uart.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #define XOFF (char)0x13
  32. #define XON (char)0x11
  33. static const char* UART_TAG = "uart";
  34. #define UART_CHECK(a, str, ret_val) \
  35. if (!(a)) { \
  36. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  37. return (ret_val); \
  38. }
  39. #define UART_EMPTY_THRESH_DEFAULT (10)
  40. #define UART_FULL_THRESH_DEFAULT (120)
  41. #define UART_TOUT_THRESH_DEFAULT (10)
  42. #define UART_TX_IDLE_NUM_DEFAULT (0)
  43. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  44. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  45. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  46. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  47. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  48. typedef struct {
  49. uart_event_type_t type; /*!< UART TX data type */
  50. struct {
  51. int brk_len;
  52. size_t size;
  53. uint8_t data[0];
  54. } tx_data;
  55. } uart_tx_data_t;
  56. typedef struct {
  57. int wr;
  58. int rd;
  59. int len;
  60. int* data;
  61. } uart_pat_rb_t;
  62. typedef struct {
  63. uart_port_t uart_num; /*!< UART port number*/
  64. int queue_size; /*!< UART event queue size*/
  65. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  66. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  67. //rx parameters
  68. int rx_buffered_len; /*!< UART cached data length */
  69. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  70. int rx_buf_size; /*!< RX ring buffer size */
  71. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  72. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  73. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  74. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  75. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  76. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  77. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  78. uart_pat_rb_t rx_pattern_pos;
  79. //tx parameters
  80. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  81. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  82. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  83. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  84. int tx_buf_size; /*!< TX ring buffer size */
  85. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  86. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  87. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  88. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  89. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  90. uint32_t tx_len_cur;
  91. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  92. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  93. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  94. } uart_obj_t;
  95. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  96. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  97. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  98. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  99. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  100. {
  101. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  102. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  103. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  104. UART[uart_num]->conf0.bit_num = data_bit;
  105. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  106. return ESP_OK;
  107. }
  108. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  109. {
  110. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  111. *(data_bit) = UART[uart_num]->conf0.bit_num;
  112. return ESP_OK;
  113. }
  114. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  115. {
  116. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  117. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  118. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  119. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  120. if (stop_bit == UART_STOP_BITS_2) {
  121. stop_bit = UART_STOP_BITS_1;
  122. UART[uart_num]->rs485_conf.dl1_en = 1;
  123. } else {
  124. UART[uart_num]->rs485_conf.dl1_en = 0;
  125. }
  126. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  127. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  128. return ESP_OK;
  129. }
  130. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  131. {
  132. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  133. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  134. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  135. (*stop_bit) = UART_STOP_BITS_2;
  136. } else {
  137. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  138. }
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  145. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  146. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  147. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  148. return ESP_OK;
  149. }
  150. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  151. {
  152. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  153. int val = UART[uart_num]->conf0.val;
  154. if(val & UART_PARITY_EN_M) {
  155. if(val & UART_PARITY_M) {
  156. (*parity_mode) = UART_PARITY_ODD;
  157. } else {
  158. (*parity_mode) = UART_PARITY_EVEN;
  159. }
  160. } else {
  161. (*parity_mode) = UART_PARITY_DISABLE;
  162. }
  163. return ESP_OK;
  164. }
  165. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  166. {
  167. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  168. esp_err_t ret = ESP_OK;
  169. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  170. int uart_clk_freq;
  171. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  172. /* this UART has been configured to use REF_TICK */
  173. uart_clk_freq = REF_CLK_FREQ;
  174. } else {
  175. uart_clk_freq = esp_clk_apb_freq();
  176. }
  177. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  178. if (clk_div < 16) {
  179. /* baud rate is too high for this clock frequency */
  180. ret = ESP_ERR_INVALID_ARG;
  181. } else {
  182. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  183. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  184. }
  185. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  186. return ret;
  187. }
  188. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  189. {
  190. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  191. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  192. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  193. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  194. uint32_t uart_clk_freq = esp_clk_apb_freq();
  195. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  196. uart_clk_freq = REF_CLK_FREQ;
  197. }
  198. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  199. return ESP_OK;
  200. }
  201. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  202. {
  203. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  204. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  205. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  206. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  207. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  208. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  209. return ESP_OK;
  210. }
  211. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  212. {
  213. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  214. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  215. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  216. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  217. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  218. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  219. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  220. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  221. UART[uart_num]->swfc_conf.xon_char = XON;
  222. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  223. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  224. return ESP_OK;
  225. }
  226. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  227. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  228. {
  229. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  230. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  231. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  232. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  233. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  234. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  235. UART[uart_num]->conf1.rx_flow_en = 1;
  236. } else {
  237. UART[uart_num]->conf1.rx_flow_en = 0;
  238. }
  239. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  240. UART[uart_num]->conf0.tx_flow_en = 1;
  241. } else {
  242. UART[uart_num]->conf0.tx_flow_en = 0;
  243. }
  244. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  245. return ESP_OK;
  246. }
  247. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  248. {
  249. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  250. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  251. if(UART[uart_num]->conf1.rx_flow_en) {
  252. val |= UART_HW_FLOWCTRL_RTS;
  253. }
  254. if(UART[uart_num]->conf0.tx_flow_en) {
  255. val |= UART_HW_FLOWCTRL_CTS;
  256. }
  257. (*flow_ctrl) = val;
  258. return ESP_OK;
  259. }
  260. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  261. {
  262. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  263. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  264. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  265. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  266. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  267. READ_PERI_REG(UART_FIFO_REG(uart_num));
  268. }
  269. return ESP_OK;
  270. }
  271. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  272. {
  273. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  274. //intr_clr register is write-only
  275. UART[uart_num]->int_clr.val = clr_mask;
  276. return ESP_OK;
  277. }
  278. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  279. {
  280. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  281. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  282. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  283. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  284. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  285. return ESP_OK;
  286. }
  287. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  288. {
  289. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  290. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  291. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  292. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  293. return ESP_OK;
  294. }
  295. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  296. {
  297. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  298. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  299. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  300. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  301. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  302. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  303. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  304. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  305. free(pdata);
  306. }
  307. return ESP_OK;
  308. }
  309. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  310. {
  311. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  312. esp_err_t ret = ESP_OK;
  313. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  314. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  315. int next = p_pos->wr + 1;
  316. if (next >= p_pos->len) {
  317. next = 0;
  318. }
  319. if (next == p_pos->rd) {
  320. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  321. ret = ESP_FAIL;
  322. } else {
  323. p_pos->data[p_pos->wr] = pos;
  324. p_pos->wr = next;
  325. ret = ESP_OK;
  326. }
  327. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  328. return ret;
  329. }
  330. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  331. {
  332. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  333. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  334. return ESP_ERR_INVALID_STATE;
  335. } else {
  336. esp_err_t ret = ESP_OK;
  337. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  338. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  339. if (p_pos->rd == p_pos->wr) {
  340. ret = ESP_FAIL;
  341. } else {
  342. p_pos->rd++;
  343. }
  344. if (p_pos->rd >= p_pos->len) {
  345. p_pos->rd = 0;
  346. }
  347. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  348. return ret;
  349. }
  350. }
  351. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  352. {
  353. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  354. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  355. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  356. int rd = p_pos->rd;
  357. while(rd != p_pos->wr) {
  358. p_pos->data[rd] -= diff_len;
  359. int rd_rec = rd;
  360. rd ++;
  361. if (rd >= p_pos->len) {
  362. rd = 0;
  363. }
  364. if (p_pos->data[rd_rec] < 0) {
  365. p_pos->rd = rd;
  366. }
  367. }
  368. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  369. return ESP_OK;
  370. }
  371. int uart_pattern_pop_pos(uart_port_t uart_num)
  372. {
  373. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  374. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  375. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  376. int pos = -1;
  377. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  378. pos = pat_pos->data[pat_pos->rd];
  379. uart_pattern_dequeue(uart_num);
  380. }
  381. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  382. return pos;
  383. }
  384. int uart_pattern_get_pos(uart_port_t uart_num)
  385. {
  386. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  387. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  388. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  389. int pos = -1;
  390. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  391. pos = pat_pos->data[pat_pos->rd];
  392. }
  393. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  394. return pos;
  395. }
  396. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  397. {
  398. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  399. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  400. int* pdata = (int*) malloc(queue_length * sizeof(int));
  401. if(pdata == NULL) {
  402. return ESP_ERR_NO_MEM;
  403. }
  404. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  405. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  406. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  407. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  408. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  409. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  410. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  411. free(ptmp);
  412. return ESP_OK;
  413. }
  414. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  415. {
  416. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  417. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  418. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  419. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  420. UART[uart_num]->at_cmd_char.data = pattern_chr;
  421. UART[uart_num]->at_cmd_char.char_num = chr_num;
  422. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  423. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  424. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  425. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  426. }
  427. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  428. {
  429. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  430. }
  431. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  432. {
  433. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  434. }
  435. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  436. {
  437. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  438. }
  439. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  440. {
  441. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  442. }
  443. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  444. {
  445. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  446. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  447. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  448. UART[uart_num]->int_clr.txfifo_empty = 1;
  449. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  450. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  451. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  452. return ESP_OK;
  453. }
  454. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  455. {
  456. int ret;
  457. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  458. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  459. switch(uart_num) {
  460. case UART_NUM_1:
  461. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  462. break;
  463. case UART_NUM_2:
  464. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  465. break;
  466. case UART_NUM_0:
  467. default:
  468. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  469. break;
  470. }
  471. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  472. return ret;
  473. }
  474. esp_err_t uart_isr_free(uart_port_t uart_num)
  475. {
  476. esp_err_t ret;
  477. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  478. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  479. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  480. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  481. p_uart_obj[uart_num]->intr_handle=NULL;
  482. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  483. return ret;
  484. }
  485. //internal signal can be output to multiple GPIO pads
  486. //only one GPIO pad can connect with input signal
  487. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  488. {
  489. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  490. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  491. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  492. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  493. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  494. int tx_sig, rx_sig, rts_sig, cts_sig;
  495. switch(uart_num) {
  496. case UART_NUM_0:
  497. tx_sig = U0TXD_OUT_IDX;
  498. rx_sig = U0RXD_IN_IDX;
  499. rts_sig = U0RTS_OUT_IDX;
  500. cts_sig = U0CTS_IN_IDX;
  501. break;
  502. case UART_NUM_1:
  503. tx_sig = U1TXD_OUT_IDX;
  504. rx_sig = U1RXD_IN_IDX;
  505. rts_sig = U1RTS_OUT_IDX;
  506. cts_sig = U1CTS_IN_IDX;
  507. break;
  508. case UART_NUM_2:
  509. tx_sig = U2TXD_OUT_IDX;
  510. rx_sig = U2RXD_IN_IDX;
  511. rts_sig = U2RTS_OUT_IDX;
  512. cts_sig = U2CTS_IN_IDX;
  513. break;
  514. case UART_NUM_MAX:
  515. default:
  516. tx_sig = U0TXD_OUT_IDX;
  517. rx_sig = U0RXD_IN_IDX;
  518. rts_sig = U0RTS_OUT_IDX;
  519. cts_sig = U0CTS_IN_IDX;
  520. break;
  521. }
  522. if(tx_io_num >= 0) {
  523. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  524. gpio_set_level(tx_io_num, 1);
  525. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  526. }
  527. if(rx_io_num >= 0) {
  528. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  529. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  530. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  531. gpio_matrix_in(rx_io_num, rx_sig, 0);
  532. }
  533. if(rts_io_num >= 0) {
  534. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  535. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  536. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  537. }
  538. if(cts_io_num >= 0) {
  539. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  540. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  541. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  542. gpio_matrix_in(cts_io_num, cts_sig, 0);
  543. }
  544. return ESP_OK;
  545. }
  546. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  547. {
  548. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  549. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  550. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  551. UART[uart_num]->conf0.sw_rts = level & 0x1;
  552. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  553. return ESP_OK;
  554. }
  555. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  556. {
  557. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  558. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  559. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  560. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  561. return ESP_OK;
  562. }
  563. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  564. {
  565. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  566. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  567. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  568. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  569. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  570. return ESP_OK;
  571. }
  572. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  573. {
  574. esp_err_t r;
  575. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  576. UART_CHECK((uart_config), "param null", ESP_FAIL);
  577. if(uart_num == UART_NUM_0) {
  578. periph_module_enable(PERIPH_UART0_MODULE);
  579. } else if(uart_num == UART_NUM_1) {
  580. periph_module_enable(PERIPH_UART1_MODULE);
  581. } else if(uart_num == UART_NUM_2) {
  582. periph_module_enable(PERIPH_UART2_MODULE);
  583. }
  584. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  585. if (r != ESP_OK) return r;
  586. UART[uart_num]->conf0.val =
  587. (uart_config->parity << UART_PARITY_S)
  588. | (uart_config->data_bits << UART_BIT_NUM_S)
  589. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  590. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  591. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  592. if (r != ESP_OK) return r;
  593. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  594. if (r != ESP_OK) return r;
  595. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  596. return r;
  597. }
  598. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  599. {
  600. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  601. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  602. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  603. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  604. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  605. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  606. UART[uart_num]->conf1.rx_tout_en = 1;
  607. } else {
  608. UART[uart_num]->conf1.rx_tout_en = 0;
  609. }
  610. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  611. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  612. }
  613. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  614. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  615. }
  616. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  617. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  618. return ESP_OK;
  619. }
  620. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  621. {
  622. int cnt = 0;
  623. int len = length;
  624. while (len >= 0) {
  625. if (buf[len] == pat_chr) {
  626. cnt++;
  627. } else {
  628. cnt = 0;
  629. }
  630. if (cnt >= pat_num) {
  631. break;
  632. }
  633. len --;
  634. }
  635. return len;
  636. }
  637. //internal isr handler for default driver code.
  638. static void uart_rx_intr_handler_default(void *param)
  639. {
  640. uart_obj_t *p_uart = (uart_obj_t*) param;
  641. uint8_t uart_num = p_uart->uart_num;
  642. uart_dev_t* uart_reg = UART[uart_num];
  643. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  644. uint8_t buf_idx = 0;
  645. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  646. uart_event_t uart_event;
  647. portBASE_TYPE HPTaskAwoken = 0;
  648. static uint8_t pat_flg = 0;
  649. while(uart_intr_status != 0x0) {
  650. buf_idx = 0;
  651. uart_event.type = UART_EVENT_MAX;
  652. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  653. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  654. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  655. if(p_uart->tx_waiting_brk) {
  656. continue;
  657. }
  658. //TX semaphore will only be used when tx_buf_size is zero.
  659. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  660. p_uart->tx_waiting_fifo = false;
  661. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  662. if(HPTaskAwoken == pdTRUE) {
  663. portYIELD_FROM_ISR() ;
  664. }
  665. } else {
  666. //We don't use TX ring buffer, because the size is zero.
  667. if(p_uart->tx_buf_size == 0) {
  668. continue;
  669. }
  670. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  671. bool en_tx_flg = false;
  672. //We need to put a loop here, in case all the buffer items are very short.
  673. //That would cause a watch_dog reset because empty interrupt happens so often.
  674. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  675. while(tx_fifo_rem) {
  676. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  677. size_t size;
  678. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  679. if(p_uart->tx_head) {
  680. //The first item is the data description
  681. //Get the first item to get the data information
  682. if(p_uart->tx_len_tot == 0) {
  683. p_uart->tx_ptr = NULL;
  684. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  685. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  686. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  687. p_uart->tx_brk_flg = 1;
  688. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  689. }
  690. //We have saved the data description from the 1st item, return buffer.
  691. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  692. if(HPTaskAwoken == pdTRUE) {
  693. portYIELD_FROM_ISR() ;
  694. }
  695. }else if(p_uart->tx_ptr == NULL) {
  696. //Update the TX item pointer, we will need this to return item to buffer.
  697. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  698. en_tx_flg = true;
  699. p_uart->tx_len_cur = size;
  700. }
  701. }
  702. else {
  703. //Can not get data from ring buffer, return;
  704. break;
  705. }
  706. }
  707. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  708. //To fill the TX FIFO.
  709. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  710. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  711. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  712. }
  713. p_uart->tx_len_tot -= send_len;
  714. p_uart->tx_len_cur -= send_len;
  715. tx_fifo_rem -= send_len;
  716. if (p_uart->tx_len_cur == 0) {
  717. //Return item to ring buffer.
  718. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  719. if(HPTaskAwoken == pdTRUE) {
  720. portYIELD_FROM_ISR() ;
  721. }
  722. p_uart->tx_head = NULL;
  723. p_uart->tx_ptr = NULL;
  724. //Sending item done, now we need to send break if there is a record.
  725. //Set TX break signal after FIFO is empty
  726. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  727. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  728. uart_reg->int_ena.tx_brk_done = 0;
  729. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  730. uart_reg->conf0.txd_brk = 1;
  731. uart_reg->int_clr.tx_brk_done = 1;
  732. uart_reg->int_ena.tx_brk_done = 1;
  733. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  734. p_uart->tx_waiting_brk = 1;
  735. } else {
  736. //enable TX empty interrupt
  737. en_tx_flg = true;
  738. }
  739. } else {
  740. //enable TX empty interrupt
  741. en_tx_flg = true;
  742. }
  743. }
  744. }
  745. if (en_tx_flg) {
  746. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  747. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  748. }
  749. }
  750. }
  751. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  752. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  753. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  754. ) {
  755. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  756. if(pat_flg == 1) {
  757. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  758. pat_flg = 0;
  759. }
  760. if (p_uart->rx_buffer_full_flg == false) {
  761. //We have to read out all data in RX FIFO to clear the interrupt signal
  762. while (buf_idx < rx_fifo_len) {
  763. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  764. }
  765. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  766. int pat_num = uart_reg->at_cmd_char.char_num;
  767. int pat_idx = -1;
  768. //Get the buffer from the FIFO
  769. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  770. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  771. uart_event.type = UART_PATTERN_DET;
  772. uart_event.size = rx_fifo_len;
  773. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  774. } else {
  775. //After Copying the Data From FIFO ,Clear intr_status
  776. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  777. uart_event.type = UART_DATA;
  778. uart_event.size = rx_fifo_len;
  779. }
  780. p_uart->rx_stash_len = rx_fifo_len;
  781. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  782. //Mainly for applications that uses flow control or small ring buffer.
  783. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  784. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  785. if (uart_event.type == UART_PATTERN_DET) {
  786. if (rx_fifo_len < pat_num) {
  787. //some of the characters are read out in last interrupt
  788. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  789. } else {
  790. uart_pattern_enqueue(uart_num,
  791. pat_idx <= -1 ?
  792. //can not find the pattern in buffer,
  793. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  794. // find the pattern in buffer
  795. p_uart->rx_buffered_len + pat_idx);
  796. }
  797. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  798. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  799. }
  800. }
  801. uart_event.type = UART_BUFFER_FULL;
  802. p_uart->rx_buffer_full_flg = true;
  803. } else {
  804. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  805. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  806. if (rx_fifo_len < pat_num) {
  807. //some of the characters are read out in last interrupt
  808. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  809. } else if(pat_idx >= 0) {
  810. // find pattern in statsh buffer.
  811. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  812. }
  813. }
  814. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  815. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  816. }
  817. if(HPTaskAwoken == pdTRUE) {
  818. portYIELD_FROM_ISR() ;
  819. }
  820. } else {
  821. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  822. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  823. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  824. uart_reg->int_clr.at_cmd_char_det = 1;
  825. uart_event.type = UART_PATTERN_DET;
  826. uart_event.size = rx_fifo_len;
  827. pat_flg = 1;
  828. }
  829. }
  830. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  831. // When fifo overflows, we reset the fifo.
  832. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  833. uart_reset_rx_fifo(uart_num);
  834. uart_reg->int_clr.rxfifo_ovf = 1;
  835. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  836. uart_event.type = UART_FIFO_OVF;
  837. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  838. uart_reg->int_clr.brk_det = 1;
  839. uart_event.type = UART_BREAK;
  840. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  841. uart_reg->int_clr.frm_err = 1;
  842. uart_event.type = UART_FRAME_ERR;
  843. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  844. uart_reg->int_clr.parity_err = 1;
  845. uart_event.type = UART_PARITY_ERR;
  846. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  847. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  848. uart_reg->conf0.txd_brk = 0;
  849. uart_reg->int_ena.tx_brk_done = 0;
  850. uart_reg->int_clr.tx_brk_done = 1;
  851. if(p_uart->tx_brk_flg == 1) {
  852. uart_reg->int_ena.txfifo_empty = 1;
  853. }
  854. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  855. if(p_uart->tx_brk_flg == 1) {
  856. p_uart->tx_brk_flg = 0;
  857. p_uart->tx_waiting_brk = 0;
  858. } else {
  859. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  860. if(HPTaskAwoken == pdTRUE) {
  861. portYIELD_FROM_ISR() ;
  862. }
  863. }
  864. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  865. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  866. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  867. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  868. uart_reg->int_clr.at_cmd_char_det = 1;
  869. uart_event.type = UART_PATTERN_DET;
  870. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  871. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  872. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  873. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  874. if(HPTaskAwoken == pdTRUE) {
  875. portYIELD_FROM_ISR() ;
  876. }
  877. } else {
  878. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  879. uart_event.type = UART_EVENT_MAX;
  880. }
  881. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  882. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  883. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  884. }
  885. if(HPTaskAwoken == pdTRUE) {
  886. portYIELD_FROM_ISR() ;
  887. }
  888. }
  889. uart_intr_status = uart_reg->int_st.val;
  890. }
  891. }
  892. /**************************************************************/
  893. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  894. {
  895. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  896. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  897. BaseType_t res;
  898. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  899. //Take tx_mux
  900. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  901. if(res == pdFALSE) {
  902. return ESP_ERR_TIMEOUT;
  903. }
  904. ticks_to_wait = ticks_end - xTaskGetTickCount();
  905. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  906. ticks_to_wait = ticks_end - xTaskGetTickCount();
  907. if(UART[uart_num]->status.txfifo_cnt == 0) {
  908. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  909. return ESP_OK;
  910. }
  911. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  912. //take 2nd tx_done_sem, wait given from ISR
  913. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  914. if(res == pdFALSE) {
  915. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  916. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  917. return ESP_ERR_TIMEOUT;
  918. }
  919. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  920. return ESP_OK;
  921. }
  922. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  923. {
  924. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  925. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  926. UART[uart_num]->conf0.txd_brk = 1;
  927. UART[uart_num]->int_clr.tx_brk_done = 1;
  928. UART[uart_num]->int_ena.tx_brk_done = 1;
  929. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  930. return ESP_OK;
  931. }
  932. //Fill UART tx_fifo and return a number,
  933. //This function by itself is not thread-safe, always call from within a muxed section.
  934. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  935. {
  936. uint8_t i = 0;
  937. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  938. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  939. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  940. for(i = 0; i < copy_cnt; i++) {
  941. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  942. }
  943. return copy_cnt;
  944. }
  945. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  946. {
  947. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  948. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  949. UART_CHECK(buffer, "buffer null", (-1));
  950. if(len == 0) {
  951. return 0;
  952. }
  953. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  954. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  955. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  956. return tx_len;
  957. }
  958. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  959. {
  960. if(size == 0) {
  961. return 0;
  962. }
  963. size_t original_size = size;
  964. //lock for uart_tx
  965. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  966. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  967. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  968. int offset = 0;
  969. uart_tx_data_t evt;
  970. evt.tx_data.size = size;
  971. evt.tx_data.brk_len = brk_len;
  972. if(brk_en) {
  973. evt.type = UART_DATA_BREAK;
  974. } else {
  975. evt.type = UART_DATA;
  976. }
  977. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  978. while(size > 0) {
  979. int send_size = size > max_size / 2 ? max_size / 2 : size;
  980. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  981. size -= send_size;
  982. offset += send_size;
  983. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  984. }
  985. } else {
  986. while(size) {
  987. //semaphore for tx_fifo available
  988. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  989. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  990. if(sent < size) {
  991. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  992. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  993. }
  994. size -= sent;
  995. src += sent;
  996. }
  997. }
  998. if(brk_en) {
  999. uart_set_break(uart_num, brk_len);
  1000. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1001. }
  1002. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1003. }
  1004. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1005. return original_size;
  1006. }
  1007. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1008. {
  1009. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1010. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1011. UART_CHECK(src, "buffer null", (-1));
  1012. return uart_tx_all(uart_num, src, size, 0, 0);
  1013. }
  1014. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1015. {
  1016. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1017. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1018. UART_CHECK((size > 0), "uart size error", (-1));
  1019. UART_CHECK((src), "uart data null", (-1));
  1020. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1021. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1022. }
  1023. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1024. {
  1025. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1026. UART_CHECK((buf), "uart data null", (-1));
  1027. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1028. uint8_t* data = NULL;
  1029. size_t size;
  1030. size_t copy_len = 0;
  1031. int len_tmp;
  1032. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1033. return -1;
  1034. }
  1035. while(length) {
  1036. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1037. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1038. if(data) {
  1039. p_uart_obj[uart_num]->rx_head_ptr = data;
  1040. p_uart_obj[uart_num]->rx_ptr = data;
  1041. p_uart_obj[uart_num]->rx_cur_remain = size;
  1042. } else {
  1043. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1044. return copy_len;
  1045. }
  1046. }
  1047. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1048. len_tmp = length;
  1049. } else {
  1050. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1051. }
  1052. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1053. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1054. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1055. uart_pattern_queue_update(uart_num, len_tmp);
  1056. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1057. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1058. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1059. copy_len += len_tmp;
  1060. length -= len_tmp;
  1061. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1062. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1063. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1064. p_uart_obj[uart_num]->rx_ptr = NULL;
  1065. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1066. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1067. if(res == pdTRUE) {
  1068. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1069. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1070. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1071. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1072. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1073. }
  1074. }
  1075. }
  1076. }
  1077. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1078. return copy_len;
  1079. }
  1080. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1081. {
  1082. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1083. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1084. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1085. return ESP_OK;
  1086. }
  1087. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1088. esp_err_t uart_flush_input(uart_port_t uart_num)
  1089. {
  1090. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1091. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1092. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1093. uint8_t* data;
  1094. size_t size;
  1095. //rx sem protect the ring buffer read related functions
  1096. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1097. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1098. while(true) {
  1099. if(p_uart->rx_head_ptr) {
  1100. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1101. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1102. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1103. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1104. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1105. p_uart->rx_ptr = NULL;
  1106. p_uart->rx_cur_remain = 0;
  1107. p_uart->rx_head_ptr = NULL;
  1108. }
  1109. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1110. if(data == NULL) {
  1111. break;
  1112. }
  1113. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1114. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1115. uart_pattern_queue_update(uart_num, size);
  1116. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1117. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1118. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1119. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1120. if(res == pdTRUE) {
  1121. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1122. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1123. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1124. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1125. }
  1126. }
  1127. }
  1128. p_uart->rx_ptr = NULL;
  1129. p_uart->rx_cur_remain = 0;
  1130. p_uart->rx_head_ptr = NULL;
  1131. uart_reset_rx_fifo(uart_num);
  1132. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1133. xSemaphoreGive(p_uart->rx_mux);
  1134. return ESP_OK;
  1135. }
  1136. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1137. {
  1138. esp_err_t r;
  1139. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1140. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1141. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1142. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1143. if(p_uart_obj[uart_num] == NULL) {
  1144. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1145. if(p_uart_obj[uart_num] == NULL) {
  1146. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1147. return ESP_FAIL;
  1148. }
  1149. p_uart_obj[uart_num]->uart_num = uart_num;
  1150. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1151. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1152. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1153. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1154. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1155. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1156. p_uart_obj[uart_num]->queue_size = queue_size;
  1157. p_uart_obj[uart_num]->tx_ptr = NULL;
  1158. p_uart_obj[uart_num]->tx_head = NULL;
  1159. p_uart_obj[uart_num]->tx_len_tot = 0;
  1160. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1161. p_uart_obj[uart_num]->tx_brk_len = 0;
  1162. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1163. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1164. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1165. if(uart_queue) {
  1166. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1167. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1168. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1169. } else {
  1170. p_uart_obj[uart_num]->xQueueUart = NULL;
  1171. }
  1172. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1173. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1174. p_uart_obj[uart_num]->rx_ptr = NULL;
  1175. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1176. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1177. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1178. if(tx_buffer_size > 0) {
  1179. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1180. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1181. } else {
  1182. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1183. p_uart_obj[uart_num]->tx_buf_size = 0;
  1184. }
  1185. } else {
  1186. ESP_LOGE(UART_TAG, "UART driver already installed");
  1187. return ESP_FAIL;
  1188. }
  1189. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1190. if (r!=ESP_OK) goto err;
  1191. uart_intr_config_t uart_intr = {
  1192. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1193. | UART_RXFIFO_TOUT_INT_ENA_M
  1194. | UART_FRM_ERR_INT_ENA_M
  1195. | UART_RXFIFO_OVF_INT_ENA_M
  1196. | UART_BRK_DET_INT_ENA_M
  1197. | UART_PARITY_ERR_INT_ENA_M,
  1198. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1199. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1200. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1201. };
  1202. r=uart_intr_config(uart_num, &uart_intr);
  1203. if (r!=ESP_OK) goto err;
  1204. return r;
  1205. err:
  1206. uart_driver_delete(uart_num);
  1207. return r;
  1208. }
  1209. //Make sure no other tasks are still using UART before you call this function
  1210. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1211. {
  1212. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1213. if(p_uart_obj[uart_num] == NULL) {
  1214. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1215. return ESP_OK;
  1216. }
  1217. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1218. uart_disable_rx_intr(uart_num);
  1219. uart_disable_tx_intr(uart_num);
  1220. uart_pattern_link_free(uart_num);
  1221. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1222. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1223. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1224. }
  1225. if(p_uart_obj[uart_num]->tx_done_sem) {
  1226. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1227. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1228. }
  1229. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1230. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1231. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1232. }
  1233. if(p_uart_obj[uart_num]->tx_mux) {
  1234. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1235. p_uart_obj[uart_num]->tx_mux = NULL;
  1236. }
  1237. if(p_uart_obj[uart_num]->rx_mux) {
  1238. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1239. p_uart_obj[uart_num]->rx_mux = NULL;
  1240. }
  1241. if(p_uart_obj[uart_num]->xQueueUart) {
  1242. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1243. p_uart_obj[uart_num]->xQueueUart = NULL;
  1244. }
  1245. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1246. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1247. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1248. }
  1249. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1250. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1251. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1252. }
  1253. free(p_uart_obj[uart_num]);
  1254. p_uart_obj[uart_num] = NULL;
  1255. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1256. if(uart_num == UART_NUM_0) {
  1257. periph_module_disable(PERIPH_UART0_MODULE);
  1258. } else if(uart_num == UART_NUM_1) {
  1259. periph_module_disable(PERIPH_UART1_MODULE);
  1260. } else if(uart_num == UART_NUM_2) {
  1261. periph_module_disable(PERIPH_UART2_MODULE);
  1262. }
  1263. }
  1264. return ESP_OK;
  1265. }