test_time.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. #include <stdio.h>
  2. #include <math.h>
  3. #include "unity.h"
  4. #include "driver/adc.h"
  5. #include <time.h>
  6. #include <sys/time.h>
  7. #include "freertos/FreeRTOS.h"
  8. #include "freertos/task.h"
  9. #include "freertos/semphr.h"
  10. #include "sdkconfig.h"
  11. #include "soc/rtc.h"
  12. #include "esp_system.h"
  13. #include "test_utils.h"
  14. #include "esp_log.h"
  15. #if portNUM_PROCESSORS == 2
  16. // https://github.com/espressif/arduino-esp32/issues/120
  17. TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]")
  18. {
  19. // This runs on APP CPU:
  20. void time_adc_test_task(void* arg)
  21. {
  22. for (int i = 0; i < 200000; ++i) {
  23. // wait for 20us, reading one of RTC registers
  24. uint32_t ccount = xthal_get_ccount();
  25. while (xthal_get_ccount() - ccount < 20 * CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ) {
  26. volatile uint32_t val = REG_READ(RTC_CNTL_STATE0_REG);
  27. (void) val;
  28. }
  29. }
  30. SemaphoreHandle_t * p_done = (SemaphoreHandle_t *) arg;
  31. xSemaphoreGive(*p_done);
  32. vTaskDelay(1);
  33. vTaskDelete(NULL);
  34. }
  35. SemaphoreHandle_t done = xSemaphoreCreateBinary();
  36. xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1);
  37. // This runs on PRO CPU:
  38. for (int i = 0; i < 4; ++i) {
  39. struct timeval tv_start;
  40. gettimeofday(&tv_start, NULL);
  41. vTaskDelay(1000/portTICK_PERIOD_MS);
  42. struct timeval tv_stop;
  43. gettimeofday(&tv_stop, NULL);
  44. float time_sec = tv_stop.tv_sec - tv_start.tv_sec + 1e-6f * (tv_stop.tv_usec - tv_start.tv_usec);
  45. printf("(0) time taken: %f sec\n", time_sec);
  46. TEST_ASSERT_TRUE(fabs(time_sec - 1.0f) < 0.1);
  47. }
  48. TEST_ASSERT_TRUE(xSemaphoreTake(done, 5000 / portTICK_RATE_MS));
  49. }
  50. #endif // portNUM_PROCESSORS == 2
  51. TEST_CASE("test adjtime function", "[newlib]")
  52. {
  53. struct timeval tv_time;
  54. struct timeval tv_delta;
  55. struct timeval tv_outdelta;
  56. TEST_ASSERT_EQUAL(adjtime(NULL, NULL), 0);
  57. tv_time.tv_sec = 5000;
  58. tv_time.tv_usec = 5000;
  59. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  60. tv_outdelta.tv_sec = 5;
  61. tv_outdelta.tv_usec = 5;
  62. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  63. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  64. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  65. tv_delta.tv_sec = INT_MAX / 1000000L;
  66. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
  67. tv_delta.tv_sec = INT_MIN / 1000000L;
  68. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
  69. tv_delta.tv_sec = 0;
  70. tv_delta.tv_usec = -900000;
  71. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  72. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  73. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  74. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  75. TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
  76. tv_delta.tv_sec = -4;
  77. tv_delta.tv_usec = -900000;
  78. TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
  79. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  80. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
  81. TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
  82. // after settimeofday() adjtime() is stopped
  83. tv_delta.tv_sec = 15;
  84. tv_delta.tv_usec = 900000;
  85. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  86. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
  87. TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
  88. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  89. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  90. TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
  91. TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
  92. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  93. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  94. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  95. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  96. // after gettimeofday() adjtime() is not stopped
  97. tv_delta.tv_sec = 15;
  98. tv_delta.tv_usec = 900000;
  99. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  100. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  101. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  102. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  103. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  104. TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
  105. TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
  106. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  107. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  108. TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
  109. tv_delta.tv_sec = 1;
  110. tv_delta.tv_usec = 0;
  111. TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
  112. vTaskDelay(1000 / portTICK_PERIOD_MS);
  113. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  114. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  115. // the correction will be equal to (1_000_000us >> 6) = 15_625 us.
  116. TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec >= 15600);
  117. TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec <= 15650);
  118. }
  119. static volatile bool exit_flag;
  120. static void adjtimeTask2(void *pvParameters)
  121. {
  122. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  123. struct timeval delta = {.tv_sec = 0, .tv_usec = 0};
  124. struct timeval outdelta;
  125. // although exit flag is set in another task, checking (exit_flag == false) is safe
  126. while (exit_flag == false) {
  127. delta.tv_sec += 1;
  128. delta.tv_usec = 900000;
  129. if (delta.tv_sec >= 2146) delta.tv_sec = 1;
  130. adjtime(&delta, &outdelta);
  131. }
  132. xSemaphoreGive(*sema);
  133. vTaskDelete(NULL);
  134. }
  135. static void timeTask(void *pvParameters)
  136. {
  137. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  138. struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
  139. // although exit flag is set in another task, checking (exit_flag == false) is safe
  140. while (exit_flag == false) {
  141. tv_time.tv_sec += 1;
  142. settimeofday(&tv_time, NULL);
  143. gettimeofday(&tv_time, NULL);
  144. }
  145. xSemaphoreGive(*sema);
  146. vTaskDelete(NULL);
  147. }
  148. TEST_CASE("test for no interlocking adjtime, gettimeofday and settimeofday functions", "[newlib]")
  149. {
  150. TaskHandle_t th[4];
  151. exit_flag = false;
  152. struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
  153. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  154. const int max_tasks = 2;
  155. xSemaphoreHandle exit_sema[max_tasks];
  156. for (int i = 0; i < max_tasks; ++i) {
  157. exit_sema[i] = xSemaphoreCreateBinary();
  158. }
  159. #ifndef CONFIG_FREERTOS_UNICORE
  160. printf("CPU0 and CPU1. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask \n");
  161. xTaskCreatePinnedToCore(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0], 0);
  162. xTaskCreatePinnedToCore(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1], 1);
  163. #else
  164. printf("Only one CPU. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask\n");
  165. xTaskCreate(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0]);
  166. xTaskCreate(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1]);
  167. #endif
  168. printf("start wait for 5 seconds\n");
  169. vTaskDelay(5000 / portTICK_PERIOD_MS);
  170. // set exit flag to let thread exit
  171. exit_flag = true;
  172. for (int i = 0; i < max_tasks; ++i) {
  173. if (!xSemaphoreTake(exit_sema[i], 2000/portTICK_PERIOD_MS)) {
  174. TEST_FAIL_MESSAGE("exit_sema not released by test task");
  175. }
  176. vSemaphoreDelete(exit_sema[i]);
  177. }
  178. }
  179. #ifndef CONFIG_FREERTOS_UNICORE
  180. #define ADJTIME_CORRECTION_FACTOR 6
  181. static int64_t result_adjtime_correction_us[2];
  182. static void get_time_task(void *pvParameters)
  183. {
  184. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  185. struct timeval tv_time;
  186. // although exit flag is set in another task, checking (exit_flag == false) is safe
  187. while (exit_flag == false) {
  188. gettimeofday(&tv_time, NULL);
  189. }
  190. xSemaphoreGive(*sema);
  191. vTaskDelete(NULL);
  192. }
  193. static void start_measure(int64_t* sys_time, int64_t* real_time)
  194. {
  195. struct timeval tv_time;
  196. int64_t t1, t2;
  197. do {
  198. t1 = esp_timer_get_time();
  199. gettimeofday(&tv_time, NULL);
  200. t2 = esp_timer_get_time();
  201. } while (t2 - t1 > 40);
  202. *real_time = t2;
  203. *sys_time = (int64_t)tv_time.tv_sec * 1000000L + tv_time.tv_usec;
  204. }
  205. static int64_t calc_correction(const char* tag, int64_t* sys_time, int64_t* real_time)
  206. {
  207. int64_t dt_real_time_us = real_time[1] - real_time[0];
  208. int64_t dt_sys_time_us = sys_time[1] - sys_time[0];
  209. int64_t calc_correction_us = dt_real_time_us >> ADJTIME_CORRECTION_FACTOR;
  210. int64_t real_correction_us = dt_sys_time_us - dt_real_time_us;
  211. int64_t error_us = calc_correction_us - real_correction_us;
  212. printf("%s: dt_real_time = %lli us, dt_sys_time = %lli us, calc_correction = %lli us, error = %lli us\n",
  213. tag, dt_real_time_us, dt_sys_time_us, calc_correction_us, error_us);
  214. TEST_ASSERT_TRUE(dt_sys_time_us > 0 && dt_real_time_us > 0);
  215. TEST_ASSERT_INT_WITHIN(100, 0, error_us);
  216. return real_correction_us;
  217. }
  218. static void measure_time_task(void *pvParameters)
  219. {
  220. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  221. int64_t main_real_time_us[2];
  222. int64_t main_sys_time_us[2];
  223. struct timeval tv_time = {.tv_sec = 1550000000, .tv_usec = 0};
  224. TEST_ASSERT_EQUAL(0, settimeofday(&tv_time, NULL));
  225. struct timeval delta = {.tv_sec = 2000, .tv_usec = 900000};
  226. adjtime(&delta, NULL);
  227. gettimeofday(&tv_time, NULL);
  228. start_measure(&main_sys_time_us[0], &main_real_time_us[0]);
  229. {
  230. int64_t real_time_us[2] = { main_real_time_us[0], 0};
  231. int64_t sys_time_us[2] = { main_sys_time_us[0], 0};
  232. // although exit flag is set in another task, checking (exit_flag == false) is safe
  233. while (exit_flag == false) {
  234. ets_delay_us(2 * 1000000); // 2 sec
  235. start_measure(&sys_time_us[1], &real_time_us[1]);
  236. result_adjtime_correction_us[1] += calc_correction("measure", sys_time_us, real_time_us);
  237. sys_time_us[0] = sys_time_us[1];
  238. real_time_us[0] = real_time_us[1];
  239. }
  240. main_sys_time_us[1] = sys_time_us[1];
  241. main_real_time_us[1] = real_time_us[1];
  242. }
  243. result_adjtime_correction_us[0] = calc_correction("main", main_sys_time_us, main_real_time_us);
  244. int64_t delta_us = result_adjtime_correction_us[0] - result_adjtime_correction_us[1];
  245. printf("\nresult of adjtime correction: %lli us, %lli us. delta = %lli us\n", result_adjtime_correction_us[0], result_adjtime_correction_us[1], delta_us);
  246. TEST_ASSERT_INT_WITHIN(100, 0, delta_us);
  247. xSemaphoreGive(*sema);
  248. vTaskDelete(NULL);
  249. }
  250. TEST_CASE("test time adjustment happens linearly", "[newlib][timeout=35]")
  251. {
  252. exit_flag = false;
  253. xSemaphoreHandle exit_sema[2];
  254. for (int i = 0; i < 2; ++i) {
  255. exit_sema[i] = xSemaphoreCreateBinary();
  256. result_adjtime_correction_us[i] = 0;
  257. }
  258. xTaskCreatePinnedToCore(get_time_task, "get_time_task", 4096, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  259. xTaskCreatePinnedToCore(measure_time_task, "measure_time_task", 4096, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  260. printf("start waiting for 30 seconds\n");
  261. vTaskDelay(30000 / portTICK_PERIOD_MS);
  262. // set exit flag to let thread exit
  263. exit_flag = true;
  264. for (int i = 0; i < 2; ++i) {
  265. if (!xSemaphoreTake(exit_sema[i], 2100/portTICK_PERIOD_MS)) {
  266. TEST_FAIL_MESSAGE("exit_sema not released by test task");
  267. }
  268. }
  269. for (int i = 0; i < 2; ++i) {
  270. vSemaphoreDelete(exit_sema[i]);
  271. }
  272. }
  273. #endif
  274. #if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 )
  275. #define WITH_RTC 1
  276. #endif
  277. #if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 )
  278. #define WITH_FRC 1
  279. #endif
  280. void test_posix_timers_clock (void)
  281. {
  282. #ifndef _POSIX_TIMERS
  283. TEST_ASSERT_MESSAGE(false, "_POSIX_TIMERS - is not defined");
  284. #endif
  285. #if defined( WITH_FRC )
  286. printf("WITH_FRC ");
  287. #endif
  288. #if defined( WITH_RTC )
  289. printf("WITH_RTC ");
  290. #endif
  291. #ifdef CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS
  292. printf("External (crystal) Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
  293. #else
  294. printf("Internal Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
  295. #endif
  296. TEST_ASSERT(clock_settime(CLOCK_REALTIME, NULL) == -1);
  297. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, NULL) == -1);
  298. TEST_ASSERT(clock_getres(CLOCK_REALTIME, NULL) == -1);
  299. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, NULL) == -1);
  300. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, NULL) == -1);
  301. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, NULL) == -1);
  302. #if defined( WITH_FRC ) || defined( WITH_RTC )
  303. struct timeval now = {0};
  304. now.tv_sec = 10L;
  305. now.tv_usec = 100000L;
  306. TEST_ASSERT(settimeofday(&now, NULL) == 0);
  307. TEST_ASSERT(gettimeofday(&now, NULL) == 0);
  308. struct timespec ts = {0};
  309. TEST_ASSERT(clock_settime(0xFFFFFFFF, &ts) == -1);
  310. TEST_ASSERT(clock_gettime(0xFFFFFFFF, &ts) == -1);
  311. TEST_ASSERT(clock_getres(0xFFFFFFFF, &ts) == 0);
  312. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == 0);
  313. TEST_ASSERT(now.tv_sec == ts.tv_sec);
  314. TEST_ASSERT_INT_WITHIN(5000000L, ts.tv_nsec, now.tv_usec * 1000L);
  315. ts.tv_sec = 20;
  316. ts.tv_nsec = 100000000L;
  317. TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0);
  318. TEST_ASSERT(gettimeofday(&now, NULL) == 0);
  319. TEST_ASSERT(now.tv_sec == ts.tv_sec);
  320. TEST_ASSERT_INT_WITHIN(5000L, now.tv_usec, ts.tv_nsec / 1000L);
  321. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
  322. uint64_t delta_monotonic_us = 0;
  323. #if defined( WITH_FRC )
  324. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
  325. TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
  326. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
  327. TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
  328. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
  329. delta_monotonic_us = esp_timer_get_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
  330. TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
  331. TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
  332. #elif defined( WITH_RTC )
  333. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
  334. TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
  335. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
  336. TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
  337. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
  338. delta_monotonic_us = esp_clk_rtc_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
  339. TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
  340. TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
  341. #endif // WITH_FRC
  342. #else
  343. struct timespec ts = {0};
  344. TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == -1);
  345. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == -1);
  346. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == -1);
  347. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
  348. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == -1);
  349. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == -1);
  350. #endif // defined( WITH_FRC ) || defined( WITH_RTC )
  351. }
  352. TEST_CASE("test posix_timers clock_... functions", "[newlib]")
  353. {
  354. test_posix_timers_clock();
  355. }
  356. #ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
  357. #include <string.h>
  358. static struct timeval get_time(const char *desc, char *buffer)
  359. {
  360. struct timeval timestamp;
  361. gettimeofday(&timestamp, NULL);
  362. struct tm* tm_info = localtime(&timestamp.tv_sec);
  363. strftime(buffer, 32, "%c", tm_info);
  364. ESP_LOGI("TAG", "%s: %016llX (%s)", desc, timestamp.tv_sec, buffer);
  365. return timestamp;
  366. }
  367. TEST_CASE("test time_t wide 64 bits", "[newlib]")
  368. {
  369. static char buffer[32];
  370. ESP_LOGI("TAG", "sizeof(time_t): %d (%d-bit)", sizeof(time_t), sizeof(time_t)*8);
  371. TEST_ASSERT_EQUAL(8, sizeof(time_t));
  372. struct tm tm = {4, 14, 3, 19, 0, 138, 0, 0, 0};
  373. struct timeval timestamp = { mktime(&tm), 0 };
  374. ESP_LOGI("TAG", "timestamp: %016llX", timestamp.tv_sec);
  375. settimeofday(&timestamp, NULL);
  376. get_time("Set time", buffer);
  377. while (timestamp.tv_sec < 0x80000003LL) {
  378. vTaskDelay(1000 / portTICK_PERIOD_MS);
  379. timestamp = get_time("Time now", buffer);
  380. }
  381. TEST_ASSERT_EQUAL_MEMORY("Tue Jan 19 03:14:11 2038", buffer, strlen(buffer));
  382. }
  383. TEST_CASE("test time functions wide 64 bits", "[newlib]")
  384. {
  385. static char origin_buffer[32];
  386. char strftime_buf[64];
  387. int year = 2018;
  388. struct tm tm = {0, 14, 3, 19, 0, year - 1900, 0, 0, 0};
  389. time_t t = mktime(&tm);
  390. while (year < 2119) {
  391. struct timeval timestamp = { t, 0 };
  392. ESP_LOGI("TAG", "year: %d", year);
  393. settimeofday(&timestamp, NULL);
  394. get_time("Time now", origin_buffer);
  395. vTaskDelay(10 / portTICK_PERIOD_MS);
  396. t += 86400 * 366;
  397. struct tm timeinfo = { 0 };
  398. time_t now;
  399. time(&now);
  400. localtime_r(&now, &timeinfo);
  401. time_t t = mktime(&timeinfo);
  402. ESP_LOGI("TAG", "Test mktime(). Time: %016llX", t);
  403. TEST_ASSERT_EQUAL(timestamp.tv_sec, t);
  404. // mktime() has error in newlib-3.0.0. It fixed in newlib-3.0.0.20180720
  405. TEST_ASSERT_EQUAL((timestamp.tv_sec >> 32), (t >> 32));
  406. strftime(strftime_buf, sizeof(strftime_buf), "%c", &timeinfo);
  407. ESP_LOGI("TAG", "Test time() and localtime_r(). Time: %s", strftime_buf);
  408. TEST_ASSERT_EQUAL(timeinfo.tm_year, year - 1900);
  409. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
  410. struct tm *tm2 = localtime(&now);
  411. strftime(strftime_buf, sizeof(strftime_buf), "%c", tm2);
  412. ESP_LOGI("TAG", "Test localtime(). Time: %s", strftime_buf);
  413. TEST_ASSERT_EQUAL(tm2->tm_year, year - 1900);
  414. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
  415. struct tm *gm = gmtime(&now);
  416. strftime(strftime_buf, sizeof(strftime_buf), "%c", gm);
  417. ESP_LOGI("TAG", "Test gmtime(). Time: %s", strftime_buf);
  418. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
  419. const char* time_str1 = ctime(&now);
  420. ESP_LOGI("TAG", "Test ctime(). Time: %s", time_str1);
  421. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, time_str1, strlen(origin_buffer));
  422. const char* time_str2 = asctime(&timeinfo);
  423. ESP_LOGI("TAG", "Test asctime(). Time: %s", time_str2);
  424. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, time_str2, strlen(origin_buffer));
  425. printf("\n");
  426. ++year;
  427. }
  428. }
  429. #endif // CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS