| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426 |
- // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <rom/ets_sys.h>
- #include <freertos/heap_regions.h>
- #include "esp_heap_alloc_caps.h"
- #include "spiram.h"
- #include "esp_log.h"
- #include <stdbool.h>
- static const char* TAG = "heap_alloc_caps";
- /*
- This file, combined with a region allocator that supports tags, solves the problem that the ESP32 has RAM that's
- slightly heterogeneous. Some RAM can be byte-accessed, some allows only 32-bit accesses, some can execute memory,
- some can be remapped by the MMU to only be accessed by a certain PID etc. In order to allow the most flexible
- memory allocation possible, this code makes it possible to request memory that has certain capabilities. The
- code will then use its knowledge of how the memory is configured along with a priority scheme to allocate that
- memory in the most sane way possible. This should optimize the amount of RAM accessible to the code without
- hardwiring addresses.
- */
- //Amount of priority slots for the tag descriptors.
- #define NO_PRIOS 3
- typedef struct {
- const char *name;
- uint32_t prio[NO_PRIOS];
- bool aliasedIram;
- } tag_desc_t;
- /*
- Tag descriptors. These describe the capabilities of a bit of memory that's tagged with the index into this table.
- Each tag contains NO_PRIOS entries; later entries are only taken if earlier ones can't fulfill the memory request.
- Make sure there are never more than HEAPREGIONS_MAX_TAGCOUNT (in heap_regions.h) tags (ex the last empty marker)
- WARNING: The current code assumes the ROM stacks are located in tag 1; no allocation from this tag can be done until
- the FreeRTOS scheduler has started.
- */
- static const tag_desc_t tag_desc[]={
- { "DRAM", { MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT, 0 }, false}, //Tag 0: Plain ole D-port RAM
- { "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, true}, //Tag 1: Plain ole D-port RAM which has an alias on the I-port
- { "IRAM", { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT, 0, 0 }, false}, //Tag 2: IRAM
- { "PID2IRAM", { MALLOC_CAP_PID2, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //Tag 3-8: PID 2-7 IRAM
- { "PID3IRAM", { MALLOC_CAP_PID3, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
- { "PID4IRAM", { MALLOC_CAP_PID4, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
- { "PID5IRAM", { MALLOC_CAP_PID5, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
- { "PID6IRAM", { MALLOC_CAP_PID6, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
- { "PID7IRAM", { MALLOC_CAP_PID7, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
- { "PID2DRAM", { MALLOC_CAP_PID2, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //Tag 9-14: PID 2-7 DRAM
- { "PID3DRAM", { MALLOC_CAP_PID3, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
- { "PID4DRAM", { MALLOC_CAP_PID4, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
- { "PID5DRAM", { MALLOC_CAP_PID5, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
- { "PID6DRAM", { MALLOC_CAP_PID6, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
- { "PID7DRAM", { MALLOC_CAP_PID7, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
- { "SPISRAM", { MALLOC_CAP_SPISRAM, 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, false}, //Tag 15: SPI SRAM data
- { "", { MALLOC_CAP_INVALID, MALLOC_CAP_INVALID, MALLOC_CAP_INVALID }, false} //End
- };
- /*
- Region descriptors. These describe all regions of memory available, and tag them according to the
- capabilities the hardware has. This array is not marked constant; the initialization code may want to
- change the tags of some regions because eg BT is detected, applications are loaded etc.
- The priorities here roughly work like this:
- - For a normal malloc (MALLOC_CAP_8BIT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
- finally eat into the application memory.
- - For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
- - Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
- - Most other malloc caps only fit in one region anyway.
- These region descriptors are very ESP32 specific, because they describe the memory pools available there.
- Because of requirements in the coalescing code as well as the heap allocator itself, this list should always
- be sorted from low to high start address.
- This array is *NOT* const because it gets modified depending on what pools are/aren't available.
- */
- static HeapRegionTagged_t regions[]={
- { (uint8_t *)0x3F800000, 0x20000, 15, 0}, //SPI SRAM, if available
- { (uint8_t *)0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
- { (uint8_t *)0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- if BT is enabled, used as BT HW shared memory
- { (uint8_t *)0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- if BT is enabled, used data memory for BT ROM functions.
- { (uint8_t *)0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
- { (uint8_t *)0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
- { (uint8_t *)0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
- { (uint8_t *)0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
- { (uint8_t *)0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
- { (uint8_t *)0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
- { (uint8_t *)0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
- { (uint8_t *)0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
- { (uint8_t *)0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
- { (uint8_t *)0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
- { (uint8_t *)0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
- { (uint8_t *)0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
- { (uint8_t *)0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
- { (uint8_t *)0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
- { (uint8_t *)0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
- { (uint8_t *)0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
- { (uint8_t *)0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
- { (uint8_t *)0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
- { (uint8_t *)0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
- { (uint8_t *)0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
- { (uint8_t *)0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
- { (uint8_t *)0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
- { (uint8_t *)0x40070000, 0x8000, 2, 0}, //pool 0
- { (uint8_t *)0x40078000, 0x8000, 2, 0}, //pool 1
- { (uint8_t *)0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
- { (uint8_t *)0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
- { (uint8_t *)0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
- { (uint8_t *)0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
- { (uint8_t *)0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
- { (uint8_t *)0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
- { (uint8_t *)0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
- { (uint8_t *)0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
- { (uint8_t *)0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
- { (uint8_t *)0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
- { (uint8_t *)0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
- { (uint8_t *)0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
- { (uint8_t *)0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
- { (uint8_t *)0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
- { (uint8_t *)0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
- { (uint8_t *)0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
- { NULL, 0, 0, 0} //end
- };
- /* For the startup code, the stacks live in memory tagged by this tag. Hence, we only enable allocating from this tag
- once FreeRTOS has started up completely. */
- #define NONOS_STACK_TAG 1
- static bool nonos_stack_in_use=true;
- void heap_alloc_enable_nonos_stack_tag()
- {
- nonos_stack_in_use=false;
- }
- //Modify regions array to disable the given range of memory.
- static void disable_mem_region(void *from, void *to) {
- int i;
- //Align from and to on word boundaries
- from=(void*)((uint32_t)from&~3);
- to=(void*)(((uint32_t)to+3)&~3);
- for (i=0; regions[i].xSizeInBytes!=0; i++) {
- void *regStart=regions[i].pucStartAddress;
- void *regEnd=regions[i].pucStartAddress+regions[i].xSizeInBytes;
- if (regStart>=from && regEnd<=to) {
- //Entire region falls in the range. Disable entirely.
- regions[i].xTag=-1;
- } else if (regStart>=from && regEnd>to && regStart<to) {
- //Start of the region falls in the range. Modify address/len.
- int overlap=(uint8_t *)to-(uint8_t *)regStart;
- regions[i].pucStartAddress+=overlap;
- regions[i].xSizeInBytes-=overlap;
- if (regions[i].xExecAddr) regions[i].xExecAddr+=overlap;
- } else if (regStart<from && regEnd>from && regEnd<=to) {
- //End of the region falls in the range. Modify length.
- regions[i].xSizeInBytes-=(uint8_t *)regEnd-(uint8_t *)from;
- } else if (regStart<from && regEnd>to) {
- //Range punches a hole in the region! We do not support this.
- ESP_EARLY_LOGE(TAG, "region %d: hole punching is not supported!", i);
- regions[i].xTag=-1; //Just disable memory region. That'll teach them!
- }
- }
- }
- /*
- Warning: These variables are assumed to have the start and end of the data and iram
- area used statically by the program, respectively. These variables are defined in the ld
- file.
- */
- extern int _data_start, _heap_start, _init_start, _iram_text_end;
- /*
- Initialize the heap allocator. We pass it a bunch of region descriptors, but we need to modify those first to accommodate for
- the data as loaded by the bootloader.
- ToDo: The regions are different when stuff like trace memory, BT, ... is used. Modify the regions struct on the fly for this.
- Same with loading of apps. Same with using SPI RAM.
- */
- void heap_alloc_caps_init() {
- int i;
- //Compile-time assert to see if we don't have more tags than is set in heap_regions.h
- _Static_assert((sizeof(tag_desc)/sizeof(tag_desc[0]))-1 <= HEAPREGIONS_MAX_TAGCOUNT, "More than HEAPREGIONS_MAX_TAGCOUNT tags defined!");
- //Disable the bits of memory where this code is loaded.
- disable_mem_region(&_data_start, &_heap_start); //DRAM used by bss/data static variables
- disable_mem_region(&_init_start, &_iram_text_end); //IRAM used by code
- disable_mem_region((void*)0x40070000, (void*)0x40078000); //CPU0 cache region
- disable_mem_region((void*)0x40078000, (void*)0x40080000); //CPU1 cache region
- /* Warning: The ROM stack is located in the 0x3ffe0000 area. We do not specifically disable that area here because
- after the scheduler has started, the ROM stack is not used anymore by anything. We handle it instead by not allowing
- any mallocs from tag 1 (the IRAM/DRAM region) until the scheduler has started.
- The 0x3ffe0000 region also contains static RAM for various ROM functions. The following lines
- reserve the regions for UART and ETSC, so these functions are usable. Libraries like xtos, which are
- not usable in FreeRTOS anyway, are commented out in the linker script so they cannot be used; we
- do not disable their memory regions here and they will be used as general purpose heap memory.
- Enabling the heap allocator for this region but disabling allocation here until FreeRTOS is started up
- is a somewhat risky action in theory, because on initializing the allocator, vPortDefineHeapRegionsTagged
- will go and write linked list entries at the start and end of all regions. For the ESP32, these linked
- list entries happen to end up in a region that is not touched by the stack; they can be placed safely there.*/
- disable_mem_region((void*)0x3ffe0000, (void*)0x3ffe0440); //Reserve ROM PRO data region
- disable_mem_region((void*)0x3ffe4000, (void*)0x3ffe4350); //Reserve ROM APP data region
- #if CONFIG_BT_ENABLED
- #if CONFIG_BT_DRAM_RELEASE
- disable_mem_region((void*)0x3ffb0000, (void*)0x3ffb3000); //Reserve BT data region
- disable_mem_region((void*)0x3ffb8000, (void*)0x3ffbbb28); //Reserve BT data region
- disable_mem_region((void*)0x3ffbdb28, (void*)0x3ffc0000); //Reserve BT data region
- #else
- disable_mem_region((void*)0x3ffb0000, (void*)0x3ffc0000); //Reserve BT hardware shared memory & BT data region
- #endif
- disable_mem_region((void*)0x3ffae000, (void*)0x3ffaff10); //Reserve ROM data region, inc region needed for BT ROM routines
- #else
- disable_mem_region((void*)0x3ffae000, (void*)0x3ffae2a0); //Reserve ROM data region
- #endif
- #if CONFIG_MEMMAP_TRACEMEM
- #if CONFIG_MEMMAP_TRACEMEM_TWOBANKS
- disable_mem_region((void*)0x3fff8000, (void*)0x40000000); //Reserve trace mem region
- #else
- disable_mem_region((void*)0x3fff8000, (void*)0x3fffc000); //Reserve trace mem region
- #endif
- #endif
- #if 0
- enable_spi_sram();
- #else
- disable_mem_region((void*)0x3f800000, (void*)0x3f820000); //SPI SRAM not installed
- #endif
- //The heap allocator will treat every region given to it as separate. In order to get bigger ranges of contiguous memory,
- //it's useful to coalesce adjacent regions that have the same tag.
- for (i=1; regions[i].xSizeInBytes!=0; i++) {
- if (regions[i].pucStartAddress == (regions[i-1].pucStartAddress + regions[i-1].xSizeInBytes) &&
- regions[i].xTag == regions[i-1].xTag ) {
- regions[i-1].xTag=-1;
- regions[i].pucStartAddress=regions[i-1].pucStartAddress;
- regions[i].xSizeInBytes+=regions[i-1].xSizeInBytes;
- }
- }
- ESP_EARLY_LOGI(TAG, "Initializing. RAM available for dynamic allocation:");
- for (i=0; regions[i].xSizeInBytes!=0; i++) {
- if (regions[i].xTag != -1) {
- ESP_EARLY_LOGI(TAG, "At %08X len %08X (%d KiB): %s",
- (int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xSizeInBytes/1024, tag_desc[regions[i].xTag].name);
- }
- }
- //Initialize the malloc implementation.
- vPortDefineHeapRegionsTagged( regions );
- }
- //First and last words of the D/IRAM region, for both the DRAM address as well as the IRAM alias.
- #define DIRAM_IRAM_START 0x400A0000
- #define DIRAM_IRAM_END 0x400BFFFC
- #define DIRAM_DRAM_START 0x3FFE0000
- #define DIRAM_DRAM_END 0x3FFFFFFC
- /*
- This takes a memory chunk in a region that can be addressed as both DRAM as well as IRAM. It will convert it to
- IRAM in such a way that it can be later freed. It assumes both the address as wel as the length to be word-aligned.
- It returns a region that's 1 word smaller than the region given because it stores the original Dram address there.
-
- In theory, we can also make this work by prepending a struct that looks similar to the block link struct used by the
- heap allocator itself, which will allow inspection tools relying on any block returned from any sort of malloc to
- have such a block in front of it, work. We may do this later, if/when there is demand for it. For now, a simple
- pointer is used.
- */
- static void *dram_alloc_to_iram_addr(void *addr, size_t len)
- {
- uint32_t dstart=(int)addr; //First word
- uint32_t dend=((int)addr)+len-4; //Last word
- configASSERT(dstart>=DIRAM_DRAM_START);
- configASSERT(dend<=DIRAM_DRAM_END);
- configASSERT((dstart&3)==0);
- configASSERT((dend&3)==0);
- uint32_t istart=DIRAM_IRAM_START+(DIRAM_DRAM_END-dend);
- uint32_t *iptr=(uint32_t*)istart;
- *iptr=dstart;
- return (void*)(iptr+1);
- }
- /*
- Standard malloc() implementation. Will return standard no-frills byte-accessible data memory.
- */
- void *pvPortMalloc( size_t xWantedSize )
- {
- return pvPortMallocCaps( xWantedSize, MALLOC_CAP_8BIT );
- }
- /*
- Standard free() implementation. Will pass memory on to the allocator unless it's an IRAM address where the
- actual meory is allocated in DRAM, it will convert to the DRAM address then.
- */
- void vPortFree( void *pv )
- {
- if (((int)pv>=DIRAM_IRAM_START) && ((int)pv<=DIRAM_IRAM_END)) {
- //Memory allocated here is actually allocated in the DRAM alias region and
- //cannot be de-allocated as usual. dram_alloc_to_iram_addr stores a pointer to
- //the equivalent DRAM address, though; free that.
- uint32_t* dramAddrPtr=(uint32_t*)pv;
- return vPortFreeTagged((void*)dramAddrPtr[-1]);
- }
- return vPortFreeTagged(pv);
- }
- /*
- Routine to allocate a bit of memory with certain capabilities. caps is a bitfield of MALLOC_CAP_* bits.
- */
- void *pvPortMallocCaps( size_t xWantedSize, uint32_t caps )
- {
- int prio;
- int tag, j;
- void *ret=NULL;
- uint32_t remCaps;
- if (caps & MALLOC_CAP_EXEC) {
- //MALLOC_CAP_EXEC forces an alloc from IRAM. There is a region which has both this
- //as well as the following caps, but the following caps are not possible for IRAM.
- //Thus, the combination is impossible and we return NULL directly, even although our tag_desc
- //table would indicate there is a tag for this.
- if ((caps & MALLOC_CAP_8BIT) || (caps & MALLOC_CAP_DMA)) {
- return NULL;
- }
- //If any, EXEC memory should be 32-bit aligned, so round up to the next multiple of 4.
- xWantedSize=(xWantedSize+3)&(~3);
- }
- for (prio=0; prio<NO_PRIOS; prio++) {
- //Iterate over tag descriptors for this priority
- for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
- if (nonos_stack_in_use && tag == NONOS_STACK_TAG) {
- //Non-os stack lives here and is still in use. Don't alloc here.
- continue;
- }
- if ((tag_desc[tag].prio[prio]&caps)!=0) {
- //Tag has at least one of the caps requested. If caps has other bits set that this prio
- //doesn't cover, see if they're available in other prios.
- remCaps=caps&(~tag_desc[tag].prio[prio]); //Remaining caps to be fulfilled
- j=prio+1;
- while (remCaps!=0 && j<NO_PRIOS) {
- remCaps=remCaps&(~tag_desc[tag].prio[j]);
- j++;
- }
- if (remCaps==0) {
- //This tag can satisfy all the requested capabilities. See if we can grab some memory using it.
- if ((caps & MALLOC_CAP_EXEC) && tag_desc[tag].aliasedIram) {
- //This is special, insofar that what we're going to get back is probably a DRAM address. If so,
- //we need to 'invert' it (lowest address in DRAM == highest address in IRAM and vice-versa) and
- //add a pointer to the DRAM equivalent before the address we're going to return.
- ret=pvPortMallocTagged(xWantedSize+4, tag);
- if (ret!=NULL) return dram_alloc_to_iram_addr(ret, xWantedSize+4);
- } else {
- //Just try to alloc, nothing special.
- ret=pvPortMallocTagged(xWantedSize, tag);
- if (ret!=NULL) return ret;
- }
- }
- }
- }
- }
- //Nothing usable found.
- return NULL;
- }
- size_t xPortGetFreeHeapSizeCaps( uint32_t caps )
- {
- int prio;
- int tag;
- size_t ret=0;
- for (prio=0; prio<NO_PRIOS; prio++) {
- //Iterate over tag descriptors for this priority
- for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
- if ((tag_desc[tag].prio[prio]&caps)!=0) {
- ret+=xPortGetFreeHeapSizeTagged(tag);
- }
- }
- }
- return ret;
- }
- size_t xPortGetMinimumEverFreeHeapSizeCaps( uint32_t caps )
- {
- int prio;
- int tag;
- size_t ret=0;
- for (prio=0; prio<NO_PRIOS; prio++) {
- //Iterate over tag descriptors for this priority
- for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
- if ((tag_desc[tag].prio[prio]&caps)!=0) {
- ret+=xPortGetMinimumEverFreeHeapSizeTagged(tag);
- }
- }
- }
- return ret;
- }
- size_t xPortGetFreeHeapSize( void )
- {
- return xPortGetFreeHeapSizeCaps( MALLOC_CAP_8BIT );
- }
- size_t xPortGetMinimumEverFreeHeapSize( void )
- {
- return xPortGetMinimumEverFreeHeapSizeCaps( MALLOC_CAP_8BIT );
- }
|