uart.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/ringbuf.h"
  24. #include "hal/uart_hal.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "driver/periph_ctrl.h"
  30. #include "sdkconfig.h"
  31. #if CONFIG_IDF_TARGET_ESP32
  32. #include "esp32/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  34. #include "esp32s2beta/clk.h"
  35. #endif
  36. #ifdef CONFIG_UART_ISR_IN_IRAM
  37. #define UART_ISR_ATTR IRAM_ATTR
  38. #else
  39. #define UART_ISR_ATTR
  40. #endif
  41. #define XOFF (0x13)
  42. #define XON (0x11)
  43. static const char* UART_TAG = "uart";
  44. #define UART_CHECK(a, str, ret_val) \
  45. if (!(a)) { \
  46. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  47. return (ret_val); \
  48. }
  49. #define UART_EMPTY_THRESH_DEFAULT (10)
  50. #define UART_FULL_THRESH_DEFAULT (120)
  51. #define UART_TOUT_THRESH_DEFAULT (10)
  52. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  53. #define UART_TX_IDLE_NUM_DEFAULT (0)
  54. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  55. #define UART_MIN_WAKEUP_THRESH (SOC_UART_MIN_WAKEUP_THRESH)
  56. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  57. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  58. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  59. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  60. // Check actual UART mode set
  61. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  62. #define UART_CONTEX_INIT_DEF(uart_num) {\
  63. .hal.dev = UART_LL_GET_HW(uart_num),\
  64. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  65. .hw_enabled = false,\
  66. }
  67. typedef struct {
  68. uart_event_type_t type; /*!< UART TX data type */
  69. struct {
  70. int brk_len;
  71. size_t size;
  72. uint8_t data[0];
  73. } tx_data;
  74. } uart_tx_data_t;
  75. typedef struct {
  76. int wr;
  77. int rd;
  78. int len;
  79. int* data;
  80. } uart_pat_rb_t;
  81. typedef struct {
  82. uart_port_t uart_num; /*!< UART port number*/
  83. int queue_size; /*!< UART event queue size*/
  84. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  85. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  86. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  87. bool coll_det_flg; /*!< UART collision detection flag */
  88. //rx parameters
  89. int rx_buffered_len; /*!< UART cached data length */
  90. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  91. int rx_buf_size; /*!< RX ring buffer size */
  92. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  93. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  94. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  95. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  96. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  97. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  98. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  99. uart_pat_rb_t rx_pattern_pos;
  100. //tx parameters
  101. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  102. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  103. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  104. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  105. int tx_buf_size; /*!< TX ring buffer size */
  106. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  107. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  108. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  109. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  110. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  111. uint32_t tx_len_cur;
  112. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  113. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  114. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  115. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  116. } uart_obj_t;
  117. typedef struct {
  118. uart_hal_context_t hal; /*!< UART hal context*/
  119. portMUX_TYPE spinlock;
  120. bool hw_enabled;
  121. } uart_context_t;
  122. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  123. static uart_context_t uart_context[UART_NUM_MAX] = {
  124. UART_CONTEX_INIT_DEF(UART_NUM_0),
  125. UART_CONTEX_INIT_DEF(UART_NUM_1),
  126. #if UART_NUM_MAX > 2
  127. UART_CONTEX_INIT_DEF(UART_NUM_2),
  128. #endif
  129. };
  130. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  131. static void uart_module_enable(uart_port_t uart_num)
  132. {
  133. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  134. if (uart_context[uart_num].hw_enabled != true) {
  135. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  136. periph_module_reset(uart_periph_signal[uart_num].module);
  137. }
  138. periph_module_enable(uart_periph_signal[uart_num].module);
  139. uart_context[uart_num].hw_enabled = true;
  140. }
  141. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  142. }
  143. static void uart_module_disable(uart_port_t uart_num)
  144. {
  145. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  146. if (uart_context[uart_num].hw_enabled != false) {
  147. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  148. periph_module_disable(uart_periph_signal[uart_num].module);
  149. }
  150. uart_context[uart_num].hw_enabled = false;
  151. }
  152. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  153. }
  154. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  155. {
  156. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  157. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  158. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  159. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  160. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  161. return ESP_OK;
  162. }
  163. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  164. {
  165. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  166. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  167. return ESP_OK;
  168. }
  169. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  170. {
  171. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  172. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  173. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  174. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  175. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  176. return ESP_OK;
  177. }
  178. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  179. {
  180. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  181. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  182. return ESP_OK;
  183. }
  184. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  185. {
  186. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  187. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  188. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  189. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  190. return ESP_OK;
  191. }
  192. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  193. {
  194. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  195. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  196. return ESP_OK;
  197. }
  198. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  199. {
  200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  201. uart_sclk_t source_clk = 0;
  202. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  203. uart_hal_get_sclk(&(uart_context[uart_num].hal), &source_clk);
  204. uart_hal_set_baudrate(&(uart_context[uart_num].hal), source_clk, baud_rate);
  205. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  206. return ESP_OK;
  207. }
  208. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  209. {
  210. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  211. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  212. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  213. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  214. return ESP_OK;
  215. }
  216. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  217. {
  218. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  219. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  220. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  221. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  222. return ESP_OK;
  223. }
  224. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  225. {
  226. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  227. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  228. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  229. uart_sw_flowctrl_t sw_flow_ctl = {
  230. .xon_char = XON,
  231. .xoff_char = XOFF,
  232. .xon_thrd = rx_thresh_xon,
  233. .xoff_thrd = rx_thresh_xoff,
  234. };
  235. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  236. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  237. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  238. return ESP_OK;
  239. }
  240. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  241. {
  242. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  243. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  244. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  245. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  246. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  247. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  248. return ESP_OK;
  249. }
  250. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  251. {
  252. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  253. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  254. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  255. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  256. return ESP_OK;
  257. }
  258. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  259. {
  260. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  261. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  262. return ESP_OK;
  263. }
  264. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  265. {
  266. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  267. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  268. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  269. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  270. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  271. return ESP_OK;
  272. }
  273. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  274. {
  275. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  276. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  277. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  278. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  279. return ESP_OK;
  280. }
  281. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  282. {
  283. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  284. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  285. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  286. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  287. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  288. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  289. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  290. free(pdata);
  291. }
  292. return ESP_OK;
  293. }
  294. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  295. {
  296. esp_err_t ret = ESP_OK;
  297. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  298. int next = p_pos->wr + 1;
  299. if (next >= p_pos->len) {
  300. next = 0;
  301. }
  302. if (next == p_pos->rd) {
  303. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  304. ret = ESP_FAIL;
  305. } else {
  306. p_pos->data[p_pos->wr] = pos;
  307. p_pos->wr = next;
  308. ret = ESP_OK;
  309. }
  310. return ret;
  311. }
  312. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  313. {
  314. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  315. return ESP_ERR_INVALID_STATE;
  316. } else {
  317. esp_err_t ret = ESP_OK;
  318. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  319. if (p_pos->rd == p_pos->wr) {
  320. ret = ESP_FAIL;
  321. } else {
  322. p_pos->rd++;
  323. }
  324. if (p_pos->rd >= p_pos->len) {
  325. p_pos->rd = 0;
  326. }
  327. return ret;
  328. }
  329. }
  330. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  331. {
  332. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  333. int rd = p_pos->rd;
  334. while(rd != p_pos->wr) {
  335. p_pos->data[rd] -= diff_len;
  336. int rd_rec = rd;
  337. rd ++;
  338. if (rd >= p_pos->len) {
  339. rd = 0;
  340. }
  341. if (p_pos->data[rd_rec] < 0) {
  342. p_pos->rd = rd;
  343. }
  344. }
  345. return ESP_OK;
  346. }
  347. int uart_pattern_pop_pos(uart_port_t uart_num)
  348. {
  349. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  350. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  351. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  352. int pos = -1;
  353. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  354. pos = pat_pos->data[pat_pos->rd];
  355. uart_pattern_dequeue(uart_num);
  356. }
  357. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  358. return pos;
  359. }
  360. int uart_pattern_get_pos(uart_port_t uart_num)
  361. {
  362. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  363. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  364. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  365. int pos = -1;
  366. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  367. pos = pat_pos->data[pat_pos->rd];
  368. }
  369. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  370. return pos;
  371. }
  372. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  373. {
  374. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  375. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  376. int* pdata = (int*) malloc(queue_length * sizeof(int));
  377. if(pdata == NULL) {
  378. return ESP_ERR_NO_MEM;
  379. }
  380. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  381. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  382. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  383. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  384. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  385. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  386. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  387. free(ptmp);
  388. return ESP_OK;
  389. }
  390. #if CONFIG_IDF_TARGET_ESP32
  391. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  392. {
  393. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  394. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  395. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  396. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  397. uart_at_cmd_t at_cmd = {0};
  398. at_cmd.cmd_char = pattern_chr;
  399. at_cmd.char_num = chr_num;
  400. at_cmd.gap_tout = chr_tout;
  401. at_cmd.pre_idle = pre_idle;
  402. at_cmd.post_idle = post_idle;
  403. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  404. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  405. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  406. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  407. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  408. return ESP_OK;
  409. }
  410. #endif
  411. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  412. {
  413. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  414. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  415. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  416. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  417. uart_at_cmd_t at_cmd = {0};
  418. at_cmd.cmd_char = pattern_chr;
  419. at_cmd.char_num = chr_num;
  420. #if CONFIG_IDF_TARGET_ESP32
  421. int apb_clk_freq = 0;
  422. uint32_t uart_baud = 0;
  423. uint32_t uart_div = 0;
  424. uart_get_baudrate(uart_num, &uart_baud);
  425. apb_clk_freq = esp_clk_apb_freq();
  426. uart_div = apb_clk_freq / uart_baud;
  427. at_cmd.gap_tout = chr_tout * uart_div;
  428. at_cmd.pre_idle = pre_idle * uart_div;
  429. at_cmd.post_idle = post_idle * uart_div;
  430. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  431. at_cmd.gap_tout = chr_tout;
  432. at_cmd.pre_idle = pre_idle;
  433. at_cmd.post_idle = post_idle;
  434. #endif
  435. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  436. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  437. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  438. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  439. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  440. return ESP_OK;
  441. }
  442. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  443. {
  444. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  445. }
  446. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  447. {
  448. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  449. }
  450. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  451. {
  452. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  453. }
  454. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  455. {
  456. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  457. }
  458. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  459. {
  460. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  461. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  462. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  463. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  464. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  465. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  466. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  467. return ESP_OK;
  468. }
  469. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  470. {
  471. int ret;
  472. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  473. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  474. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  475. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  476. return ret;
  477. }
  478. esp_err_t uart_isr_free(uart_port_t uart_num)
  479. {
  480. esp_err_t ret;
  481. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  482. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  483. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  484. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  485. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  486. p_uart_obj[uart_num]->intr_handle=NULL;
  487. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  488. return ret;
  489. }
  490. //internal signal can be output to multiple GPIO pads
  491. //only one GPIO pad can connect with input signal
  492. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  493. {
  494. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  495. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  496. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  497. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  498. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  499. if(tx_io_num >= 0) {
  500. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  501. gpio_set_level(tx_io_num, 1);
  502. gpio_matrix_out(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  503. }
  504. if(rx_io_num >= 0) {
  505. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  506. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  507. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  508. gpio_matrix_in(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  509. }
  510. if(rts_io_num >= 0) {
  511. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  512. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  513. gpio_matrix_out(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  514. }
  515. if(cts_io_num >= 0) {
  516. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  517. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  518. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  519. gpio_matrix_in(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  520. }
  521. return ESP_OK;
  522. }
  523. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  524. {
  525. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  526. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  527. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  528. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  529. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  530. return ESP_OK;
  531. }
  532. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  533. {
  534. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  535. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  536. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  537. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  538. return ESP_OK;
  539. }
  540. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  541. {
  542. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  543. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  544. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  545. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  546. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  547. return ESP_OK;
  548. }
  549. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  550. {
  551. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  552. UART_CHECK((uart_config), "param null", ESP_FAIL);
  553. UART_CHECK((uart_config->rx_flow_ctrl_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  554. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  555. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  556. uart_module_enable(uart_num);
  557. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  558. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  559. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->source_clk, uart_config->baud_rate);
  560. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  561. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  562. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  563. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  564. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  565. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  566. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  567. return ESP_OK;
  568. }
  569. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  570. {
  571. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  572. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  573. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  574. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  575. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  576. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  577. } else {
  578. //Disable rx_tout intr
  579. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  580. }
  581. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  582. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  583. }
  584. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  585. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  586. }
  587. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  588. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  589. return ESP_OK;
  590. }
  591. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  592. {
  593. int cnt = 0;
  594. int len = length;
  595. while (len >= 0) {
  596. if (buf[len] == pat_chr) {
  597. cnt++;
  598. } else {
  599. cnt = 0;
  600. }
  601. if (cnt >= pat_num) {
  602. break;
  603. }
  604. len --;
  605. }
  606. return len;
  607. }
  608. //internal isr handler for default driver code.
  609. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  610. {
  611. uart_obj_t *p_uart = (uart_obj_t*) param;
  612. uint8_t uart_num = p_uart->uart_num;
  613. int rx_fifo_len = 0;
  614. uint32_t uart_intr_status = 0;
  615. uart_event_t uart_event;
  616. portBASE_TYPE HPTaskAwoken = 0;
  617. static uint8_t pat_flg = 0;
  618. while(1) {
  619. // The `continue statement` may cause the interrupt to loop infinitely
  620. // we exit the interrupt here
  621. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  622. //Exit form while loop
  623. if(uart_intr_status == 0){
  624. break;
  625. }
  626. uart_event.type = UART_EVENT_MAX;
  627. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  628. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  629. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  630. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  631. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  632. if(p_uart->tx_waiting_brk) {
  633. continue;
  634. }
  635. //TX semaphore will only be used when tx_buf_size is zero.
  636. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  637. p_uart->tx_waiting_fifo = false;
  638. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  639. } else {
  640. //We don't use TX ring buffer, because the size is zero.
  641. if(p_uart->tx_buf_size == 0) {
  642. continue;
  643. }
  644. bool en_tx_flg = false;
  645. int tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  646. //We need to put a loop here, in case all the buffer items are very short.
  647. //That would cause a watch_dog reset because empty interrupt happens so often.
  648. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  649. while(tx_fifo_rem) {
  650. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  651. size_t size;
  652. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  653. if(p_uart->tx_head) {
  654. //The first item is the data description
  655. //Get the first item to get the data information
  656. if(p_uart->tx_len_tot == 0) {
  657. p_uart->tx_ptr = NULL;
  658. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  659. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  660. p_uart->tx_brk_flg = 1;
  661. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  662. }
  663. //We have saved the data description from the 1st item, return buffer.
  664. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  665. } else if(p_uart->tx_ptr == NULL) {
  666. //Update the TX item pointer, we will need this to return item to buffer.
  667. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  668. en_tx_flg = true;
  669. p_uart->tx_len_cur = size;
  670. }
  671. } else {
  672. //Can not get data from ring buffer, return;
  673. break;
  674. }
  675. }
  676. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  677. //To fill the TX FIFO.
  678. uint32_t send_len = 0;
  679. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  680. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  681. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  682. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  683. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  684. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  685. }
  686. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  687. (const uint8_t *)p_uart->tx_ptr,
  688. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  689. &send_len);
  690. p_uart->tx_ptr += send_len;
  691. p_uart->tx_len_tot -= send_len;
  692. p_uart->tx_len_cur -= send_len;
  693. tx_fifo_rem -= send_len;
  694. if (p_uart->tx_len_cur == 0) {
  695. //Return item to ring buffer.
  696. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  697. p_uart->tx_head = NULL;
  698. p_uart->tx_ptr = NULL;
  699. //Sending item done, now we need to send break if there is a record.
  700. //Set TX break signal after FIFO is empty
  701. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  702. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  703. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  704. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  705. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  706. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  707. p_uart->tx_waiting_brk = 1;
  708. //do not enable TX empty interrupt
  709. en_tx_flg = false;
  710. } else {
  711. //enable TX empty interrupt
  712. en_tx_flg = true;
  713. }
  714. } else {
  715. //enable TX empty interrupt
  716. en_tx_flg = true;
  717. }
  718. }
  719. }
  720. if (en_tx_flg) {
  721. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  722. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  723. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  724. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  725. }
  726. }
  727. }
  728. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  729. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  730. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  731. ) {
  732. if(pat_flg == 1) {
  733. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  734. pat_flg = 0;
  735. }
  736. if (p_uart->rx_buffer_full_flg == false) {
  737. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  738. uint8_t pat_chr = 0;
  739. uint8_t pat_num = 0;
  740. int pat_idx = -1;
  741. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  742. //Get the buffer from the FIFO
  743. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  744. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  745. uart_event.type = UART_PATTERN_DET;
  746. uart_event.size = rx_fifo_len;
  747. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  748. } else {
  749. //After Copying the Data From FIFO ,Clear intr_status
  750. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  751. uart_event.type = UART_DATA;
  752. uart_event.size = rx_fifo_len;
  753. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  754. if (p_uart->uart_select_notif_callback) {
  755. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  756. }
  757. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  758. }
  759. p_uart->rx_stash_len = rx_fifo_len;
  760. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  761. //Mainly for applications that uses flow control or small ring buffer.
  762. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  763. p_uart->rx_buffer_full_flg = true;
  764. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  765. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  766. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  767. if (uart_event.type == UART_PATTERN_DET) {
  768. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  769. if (rx_fifo_len < pat_num) {
  770. //some of the characters are read out in last interrupt
  771. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  772. } else {
  773. uart_pattern_enqueue(uart_num,
  774. pat_idx <= -1 ?
  775. //can not find the pattern in buffer,
  776. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  777. // find the pattern in buffer
  778. p_uart->rx_buffered_len + pat_idx);
  779. }
  780. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  781. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  782. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  783. }
  784. }
  785. uart_event.type = UART_BUFFER_FULL;
  786. } else {
  787. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  788. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  789. if (rx_fifo_len < pat_num) {
  790. //some of the characters are read out in last interrupt
  791. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  792. } else if(pat_idx >= 0) {
  793. // find the pattern in stash buffer.
  794. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  795. }
  796. }
  797. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  798. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  799. }
  800. } else {
  801. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  802. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  803. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  804. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  805. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  806. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  807. uart_event.type = UART_PATTERN_DET;
  808. uart_event.size = rx_fifo_len;
  809. pat_flg = 1;
  810. }
  811. }
  812. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  813. // When fifo overflows, we reset the fifo.
  814. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  815. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  816. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  817. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  818. if (p_uart->uart_select_notif_callback) {
  819. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  820. }
  821. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  822. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  823. uart_event.type = UART_FIFO_OVF;
  824. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  825. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  826. uart_event.type = UART_BREAK;
  827. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  828. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  829. if (p_uart->uart_select_notif_callback) {
  830. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  831. }
  832. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  833. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  834. uart_event.type = UART_FRAME_ERR;
  835. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  836. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  837. if (p_uart->uart_select_notif_callback) {
  838. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  839. }
  840. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  841. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  842. uart_event.type = UART_PARITY_ERR;
  843. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  844. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  845. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  846. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  847. if(p_uart->tx_brk_flg == 1) {
  848. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  849. }
  850. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  851. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  852. if(p_uart->tx_brk_flg == 1) {
  853. p_uart->tx_brk_flg = 0;
  854. p_uart->tx_waiting_brk = 0;
  855. } else {
  856. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  857. }
  858. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  859. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  860. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  861. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  862. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  863. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  864. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  865. uart_event.type = UART_PATTERN_DET;
  866. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  867. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  868. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  869. // RS485 collision or frame error interrupt triggered
  870. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  871. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  872. // Set collision detection flag
  873. p_uart_obj[uart_num]->coll_det_flg = true;
  874. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  875. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  876. uart_event.type = UART_EVENT_MAX;
  877. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  878. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  879. // The TX_DONE interrupt is triggered but transmit is active
  880. // then postpone interrupt processing for next interrupt
  881. uart_event.type = UART_EVENT_MAX;
  882. } else {
  883. // Workaround for RS485: If the RS485 half duplex mode is active
  884. // and transmitter is in idle state then reset received buffer and reset RTS pin
  885. // skip this behavior for other UART modes
  886. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  887. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  888. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  889. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  890. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  891. }
  892. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  893. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  894. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  895. }
  896. } else {
  897. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  898. uart_event.type = UART_EVENT_MAX;
  899. }
  900. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  901. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  902. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  903. }
  904. }
  905. }
  906. if(HPTaskAwoken == pdTRUE) {
  907. portYIELD_FROM_ISR();
  908. }
  909. }
  910. /**************************************************************/
  911. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  912. {
  913. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  914. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  915. BaseType_t res;
  916. portTickType ticks_start = xTaskGetTickCount();
  917. //Take tx_mux
  918. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  919. if(res == pdFALSE) {
  920. return ESP_ERR_TIMEOUT;
  921. }
  922. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  923. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  924. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  925. return ESP_OK;
  926. }
  927. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  928. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  929. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  930. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  931. TickType_t ticks_end = xTaskGetTickCount();
  932. if (ticks_end - ticks_start > ticks_to_wait) {
  933. ticks_to_wait = 0;
  934. } else {
  935. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  936. }
  937. //take 2nd tx_done_sem, wait given from ISR
  938. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  939. if(res == pdFALSE) {
  940. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  941. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  942. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  943. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  944. }
  945. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  946. return ESP_OK;
  947. }
  948. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  949. {
  950. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  951. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  952. UART_CHECK(buffer, "buffer null", (-1));
  953. if(len == 0) {
  954. return 0;
  955. }
  956. int tx_len = 0;
  957. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  958. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  959. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  960. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  961. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  962. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  963. }
  964. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  965. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  966. return tx_len;
  967. }
  968. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  969. {
  970. if(size == 0) {
  971. return 0;
  972. }
  973. size_t original_size = size;
  974. //lock for uart_tx
  975. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  976. p_uart_obj[uart_num]->coll_det_flg = false;
  977. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  978. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  979. int offset = 0;
  980. uart_tx_data_t evt;
  981. evt.tx_data.size = size;
  982. evt.tx_data.brk_len = brk_len;
  983. if(brk_en) {
  984. evt.type = UART_DATA_BREAK;
  985. } else {
  986. evt.type = UART_DATA;
  987. }
  988. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  989. while(size > 0) {
  990. int send_size = size > max_size / 2 ? max_size / 2 : size;
  991. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  992. size -= send_size;
  993. offset += send_size;
  994. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  995. }
  996. } else {
  997. while(size) {
  998. //semaphore for tx_fifo available
  999. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1000. uint32_t sent = 0;
  1001. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1002. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1003. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1004. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1005. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1006. }
  1007. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1008. if(sent < size) {
  1009. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1010. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1011. }
  1012. size -= sent;
  1013. src += sent;
  1014. }
  1015. }
  1016. if(brk_en) {
  1017. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1018. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1019. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1020. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1021. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1022. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1023. }
  1024. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1025. }
  1026. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1027. return original_size;
  1028. }
  1029. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1030. {
  1031. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1032. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1033. UART_CHECK(src, "buffer null", (-1));
  1034. return uart_tx_all(uart_num, src, size, 0, 0);
  1035. }
  1036. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1037. {
  1038. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1039. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1040. UART_CHECK((size > 0), "uart size error", (-1));
  1041. UART_CHECK((src), "uart data null", (-1));
  1042. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1043. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1044. }
  1045. static bool uart_check_buf_full(uart_port_t uart_num)
  1046. {
  1047. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1048. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1049. if(res == pdTRUE) {
  1050. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1051. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1052. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1053. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1054. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1055. return true;
  1056. }
  1057. }
  1058. return false;
  1059. }
  1060. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1061. {
  1062. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1063. UART_CHECK((buf), "uart data null", (-1));
  1064. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1065. uint8_t* data = NULL;
  1066. size_t size;
  1067. size_t copy_len = 0;
  1068. int len_tmp;
  1069. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1070. return -1;
  1071. }
  1072. while(length) {
  1073. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1074. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1075. if(data) {
  1076. p_uart_obj[uart_num]->rx_head_ptr = data;
  1077. p_uart_obj[uart_num]->rx_ptr = data;
  1078. p_uart_obj[uart_num]->rx_cur_remain = size;
  1079. } else {
  1080. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1081. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1082. //to solve the possible asynchronous issues.
  1083. if(uart_check_buf_full(uart_num)) {
  1084. //This condition will never be true if `uart_read_bytes`
  1085. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1086. continue;
  1087. } else {
  1088. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1089. return copy_len;
  1090. }
  1091. }
  1092. }
  1093. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1094. len_tmp = length;
  1095. } else {
  1096. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1097. }
  1098. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1099. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1100. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1101. uart_pattern_queue_update(uart_num, len_tmp);
  1102. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1103. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1104. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1105. copy_len += len_tmp;
  1106. length -= len_tmp;
  1107. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1108. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1109. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1110. p_uart_obj[uart_num]->rx_ptr = NULL;
  1111. uart_check_buf_full(uart_num);
  1112. }
  1113. }
  1114. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1115. return copy_len;
  1116. }
  1117. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1118. {
  1119. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1120. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1121. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1122. return ESP_OK;
  1123. }
  1124. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1125. esp_err_t uart_flush_input(uart_port_t uart_num)
  1126. {
  1127. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1128. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1129. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1130. uint8_t* data;
  1131. size_t size;
  1132. //rx sem protect the ring buffer read related functions
  1133. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1134. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1135. while(true) {
  1136. if(p_uart->rx_head_ptr) {
  1137. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1138. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1139. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1140. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1141. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1142. p_uart->rx_ptr = NULL;
  1143. p_uart->rx_cur_remain = 0;
  1144. p_uart->rx_head_ptr = NULL;
  1145. }
  1146. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1147. if(data == NULL) {
  1148. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1149. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1150. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1151. }
  1152. //We also need to clear the `rx_buffer_full_flg` here.
  1153. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1154. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1155. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1156. break;
  1157. }
  1158. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1159. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1160. uart_pattern_queue_update(uart_num, size);
  1161. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1162. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1163. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1164. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1165. if(res == pdTRUE) {
  1166. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1167. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1168. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1169. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1170. }
  1171. }
  1172. }
  1173. p_uart->rx_ptr = NULL;
  1174. p_uart->rx_cur_remain = 0;
  1175. p_uart->rx_head_ptr = NULL;
  1176. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1177. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1178. xSemaphoreGive(p_uart->rx_mux);
  1179. return ESP_OK;
  1180. }
  1181. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1182. {
  1183. esp_err_t r;
  1184. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1185. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1186. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1187. #if CONFIG_UART_ISR_IN_IRAM
  1188. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1189. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1190. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1191. }
  1192. #else
  1193. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1194. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1195. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1196. }
  1197. #endif
  1198. if(p_uart_obj[uart_num] == NULL) {
  1199. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1200. if(p_uart_obj[uart_num] == NULL) {
  1201. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1202. return ESP_FAIL;
  1203. }
  1204. p_uart_obj[uart_num]->uart_num = uart_num;
  1205. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1206. p_uart_obj[uart_num]->coll_det_flg = false;
  1207. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1208. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1209. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1210. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1211. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1212. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1213. p_uart_obj[uart_num]->queue_size = queue_size;
  1214. p_uart_obj[uart_num]->tx_ptr = NULL;
  1215. p_uart_obj[uart_num]->tx_head = NULL;
  1216. p_uart_obj[uart_num]->tx_len_tot = 0;
  1217. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1218. p_uart_obj[uart_num]->tx_brk_len = 0;
  1219. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1220. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1221. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1222. if(uart_queue) {
  1223. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1224. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1225. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1226. } else {
  1227. p_uart_obj[uart_num]->xQueueUart = NULL;
  1228. }
  1229. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1230. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1231. p_uart_obj[uart_num]->rx_ptr = NULL;
  1232. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1233. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1234. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1235. if(tx_buffer_size > 0) {
  1236. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1237. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1238. } else {
  1239. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1240. p_uart_obj[uart_num]->tx_buf_size = 0;
  1241. }
  1242. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1243. } else {
  1244. ESP_LOGE(UART_TAG, "UART driver already installed");
  1245. return ESP_FAIL;
  1246. }
  1247. uart_intr_config_t uart_intr = {
  1248. .intr_enable_mask = UART_INTR_RXFIFO_FULL
  1249. | UART_INTR_RXFIFO_TOUT
  1250. | UART_INTR_PARITY_ERR
  1251. | UART_INTR_RXFIFO_OVF
  1252. | UART_INTR_BRK_DET
  1253. | UART_INTR_PARITY_ERR,
  1254. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1255. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1256. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1257. };
  1258. uart_module_enable(uart_num);
  1259. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1260. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1261. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1262. if (r!=ESP_OK) goto err;
  1263. r=uart_intr_config(uart_num, &uart_intr);
  1264. if (r!=ESP_OK) goto err;
  1265. return r;
  1266. err:
  1267. uart_driver_delete(uart_num);
  1268. return r;
  1269. }
  1270. int a = 0;
  1271. //Make sure no other tasks are still using UART before you call this function
  1272. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1273. {
  1274. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1275. if(p_uart_obj[uart_num] == NULL) {
  1276. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1277. return ESP_OK;
  1278. }
  1279. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1280. uart_disable_rx_intr(uart_num);
  1281. uart_disable_tx_intr(uart_num);
  1282. uart_pattern_link_free(uart_num);
  1283. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1284. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1285. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1286. }
  1287. if(p_uart_obj[uart_num]->tx_done_sem) {
  1288. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1289. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1290. }
  1291. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1292. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1293. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1294. }
  1295. if(p_uart_obj[uart_num]->tx_mux) {
  1296. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1297. p_uart_obj[uart_num]->tx_mux = NULL;
  1298. }
  1299. if(p_uart_obj[uart_num]->rx_mux) {
  1300. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1301. p_uart_obj[uart_num]->rx_mux = NULL;
  1302. }
  1303. if(p_uart_obj[uart_num]->xQueueUart) {
  1304. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1305. p_uart_obj[uart_num]->xQueueUart = NULL;
  1306. }
  1307. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1308. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1309. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1310. }
  1311. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1312. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1313. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1314. }
  1315. heap_caps_free(p_uart_obj[uart_num]);
  1316. p_uart_obj[uart_num] = NULL;
  1317. uart_module_disable(uart_num);
  1318. return ESP_OK;
  1319. }
  1320. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1321. {
  1322. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1323. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1324. }
  1325. }
  1326. portMUX_TYPE *uart_get_selectlock(void)
  1327. {
  1328. return &uart_selectlock;
  1329. }
  1330. // Set UART mode
  1331. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1332. {
  1333. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1334. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1335. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1336. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1337. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1338. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1339. }
  1340. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1341. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1342. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1343. // This mode allows read while transmitting that allows collision detection
  1344. p_uart_obj[uart_num]->coll_det_flg = false;
  1345. // Enable collision detection interrupts
  1346. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1347. | UART_INTR_RXFIFO_FULL
  1348. | UART_INTR_RS485_CLASH
  1349. | UART_INTR_RS485_FRM_ERR
  1350. | UART_INTR_RS485_PARITY_ERR);
  1351. }
  1352. p_uart_obj[uart_num]->uart_mode = mode;
  1353. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1354. return ESP_OK;
  1355. }
  1356. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1357. {
  1358. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1359. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1360. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1361. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1362. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1363. return ESP_OK;
  1364. }
  1365. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1366. {
  1367. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1368. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1369. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1370. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1371. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1372. "wrong mode", ESP_ERR_INVALID_ARG);
  1373. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1374. return ESP_OK;
  1375. }
  1376. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1377. {
  1378. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1379. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1380. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1381. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1382. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1383. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1384. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1385. return ESP_OK;
  1386. }
  1387. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1388. {
  1389. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1390. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1391. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1392. return ESP_OK;
  1393. }
  1394. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1395. {
  1396. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1397. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1398. return ESP_OK;
  1399. }
  1400. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1401. {
  1402. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1403. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1404. return ESP_OK;
  1405. }