sdmmc_io.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636
  1. /*
  2. * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
  3. * Adaptations to ESP-IDF Copyright (c) 2016-2018 Espressif Systems (Shanghai) PTE LTD
  4. *
  5. * Permission to use, copy, modify, and distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include "sdmmc_common.h"
  18. #include "esp_attr.h"
  19. #include "esp_compiler.h"
  20. #define CIS_TUPLE(NAME) (cis_tuple_t) {.code=CISTPL_CODE_##NAME, .name=#NAME, .func=&cis_tuple_func_default, }
  21. #define CIS_TUPLE_WITH_FUNC(NAME, FUNC) (cis_tuple_t) {.code=CISTPL_CODE_##NAME, .name=#NAME, .func=&(FUNC), }
  22. #define CIS_CHECK_SIZE(SIZE, MINIMAL) do {int store_size = (SIZE); if((store_size) < (MINIMAL)) return ESP_ERR_INVALID_SIZE;} while(0)
  23. #define CIS_CHECK_UNSUPPORTED(COND) do {if(!(COND)) return ESP_ERR_NOT_SUPPORTED;} while(0)
  24. #define CIS_GET_MINIMAL_SIZE 32
  25. typedef esp_err_t (*cis_tuple_info_func_t)(const void* tuple_info, uint8_t* data, FILE* fp);
  26. typedef struct {
  27. int code;
  28. const char *name;
  29. cis_tuple_info_func_t func;
  30. } cis_tuple_t;
  31. static const char* TAG = "sdmmc_io";
  32. static esp_err_t cis_tuple_func_default(const void* p, uint8_t* data, FILE* fp);
  33. static esp_err_t cis_tuple_func_manfid(const void* p, uint8_t* data, FILE* fp);
  34. static esp_err_t cis_tuple_func_cftable_entry(const void* p, uint8_t* data, FILE* fp);
  35. static esp_err_t cis_tuple_func_end(const void* p, uint8_t* data, FILE* fp);
  36. static const cis_tuple_t cis_table[] = {
  37. CIS_TUPLE(NULL),
  38. CIS_TUPLE(DEVICE),
  39. CIS_TUPLE(CHKSUM),
  40. CIS_TUPLE(VERS1),
  41. CIS_TUPLE(ALTSTR),
  42. CIS_TUPLE(CONFIG),
  43. CIS_TUPLE_WITH_FUNC(CFTABLE_ENTRY, cis_tuple_func_cftable_entry),
  44. CIS_TUPLE_WITH_FUNC(MANFID, cis_tuple_func_manfid),
  45. CIS_TUPLE(FUNCID),
  46. CIS_TUPLE(FUNCE),
  47. CIS_TUPLE(VENDER_BEGIN),
  48. CIS_TUPLE(VENDER_END),
  49. CIS_TUPLE(SDIO_STD),
  50. CIS_TUPLE(SDIO_EXT),
  51. CIS_TUPLE_WITH_FUNC(END, cis_tuple_func_end),
  52. };
  53. esp_err_t sdmmc_io_reset(sdmmc_card_t* card)
  54. {
  55. uint8_t sdio_reset = CCCR_CTL_RES;
  56. esp_err_t err = sdmmc_io_rw_direct(card, 0, SD_IO_CCCR_CTL, SD_ARG_CMD52_WRITE, &sdio_reset);
  57. if (err == ESP_ERR_TIMEOUT || (host_is_spi(card) && err == ESP_ERR_NOT_SUPPORTED)) {
  58. /* Non-IO cards are allowed to time out (in SD mode) or
  59. * return "invalid command" error (in SPI mode).
  60. */
  61. } else if (err == ESP_ERR_NOT_FOUND) {
  62. ESP_LOGD(TAG, "%s: card not present", __func__);
  63. return err;
  64. } else if (err != ESP_OK) {
  65. ESP_LOGE(TAG, "%s: unexpected return: 0x%x", __func__, err );
  66. return err;
  67. }
  68. return ESP_OK;
  69. }
  70. esp_err_t sdmmc_init_io(sdmmc_card_t* card)
  71. {
  72. /* IO_SEND_OP_COND(CMD5), Determine if the card is an IO card.
  73. * Non-IO cards will not respond to this command.
  74. */
  75. esp_err_t err = sdmmc_io_send_op_cond(card, 0, &card->ocr);
  76. if (err != ESP_OK) {
  77. ESP_LOGD(TAG, "%s: io_send_op_cond (1) returned 0x%x; not IO card", __func__, err);
  78. card->is_sdio = 0;
  79. card->is_mem = 1;
  80. } else {
  81. card->is_sdio = 1;
  82. if (card->ocr & SD_IO_OCR_MEM_PRESENT) {
  83. ESP_LOGD(TAG, "%s: IO-only card", __func__);
  84. card->is_mem = 0;
  85. }
  86. card->num_io_functions = SD_IO_OCR_NUM_FUNCTIONS(card->ocr);
  87. ESP_LOGD(TAG, "%s: number of IO functions: %d", __func__, card->num_io_functions);
  88. if (card->num_io_functions == 0) {
  89. card->is_sdio = 0;
  90. }
  91. uint32_t host_ocr = get_host_ocr(card->host.io_voltage);
  92. host_ocr &= card->ocr;
  93. err = sdmmc_io_send_op_cond(card, host_ocr, &card->ocr);
  94. if (err != ESP_OK) {
  95. ESP_LOGE(TAG, "%s: sdmmc_io_send_op_cond (1) returned 0x%x", __func__, err);
  96. return err;
  97. }
  98. err = sdmmc_io_enable_int(card);
  99. if (err != ESP_OK) {
  100. ESP_LOGD(TAG, "%s: sdmmc_enable_int failed (0x%x)", __func__, err);
  101. }
  102. }
  103. return ESP_OK;
  104. }
  105. esp_err_t sdmmc_init_io_bus_width(sdmmc_card_t* card)
  106. {
  107. esp_err_t err;
  108. card->log_bus_width = 0;
  109. if (card->host.flags & SDMMC_HOST_FLAG_4BIT) {
  110. uint8_t card_cap = 0;
  111. err = sdmmc_io_rw_direct(card, 0, SD_IO_CCCR_CARD_CAP,
  112. SD_ARG_CMD52_READ, &card_cap);
  113. if (err != ESP_OK) {
  114. ESP_LOGE(TAG, "%s: sdmmc_io_rw_direct (read SD_IO_CCCR_CARD_CAP) returned 0x%0x", __func__, err);
  115. return err;
  116. }
  117. ESP_LOGD(TAG, "IO card capabilities byte: %02x", card_cap);
  118. if (!(card_cap & CCCR_CARD_CAP_LSC) ||
  119. (card_cap & CCCR_CARD_CAP_4BLS)) {
  120. // This card supports 4-bit bus mode
  121. uint8_t bus_width = CCCR_BUS_WIDTH_4;
  122. err = sdmmc_io_rw_direct(card, 0, SD_IO_CCCR_BUS_WIDTH,
  123. SD_ARG_CMD52_WRITE, &bus_width);
  124. if (err != ESP_OK) {
  125. ESP_LOGE(TAG, "%s: sdmmc_io_rw_direct (write SD_IO_CCCR_BUS_WIDTH) returned 0x%0x", __func__, err);
  126. return err;
  127. }
  128. card->log_bus_width = 2;
  129. }
  130. }
  131. return ESP_OK;
  132. }
  133. esp_err_t sdmmc_io_enable_hs_mode(sdmmc_card_t* card)
  134. {
  135. /* If the host is configured to use low frequency, don't attempt to switch */
  136. if (card->host.max_freq_khz < SDMMC_FREQ_DEFAULT) {
  137. card->max_freq_khz = card->host.max_freq_khz;
  138. return ESP_OK;
  139. } else if (card->host.max_freq_khz < SDMMC_FREQ_HIGHSPEED) {
  140. card->max_freq_khz = SDMMC_FREQ_DEFAULT;
  141. return ESP_OK;
  142. }
  143. /* For IO cards, do write + read operation on "High Speed" register,
  144. * setting EHS bit. If both EHS and SHS read back as set, then HS mode
  145. * has been enabled.
  146. */
  147. uint8_t val = CCCR_HIGHSPEED_ENABLE;
  148. esp_err_t err = sdmmc_io_rw_direct(card, 0, SD_IO_CCCR_HIGHSPEED,
  149. SD_ARG_CMD52_WRITE | SD_ARG_CMD52_EXCHANGE, &val);
  150. if (err != ESP_OK) {
  151. ESP_LOGD(TAG, "%s: sdmmc_io_rw_direct returned 0x%x", __func__, err);
  152. return err;
  153. }
  154. ESP_LOGD(TAG, "%s: CCCR_HIGHSPEED=0x%02x", __func__, val);
  155. const uint8_t hs_mask = CCCR_HIGHSPEED_ENABLE | CCCR_HIGHSPEED_SUPPORT;
  156. if ((val & hs_mask) != hs_mask) {
  157. return ESP_ERR_NOT_SUPPORTED;
  158. }
  159. card->max_freq_khz = SDMMC_FREQ_HIGHSPEED;
  160. return ESP_OK;
  161. }
  162. esp_err_t sdmmc_io_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
  163. {
  164. esp_err_t err = ESP_OK;
  165. sdmmc_command_t cmd = {
  166. .flags = SCF_CMD_BCR | SCF_RSP_R4,
  167. .arg = ocr,
  168. .opcode = SD_IO_SEND_OP_COND
  169. };
  170. for (size_t i = 0; i < 100; i++) {
  171. err = sdmmc_send_cmd(card, &cmd);
  172. if (err != ESP_OK) {
  173. break;
  174. }
  175. if ((MMC_R4(cmd.response) & SD_IO_OCR_MEM_READY) ||
  176. ocr == 0) {
  177. break;
  178. }
  179. err = ESP_ERR_TIMEOUT;
  180. vTaskDelay(SDMMC_IO_SEND_OP_COND_DELAY_MS / portTICK_PERIOD_MS);
  181. }
  182. if (err == ESP_OK && ocrp != NULL)
  183. *ocrp = MMC_R4(cmd.response);
  184. return err;
  185. }
  186. esp_err_t sdmmc_io_rw_direct(sdmmc_card_t* card, int func,
  187. uint32_t reg, uint32_t arg, uint8_t *byte)
  188. {
  189. esp_err_t err;
  190. sdmmc_command_t cmd = {
  191. .flags = SCF_CMD_AC | SCF_RSP_R5,
  192. .arg = 0,
  193. .opcode = SD_IO_RW_DIRECT
  194. };
  195. arg |= (func & SD_ARG_CMD52_FUNC_MASK) << SD_ARG_CMD52_FUNC_SHIFT;
  196. arg |= (reg & SD_ARG_CMD52_REG_MASK) << SD_ARG_CMD52_REG_SHIFT;
  197. arg |= (*byte & SD_ARG_CMD52_DATA_MASK) << SD_ARG_CMD52_DATA_SHIFT;
  198. cmd.arg = arg;
  199. err = sdmmc_send_cmd(card, &cmd);
  200. if (err != ESP_OK) {
  201. ESP_LOGV(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  202. return err;
  203. }
  204. *byte = SD_R5_DATA(cmd.response);
  205. return ESP_OK;
  206. }
  207. esp_err_t sdmmc_io_read_byte(sdmmc_card_t* card, uint32_t function,
  208. uint32_t addr, uint8_t *out_byte)
  209. {
  210. esp_err_t ret = sdmmc_io_rw_direct(card, function, addr, SD_ARG_CMD52_READ, out_byte);
  211. if (unlikely(ret != ESP_OK)) {
  212. ESP_LOGE(TAG, "%s: sdmmc_io_rw_direct (read 0x%x) returned 0x%x", __func__, addr, ret);
  213. }
  214. return ret;
  215. }
  216. esp_err_t sdmmc_io_write_byte(sdmmc_card_t* card, uint32_t function,
  217. uint32_t addr, uint8_t in_byte, uint8_t* out_byte)
  218. {
  219. uint8_t tmp_byte = in_byte;
  220. esp_err_t ret = sdmmc_io_rw_direct(card, function, addr,
  221. SD_ARG_CMD52_WRITE | SD_ARG_CMD52_EXCHANGE, &tmp_byte);
  222. if (unlikely(ret != ESP_OK)) {
  223. ESP_LOGE(TAG, "%s: sdmmc_io_rw_direct (write 0x%x) returned 0x%x", __func__, addr, ret);
  224. return ret;
  225. }
  226. if (out_byte != NULL) {
  227. *out_byte = tmp_byte;
  228. }
  229. return ESP_OK;
  230. }
  231. esp_err_t sdmmc_io_rw_extended(sdmmc_card_t* card, int func,
  232. uint32_t reg, int arg, void *datap, size_t datalen)
  233. {
  234. esp_err_t err;
  235. const size_t max_byte_transfer_size = 512;
  236. sdmmc_command_t cmd = {
  237. .flags = SCF_CMD_AC | SCF_RSP_R5,
  238. .arg = 0,
  239. .opcode = SD_IO_RW_EXTENDED,
  240. .data = datap,
  241. .datalen = datalen,
  242. .blklen = max_byte_transfer_size /* TODO: read max block size from CIS */
  243. };
  244. uint32_t count; /* number of bytes or blocks, depending on transfer mode */
  245. if (arg & SD_ARG_CMD53_BLOCK_MODE) {
  246. if (cmd.datalen % cmd.blklen != 0) {
  247. return ESP_ERR_INVALID_SIZE;
  248. }
  249. count = cmd.datalen / cmd.blklen;
  250. } else {
  251. if (datalen > max_byte_transfer_size) {
  252. /* TODO: split into multiple operations? */
  253. return ESP_ERR_INVALID_SIZE;
  254. }
  255. if (datalen == max_byte_transfer_size) {
  256. count = 0; // See 5.3.1 SDIO simplifed spec
  257. } else {
  258. count = datalen;
  259. }
  260. cmd.blklen = datalen;
  261. }
  262. arg |= (func & SD_ARG_CMD53_FUNC_MASK) << SD_ARG_CMD53_FUNC_SHIFT;
  263. arg |= (reg & SD_ARG_CMD53_REG_MASK) << SD_ARG_CMD53_REG_SHIFT;
  264. arg |= (count & SD_ARG_CMD53_LENGTH_MASK) << SD_ARG_CMD53_LENGTH_SHIFT;
  265. cmd.arg = arg;
  266. if ((arg & SD_ARG_CMD53_WRITE) == 0) {
  267. cmd.flags |= SCF_CMD_READ;
  268. }
  269. err = sdmmc_send_cmd(card, &cmd);
  270. if (err != ESP_OK) {
  271. ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  272. return err;
  273. }
  274. return ESP_OK;
  275. }
  276. esp_err_t sdmmc_io_read_bytes(sdmmc_card_t* card, uint32_t function,
  277. uint32_t addr, void* dst, size_t size)
  278. {
  279. /* host quirk: SDIO transfer with length not divisible by 4 bytes
  280. * has to be split into two transfers: one with aligned length,
  281. * the other one for the remaining 1-3 bytes.
  282. */
  283. uint8_t *pc_dst = dst;
  284. while (size > 0) {
  285. size_t size_aligned = size & (~3);
  286. size_t will_transfer = size_aligned > 0 ? size_aligned : size;
  287. esp_err_t err = sdmmc_io_rw_extended(card, function, addr,
  288. SD_ARG_CMD53_READ | SD_ARG_CMD53_INCREMENT,
  289. pc_dst, will_transfer);
  290. if (unlikely(err != ESP_OK)) {
  291. return err;
  292. }
  293. pc_dst += will_transfer;
  294. size -= will_transfer;
  295. addr += will_transfer;
  296. }
  297. return ESP_OK;
  298. }
  299. esp_err_t sdmmc_io_write_bytes(sdmmc_card_t* card, uint32_t function,
  300. uint32_t addr, const void* src, size_t size)
  301. {
  302. /* same host quirk as in sdmmc_io_read_bytes */
  303. const uint8_t *pc_src = (const uint8_t*) src;
  304. while (size > 0) {
  305. size_t size_aligned = size & (~3);
  306. size_t will_transfer = size_aligned > 0 ? size_aligned : size;
  307. esp_err_t err = sdmmc_io_rw_extended(card, function, addr,
  308. SD_ARG_CMD53_WRITE | SD_ARG_CMD53_INCREMENT,
  309. (void*) pc_src, will_transfer);
  310. if (unlikely(err != ESP_OK)) {
  311. return err;
  312. }
  313. pc_src += will_transfer;
  314. size -= will_transfer;
  315. addr += will_transfer;
  316. }
  317. return ESP_OK;
  318. }
  319. esp_err_t sdmmc_io_read_blocks(sdmmc_card_t* card, uint32_t function,
  320. uint32_t addr, void* dst, size_t size)
  321. {
  322. if (unlikely(size % 4 != 0)) {
  323. return ESP_ERR_INVALID_SIZE;
  324. }
  325. return sdmmc_io_rw_extended(card, function, addr,
  326. SD_ARG_CMD53_READ | SD_ARG_CMD53_INCREMENT | SD_ARG_CMD53_BLOCK_MODE,
  327. dst, size);
  328. }
  329. esp_err_t sdmmc_io_write_blocks(sdmmc_card_t* card, uint32_t function,
  330. uint32_t addr, const void* src, size_t size)
  331. {
  332. if (unlikely(size % 4 != 0)) {
  333. return ESP_ERR_INVALID_SIZE;
  334. }
  335. return sdmmc_io_rw_extended(card, function, addr,
  336. SD_ARG_CMD53_WRITE | SD_ARG_CMD53_INCREMENT | SD_ARG_CMD53_BLOCK_MODE,
  337. (void*) src, size);
  338. }
  339. esp_err_t sdmmc_io_enable_int(sdmmc_card_t* card)
  340. {
  341. if (card->host.io_int_enable == NULL) {
  342. return ESP_ERR_NOT_SUPPORTED;
  343. }
  344. return (*card->host.io_int_enable)(card->host.slot);
  345. }
  346. esp_err_t sdmmc_io_wait_int(sdmmc_card_t* card, TickType_t timeout_ticks)
  347. {
  348. if (card->host.io_int_wait == NULL) {
  349. return ESP_ERR_NOT_SUPPORTED;
  350. }
  351. return (*card->host.io_int_wait)(card->host.slot, timeout_ticks);
  352. }
  353. /*
  354. * Print the CIS information of a CIS card, currently only ESP slave supported.
  355. */
  356. static esp_err_t cis_tuple_func_default(const void* p, uint8_t* data, FILE* fp)
  357. {
  358. const cis_tuple_t* tuple = (const cis_tuple_t*)p;
  359. uint8_t code = *(data++);
  360. int size = *(data++);
  361. if (tuple) {
  362. fprintf(fp, "TUPLE: %s, size: %d: ", tuple->name, size);
  363. } else {
  364. fprintf(fp, "TUPLE: unknown(%02X), size: %d: ", code, size);
  365. }
  366. for (int i = 0; i < size; i++) fprintf(fp, "%02X ", *(data++));
  367. fprintf(fp, "\n");
  368. return ESP_OK;
  369. }
  370. static esp_err_t cis_tuple_func_manfid(const void* p, uint8_t* data, FILE* fp)
  371. {
  372. const cis_tuple_t* tuple = (const cis_tuple_t*)p;
  373. data++;
  374. int size = *(data++);
  375. fprintf(fp, "TUPLE: %s, size: %d\n", tuple->name, size);
  376. CIS_CHECK_SIZE(size, 4);
  377. fprintf(fp, " MANF: %04X, CARD: %04X\n", *(uint16_t*)(data), *(uint16_t*)(data+2));
  378. return ESP_OK;
  379. }
  380. static esp_err_t cis_tuple_func_end(const void* p, uint8_t* data, FILE* fp)
  381. {
  382. const cis_tuple_t* tuple = (const cis_tuple_t*)p;
  383. data++;
  384. fprintf(fp, "TUPLE: %s\n", tuple->name);
  385. return ESP_OK;
  386. }
  387. static esp_err_t cis_tuple_func_cftable_entry(const void* p, uint8_t* data, FILE* fp)
  388. {
  389. const cis_tuple_t* tuple = (const cis_tuple_t*)p;
  390. data++;
  391. int size = *(data++);
  392. fprintf(fp, "TUPLE: %s, size: %d\n", tuple->name, size);
  393. CIS_CHECK_SIZE(size, 2);
  394. CIS_CHECK_SIZE(size--, 1);
  395. bool interface = data[0] & BIT(7);
  396. bool def = data[0] & BIT(6);
  397. int conf_ent_num = data[0] & 0x3F;
  398. fprintf(fp, " INDX: %02X, Intface: %d, Default: %d, Conf-Entry-Num: %d\n", *(data++), interface, def, conf_ent_num);
  399. if (interface) {
  400. CIS_CHECK_SIZE(size--, 1);
  401. fprintf(fp, " IF: %02X\n", *(data++));
  402. }
  403. CIS_CHECK_SIZE(size--, 1);
  404. bool misc = data[0] & BIT(7);
  405. int mem_space = (data[0] >> 5 )&(0x3);
  406. bool irq = data[0] & BIT(4);
  407. bool io_sp = data[0] & BIT(3);
  408. bool timing = data[0] & BIT(2);
  409. int power = data[0] & 3;
  410. fprintf(fp, " FS: %02X, misc: %d, mem_space: %d, irq: %d, io_space: %d, timing: %d, power: %d\n", *(data++), misc, mem_space, irq, io_sp, timing, power);
  411. CIS_CHECK_UNSUPPORTED(power == 0); //power descriptor is not handled yet
  412. CIS_CHECK_UNSUPPORTED(!timing); //timing descriptor is not handled yet
  413. CIS_CHECK_UNSUPPORTED(!io_sp); //io space descriptor is not handled yet
  414. if (irq) {
  415. CIS_CHECK_SIZE(size--, 1);
  416. bool mask = data[0] & BIT(4);
  417. fprintf(fp, " IR: %02X, mask: %d, ",*(data++), mask);
  418. if (mask) {
  419. CIS_CHECK_SIZE(size, 2);
  420. size-=2;
  421. fprintf(fp, " IRQ: %02X %02X\n", data[0], data[1]);
  422. data+=2;
  423. }
  424. }
  425. if (mem_space) {
  426. CIS_CHECK_SIZE(size, 2);
  427. size-=2;
  428. CIS_CHECK_UNSUPPORTED(mem_space==1); //other cases not handled yet
  429. int len = *(uint16_t*)data;
  430. fprintf(fp, " LEN: %04X\n", len);
  431. data+=2;
  432. }
  433. CIS_CHECK_UNSUPPORTED(misc==0); //misc descriptor is not handled yet
  434. return ESP_OK;
  435. }
  436. static const cis_tuple_t* get_tuple(uint8_t code)
  437. {
  438. for (int i = 0; i < sizeof(cis_table)/sizeof(cis_tuple_t); i++) {
  439. if (code == cis_table[i].code) return &cis_table[i];
  440. }
  441. return NULL;
  442. }
  443. esp_err_t sdmmc_io_print_cis_info(uint8_t* buffer, size_t buffer_size, FILE* fp)
  444. {
  445. ESP_LOG_BUFFER_HEXDUMP("CIS", buffer, buffer_size, ESP_LOG_DEBUG);
  446. if (!fp) fp = stdout;
  447. uint8_t* cis = buffer;
  448. do {
  449. const cis_tuple_t* tuple = get_tuple(cis[0]);
  450. int size = cis[1];
  451. esp_err_t ret = ESP_OK;
  452. if (tuple) {
  453. ret = tuple->func(tuple, cis, fp);
  454. } else {
  455. ret = cis_tuple_func_default(NULL, cis, fp);
  456. }
  457. if (ret != ESP_OK) return ret;
  458. cis += 2 + size;
  459. if (tuple && tuple->code == CISTPL_CODE_END) break;
  460. } while (cis < buffer + buffer_size) ;
  461. return ESP_OK;
  462. }
  463. /**
  464. * Check tuples in the buffer.
  465. *
  466. * @param buf Buffer to check
  467. * @param buffer_size Size of the buffer
  468. * @param inout_cis_offset
  469. * - input: the last cis_offset, relative to the beginning of the buf. -1 if
  470. * this buffer begin with the tuple length, otherwise should be no smaller than
  471. * zero.
  472. * - output: when the end tuple found, output offset of the CISTPL_CODE_END
  473. * byte + 1 (relative to the beginning of the buffer; when not found, output
  474. * the address of next tuple code.
  475. *
  476. * @return true if found, false if haven't.
  477. */
  478. static bool check_tuples_in_buffer(uint8_t* buf, int buffer_size, int* inout_cis_offset)
  479. {
  480. int cis_offset = *inout_cis_offset;
  481. if (cis_offset == -1) {
  482. //the CIS code is checked in the last buffer, skip to next tuple
  483. cis_offset += buf[0] + 2;
  484. }
  485. assert(cis_offset >= 0);
  486. while (1) {
  487. if (cis_offset < buffer_size) {
  488. //A CIS code in the buffer, check it
  489. if (buf[cis_offset] == CISTPL_CODE_END) {
  490. *inout_cis_offset = cis_offset + 1;
  491. return true;
  492. }
  493. }
  494. if (cis_offset + 1 < buffer_size) {
  495. cis_offset += buf[cis_offset+1] + 2;
  496. } else {
  497. break;
  498. }
  499. }
  500. *inout_cis_offset = cis_offset;
  501. return false;
  502. }
  503. esp_err_t sdmmc_io_get_cis_data(sdmmc_card_t* card, uint8_t* out_buffer, size_t buffer_size, size_t* inout_cis_size)
  504. {
  505. esp_err_t ret = ESP_OK;
  506. WORD_ALIGNED_ATTR uint8_t buf[CIS_GET_MINIMAL_SIZE];
  507. /* Pointer to size is a mandatory parameter */
  508. assert(inout_cis_size);
  509. /*
  510. * CIS region exist in 0x1000~0x17FFF of FUNC 0, get the start address of it
  511. * from CCCR register.
  512. */
  513. uint32_t addr;
  514. ret = sdmmc_io_read_bytes(card, 0, 9, &addr, 3);
  515. if (ret != ESP_OK) return ret;
  516. //the sdmmc_io driver reads 4 bytes, the most significant byte is not the address.
  517. addr &= 0xffffff;
  518. if (addr < 0x1000 || addr > 0x17FFF) {
  519. return ESP_ERR_INVALID_RESPONSE;
  520. }
  521. /*
  522. * To avoid reading too long, take the input value as limitation if
  523. * existing.
  524. */
  525. size_t max_reading = UINT32_MAX;
  526. if (*inout_cis_size != 0) {
  527. max_reading = *inout_cis_size;
  528. }
  529. /*
  530. * Parse the length while reading. If find the end tuple, or reaches the
  531. * limitation, read no more and return both the data and the size already
  532. * read.
  533. */
  534. int buffer_offset = 0;
  535. int cur_cis_offset = 0;
  536. bool end_tuple_found = false;
  537. do {
  538. ret = sdmmc_io_read_bytes(card, 0, addr + buffer_offset, &buf, CIS_GET_MINIMAL_SIZE);
  539. if (ret != ESP_OK) return ret;
  540. //calculate relative to the beginning of the buffer
  541. int offset = cur_cis_offset - buffer_offset;
  542. bool finish = check_tuples_in_buffer(buf, CIS_GET_MINIMAL_SIZE, &offset);
  543. int remain_size = buffer_size - buffer_offset;
  544. int copy_len;
  545. if (finish) {
  546. copy_len = MIN(offset, remain_size);
  547. end_tuple_found = true;
  548. } else {
  549. copy_len = MIN(CIS_GET_MINIMAL_SIZE, remain_size);
  550. }
  551. if (copy_len > 0) {
  552. memcpy(out_buffer + buffer_offset, buf, copy_len);
  553. }
  554. cur_cis_offset = buffer_offset + offset;
  555. buffer_offset += CIS_GET_MINIMAL_SIZE;
  556. } while (!end_tuple_found && buffer_offset < max_reading);
  557. if (end_tuple_found) {
  558. *inout_cis_size = cur_cis_offset;
  559. if (cur_cis_offset > buffer_size) {
  560. return ESP_ERR_INVALID_SIZE;
  561. } else {
  562. return ESP_OK;
  563. }
  564. } else {
  565. return ESP_ERR_NOT_FOUND;
  566. }
  567. }