Raw to Voltage Constants ------------------------- */
- #define LIN_COEFF_A_SCALE 65536
- #define LIN_COEFF_A_ROUND (LIN_COEFF_A_SCALE/2)
- #define LUT_VREF_LOW 1000
- #define LUT_VREF_HIGH 1200
- #define LUT_ADC_STEP_SIZE 64
- #define LUT_POINTS 20
- #define LUT_LOW_THRESH 2880
- #define LUT_HIGH_THRESH (LUT_LOW_THRESH + LUT_ADC_STEP_SIZE)
- #define ADC_12_BIT_RES 4096
- #define ADC_CAL_CHECK(cond, ret) ({ \
- if(!(cond)){ \
- return ret; \
- } \
- })
- /* ------------------------ Characterization Constants ---------------------- */
- static const uint32_t adc1_tp_atten_scale[4] = {65504, 86975, 120389, 224310};
- static const uint32_t adc2_tp_atten_scale[4] = {65467, 86861, 120416, 224708};
- static const uint32_t adc1_tp_atten_offset[4] = {0, 1, 27, 54};
- static const uint32_t adc2_tp_atten_offset[4] = {0, 9, 26, 66};
- static const uint32_t adc1_vref_atten_scale[4] = {57431, 76236, 105481, 196602};
- static const uint32_t adc2_vref_atten_scale[4] = {57236, 76175, 105678, 197170};
- static const uint32_t adc1_vref_atten_offset[4] = {75, 78, 107, 142};
- static const uint32_t adc2_vref_atten_offset[4] = {63, 66, 89, 128};
- //20 Point lookup tables, covering ADC readings from 2880 to 4096, step size of 64
- static const uint32_t lut_adc1_low[LUT_POINTS] = {2240, 2297, 2352, 2405, 2457, 2512, 2564, 2616, 2664, 2709,
- 2754, 2795, 2832, 2868, 2903, 2937, 2969, 3000, 3030, 3060};
- static const uint32_t lut_adc1_high[LUT_POINTS] = {2667, 2706, 2745, 2780, 2813, 2844, 2873, 2901, 2928, 2956,
- 2982, 3006, 3032, 3059, 3084, 3110, 3135, 3160, 3184, 3209};
- static const uint32_t lut_adc2_low[LUT_POINTS] = {2238, 2293, 2347, 2399, 2451, 2507, 2561, 2613, 2662, 2710,
- 2754, 2792, 2831, 2869, 2904, 2937, 2968, 2999, 3029, 3059};
- static const uint32_t lut_adc2_high[LUT_POINTS] = {2657, 2698, 2738, 2774, 2807, 2838, 2867, 2894, 2921, 2946,
- 2971, 2996, 3020, 3043, 3067, 3092, 3116, 3139, 3162, 3185};
- /* ----------------------- EFuse Access Functions --------------------------- */
- static bool check_efuse_vref(void)
- {
- //Check if Vref is burned in eFuse
- return (REG_GET_FIELD(VREF_REG, EFUSE_RD_ADC_VREF) != 0) ? true : false;
- }
- static bool check_efuse_tp(void)
- {
- //Check if Two Point values are burned in eFuse
- if (CHECK_BLK3_FLAG && (REG_GET_FIELD(BLK3_RESERVED_REG, EFUSE_RD_BLK3_PART_RESERVE) == 0)) {
- return false;
- }
- //All TP cal values must be non zero
- if ((REG_GET_FIELD(TP_REG, EFUSE_RD_ADC1_TP_LOW) != 0) &&
- (REG_GET_FIELD(TP_REG, EFUSE_RD_ADC2_TP_LOW) != 0) &&
- (REG_GET_FIELD(TP_REG, EFUSE_RD_ADC1_TP_HIGH) != 0) &&
- (REG_GET_FIELD(TP_REG, EFUSE_RD_ADC2_TP_HIGH) != 0)) {
- return true;
- } else {
- return false;
- }
- }
- static inline int decode_bits(uint32_t bits, uint32_t mask, bool is_twos_compl)
- {
- int ret;
- if (bits & (~(mask >> 1) & mask)) { //Check sign bit (MSB of mask)
- //Negative
- if (is_twos_compl) {
- ret = -(((~bits) + 1) & (mask >> 1)); //2's complement
- } else {
- ret = -(bits & (mask >> 1)); //Sign-magnitude
- }
- } else {
- //Positive
- ret = bits & (mask >> 1);
- }
- return ret;
- }
- static uint32_t read_efuse_vref(void)
- {
- //eFuse stores deviation from ideal reference voltage
- uint32_t ret = VREF_OFFSET; //Ideal vref
- uint32_t bits = REG_GET_FIELD(VREF_REG, EFUSE_ADC_VREF);
- ret += decode_bits(bits, VREF_MASK, VREF_FORMAT) * VREF_STEP_SIZE;
- return ret; //ADC Vref in mV
- }
- static uint32_t read_efuse_tp_low(adc_unit_t adc_num)
- {
- //ADC reading at 150mV stored in two's complement format
- uint32_t ret;
- uint32_t bits;
- if (adc_num == ADC_UNIT_1) {
- ret = TP_LOW1_OFFSET;
- bits = REG_GET_FIELD(TP_REG, EFUSE_RD_ADC1_TP_LOW);
- } else {
- ret = TP_LOW2_OFFSET;
- bits = REG_GET_FIELD(TP_REG, EFUSE_RD_ADC2_TP_LOW);
- }
- ret += decode_bits(bits, TP_LOW_MASK, true) * TP_STEP_SIZE;
- return ret; //Reading of ADC at 150mV
- }
- static uint32_t read_efuse_tp_high(adc_unit_t adc_num)
- {
- //ADC reading at 850mV stored in two's complement format
- uint32_t ret;
- uint32_t bits;
- if (adc_num == ADC_UNIT_1) {
- ret = TP_HIGH1_OFFSET;
- bits = REG_GET_FIELD(TP_REG, EFUSE_RD_ADC1_TP_HIGH);
- } else {
- ret = TP_HIGH2_OFFSET;
- bits = REG_GET_FIELD(TP_REG, EFUSE_RD_ADC2_TP_HIGH);
- }
- ret += decode_bits(bits, TP_HIGH_MASK, true) * TP_STEP_SIZE;
- return ret; //Reading of ADC at 850mV
- }
- /* ----------------------- Characterization Functions ----------------------- */
- static void characterize_using_two_point(adc_unit_t adc_num,
- adc_atten_t atten,
- uint32_t high,
- uint32_t low,
- uint32_t *coeff_a,
- uint32_t *coeff_b)
- {
- const uint32_t *atten_scales;
- const uint32_t *atten_offsets;
- if (adc_num == ADC_UNIT_1) { //Using ADC 1
- atten_scales = adc1_tp_atten_scale;
- atten_offsets = adc1_tp_atten_offset;
- } else { //Using ADC 2
- atten_scales = adc2_tp_atten_scale;
- atten_offsets = adc2_tp_atten_offset;
- }
- //Characterize ADC-Voltage curve as y = (coeff_a * x) + coeff_b
- uint32_t delta_x = high - low;
- uint32_t delta_v = TP_HIGH_VOLTAGE - TP_LOW_VOLTAGE;
- //Where coeff_a = (delta_v/delta_x) * atten_scale
- *coeff_a = (delta_v * atten_scales[atten] + (delta_x / 2)) / delta_x; //+(delta_x/2) for rounding
- //Where coeff_b = high_v - ((delta_v/delta_x) * high_x) + atten_offset
- *coeff_b = TP_HIGH_VOLTAGE - ((delta_v * high + (delta_x / 2)) / delta_x) + atten_offsets[atten];
- }
- static void characterize_using_vref(adc_unit_t adc_num,
- adc_atten_t atten,
- uint32_t vref,
- uint32_t *coeff_a,
- uint32_t *coeff_b)
- {
- const uint32_t *atten_scales;
- const uint32_t *atten_offsets;
- if (adc_num == ADC_UNIT_1) { //Using ADC 1
- atten_scales = adc1_vref_atten_scale;
- atten_offsets = adc1_vref_atten_offset;
- } else { //Using ADC 2
- atten_scales = adc2_vref_atten_scale;
- atten_offsets = adc2_vref_atten_offset;
- }
- //Characterize ADC-Voltage curve as y = (coeff_a * x) + coeff_b
- //Where coeff_a = (vref/4096) * atten_scale
- *coeff_a = (vref * atten_scales[atten]) / (ADC_12_BIT_RES);
- *coeff_b = atten_offsets[atten];
- }
- /* ------------------------ Conversion Functions --------------------------- */
- static uint32_t calculate_voltage_linear(uint32_t adc_reading, uint32_t coeff_a, uint32_t coeff_b)
- {
- //Where voltage = coeff_a * adc_reading + coeff_b
- return (((coeff_a * adc_reading) + LIN_COEFF_A_ROUND) / LIN_COEFF_A_SCALE) + coeff_b;
- }
- //Only call when ADC reading is above threshold
- static uint32_t calculate_voltage_lut(uint32_t adc, uint32_t vref, const uint32_t *low_vref_curve, const uint32_t *high_vref_curve)
- {
- //Get index of lower bound points of LUT
- uint32_t i = (adc - LUT_LOW_THRESH) / LUT_ADC_STEP_SIZE;
- //Let the X Axis be Vref, Y axis be ADC reading, and Z be voltage
- int x2dist = LUT_VREF_HIGH - vref; //(x2 - x)
- int x1dist = vref - LUT_VREF_LOW; //(x - x1)
- int y2dist = ((i + 1) * LUT_ADC_STEP_SIZE) + LUT_LOW_THRESH - adc; //(y2 - y)
- int y1dist = adc - ((i * LUT_ADC_STEP_SIZE) + LUT_LOW_THRESH); //(y - y1)
- //For points for bilinear interpolation
- int q11 = low_vref_curve[i]; //Lower bound point of low_vref_curve
- int q12 = low_vref_curve[i + 1]; //Upper bound point of low_vref_curve
- int q21 = high_vref_curve[i]; //Lower bound point of high_vref_curve
- int q22 = high_vref_curve[i + 1]; //Upper bound point of high_vref_curve
- //Bilinear interpolation
- //Where z = 1/((x2-x1)*(y2-y1)) * ( (q11*x2dist*y2dist) + (q21*x1dist*y2dist) + (q12*x2dist*y1dist) + (q22*x1dist*y1dist) )
- int voltage = (q11 * x2dist * y2dist) + (q21 * x1dist * y2dist) + (q12 * x2dist * y1dist) + (q22 * x1dist * y1dist);
- voltage += ((LUT_VREF_HIGH - LUT_VREF_LOW) * LUT_ADC_STEP_SIZE) / 2; //Integer division rounding
- voltage /= ((LUT_VREF_HIGH - LUT_VREF_LOW) * LUT_ADC_STEP_SIZE); //Divide by ((x2-x1)*(y2-y1))
- return (uint32_t)voltage;
- }
- static inline uint32_t interpolate_two_points(uint32_t y1, uint32_t y2, uint32_t x_step, uint32_t x)
- {
- //Interpolate between two points (x1,y1) (x2,y2) between 'lower' and 'upper' separated by 'step'
- return ((y1 * x_step) + (y2 * x) - (y1 * x) + (x_step / 2)) / x_step;
- }
- /* ------------------------- Public API ------------------------------------- */
- esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t source)
- {
- if (source == ESP_ADC_CAL_VAL_EFUSE_TP) {
- return (check_efuse_tp()) ? ESP_OK : ESP_ERR_NOT_SUPPORTED;
- } else if (source == ESP_ADC_CAL_VAL_EFUSE_VREF) {
- return (check_efuse_vref()) ? ESP_OK : ESP_ERR_NOT_SUPPORTED;
- } else {
- return ESP_ERR_INVALID_ARG;
- }
- }
- esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
- adc_atten_t atten,
- adc_bits_width_t bit_width,
- uint32_t default_vref,
- esp_adc_cal_characteristics_t *chars)
- {
- //Check parameters
- assert((adc_num == ADC_UNIT_1) || (adc_num == ADC_UNIT_2));
- assert(chars != NULL);
- assert(bit_width < ADC_WIDTH_MAX);
- //Check eFuse if enabled to do so
- bool efuse_tp_present = check_efuse_tp();
- bool efuse_vref_present = check_efuse_vref();
- esp_adc_cal_value_t ret;
- if (efuse_tp_present && EFUSE_TP_ENABLED) {
- //Characterize based on Two Point values
- uint32_t high = read_efuse_tp_high(adc_num);
- uint32_t low = read_efuse_tp_low(adc_num);
- characterize_using_two_point(adc_num, atten, high, low, &chars->coeff_a, &chars->coeff_b);
- ret = ESP_ADC_CAL_VAL_EFUSE_TP;
- } else if (efuse_vref_present && EFUSE_VREF_ENABLED) {
- //Characterize based on eFuse Vref
- uint32_t vref = read_efuse_vref();
- characterize_using_vref(adc_num, atten, vref, &chars->coeff_a, &chars->coeff_b);
- ret = ESP_ADC_CAL_VAL_EFUSE_VREF;
- } else {
- //Characterized based on default Vref
- characterize_using_vref(adc_num, atten, default_vref, &chars->coeff_a, &chars->coeff_b);
- ret = ESP_ADC_CAL_VAL_DEFAULT_VREF;
- }
- //Initialized remaining fields
- chars->adc_num = adc_num;
- chars->atten = atten;
- chars->bit_width = bit_width;
- chars->vref = (EFUSE_VREF_ENABLED && efuse_vref_present) ? read_efuse_vref() : default_vref;
- //Initialize fields for lookup table if necessary
- if (LUT_ENABLED && atten == ADC_ATTEN_DB_11) {
- chars->low_curve = (adc_num == ADC_UNIT_1) ? lut_adc1_low : lut_adc2_low;
- chars->high_curve = (adc_num == ADC_UNIT_1) ? lut_adc1_high : lut_adc2_high;
- } else {
- chars->low_curve = NULL;
- chars->high_curve = NULL;
- }
- return ret;
- }
- uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)
- {
- assert(chars != NULL);
- //Scale adc_rading if not 12 bits wide
- adc_reading = (adc_reading << (ADC_WIDTH_BIT_12 - chars->bit_width));
- if (adc_reading > ADC_12_BIT_RES - 1) {
- adc_reading = ADC_12_BIT_RES - 1; //Set to 12bit res max
- }
- if (LUT_ENABLED && (chars->atten == ADC_ATTEN_DB_11) && (adc_reading >= LUT_LOW_THRESH)) { //Check if in non-linear region
- //Use lookup table to get voltage in non linear portion of ADC_ATTEN_DB_11
- uint32_t lut_voltage = calculate_voltage_lut(adc_reading, chars->vref, chars->low_curve, chars->high_curve);
- if (adc_reading <= LUT_HIGH_THRESH) { //If ADC is transitioning from linear region to non-linear region
- //Linearly interpolate between linear voltage and lut voltage
- uint32_t linear_voltage = calculate_voltage_linear(adc_reading, chars->coeff_a, chars->coeff_b);
- return interpolate_two_points(linear_voltage, lut_voltage, LUT_ADC_STEP_SIZE, (adc_reading - LUT_LOW_THRESH));
- } else {
- return lut_voltage;
- }
- } else {
- return calculate_voltage_linear(adc_reading, chars->coeff_a, chars->coeff_b);
- }
- }
- esp_err_t esp_adc_cal_get_voltage(adc_channel_t channel,
- const esp_adc_cal_characteristics_t *chars,
- uint32_t *voltage)
- {
- //Check parameters
- ADC_CAL_CHECK(chars != NULL, ESP_ERR_INVALID_ARG);
- ADC_CAL_CHECK(voltage != NULL, ESP_ERR_INVALID_ARG);
- int adc_reading;
- if (chars->adc_num == ADC_UNIT_1) {
- //Check channel is valid on ADC1
- ADC_CAL_CHECK((adc1_channel_t)channel < ADC1_CHANNEL_MAX, ESP_ERR_INVALID_ARG);
- adc_reading = adc1_get_raw(channel);
- } else {
- //Check channel is valid on ADC2
- ADC_CAL_CHECK((adc2_channel_t)channel < ADC2_CHANNEL_MAX, ESP_ERR_INVALID_ARG);
- if (adc2_get_raw(channel, chars->bit_width, &adc_reading) != ESP_OK) {
- return ESP_ERR_TIMEOUT; //Timed out waiting for ADC2
- }
- }
- *voltage = esp_adc_cal_raw_to_voltage((uint32_t)adc_reading, chars);
- return ESP_OK;
- }
|