| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534 |
- // Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <stdbool.h>
- #include <stdint.h>
- #include <stddef.h>
- #include <assert.h>
- #include "rom/ets_sys.h"
- #include "rom/rtc.h"
- #include "rom/uart.h"
- #include "soc/rtc.h"
- #include "soc/rtc_cntl_reg.h"
- #include "soc/rtc_io_reg.h"
- #include "soc/sens_reg.h"
- #include "soc/dport_reg.h"
- #include "soc/efuse_reg.h"
- #include "soc/apb_ctrl_reg.h"
- #include "i2c_rtc_clk.h"
- #include "soc_log.h"
- #include "sdkconfig.h"
- #define MHZ (1000000)
- static const char* TAG = "rtc_clk";
- /* Various constants related to the analog internals of the chip.
- * Defined here because they don't have any use outside of this file.
- */
- #define BBPLL_ENDIV5_VAL_320M 0x43
- #define BBPLL_BBADC_DSMP_VAL_320M 0x84
- #define BBPLL_ENDIV5_VAL_480M 0xc3
- #define BBPLL_BBADC_DSMP_VAL_480M 0x74
- #define APLL_SDM_STOP_VAL_1 0x09
- #define APLL_SDM_STOP_VAL_2_REV0 0x69
- #define APLL_SDM_STOP_VAL_2_REV1 0x49
- #define APLL_CAL_DELAY_1 0x0f
- #define APLL_CAL_DELAY_2 0x3f
- #define APLL_CAL_DELAY_3 0x1f
- #define XTAL_32K_DAC_VAL 1
- #define XTAL_32K_DRES_VAL 3
- #define XTAL_32K_DBIAS_VAL 0
- /* Delays for various clock sources to be enabled/switched.
- * All values are in microseconds.
- * TODO: some of these are excessive, and should be reduced.
- */
- #define DELAY_CPU_FREQ_SWITCH_TO_XTAL 80
- #define DELAY_CPU_FREQ_SWITCH_TO_PLL 10
- #define DELAY_PLL_DBIAS_RAISE 3
- #define DELAY_PLL_ENABLE 80
- #define DELAY_FAST_CLK_SWITCH 3
- #define DELAY_SLOW_CLK_SWITCH 300
- #define DELAY_8M_ENABLE 50
- void rtc_clk_32k_enable(bool enable)
- {
- if (enable) {
- SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
- CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG,
- RTC_IO_X32P_RDE | RTC_IO_X32P_RUE | RTC_IO_X32N_RUE |
- RTC_IO_X32N_RDE | RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
- REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DAC_XTAL_32K, XTAL_32K_DAC_VAL);
- REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DRES_XTAL_32K, XTAL_32K_DRES_VAL);
- REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DBIAS_XTAL_32K, XTAL_32K_DBIAS_VAL);
- SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K);
- } else {
- CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K);
- }
- }
- bool rtc_clk_32k_enabled()
- {
- return GET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K) != 0;
- }
- void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
- {
- if (clk_8m_en) {
- CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
- /* no need to wait once enabled by software */
- REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, 1);
- if (d256_en) {
- CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
- } else {
- SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
- }
- ets_delay_us(DELAY_8M_ENABLE);
- } else {
- SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
- REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
- }
- }
- bool rtc_clk_8m_enabled()
- {
- return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0;
- }
- bool rtc_clk_8md256_enabled()
- {
- return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0;
- }
- void rtc_clk_apll_enable(bool enable, uint32_t sdm0, uint32_t sdm1, uint32_t sdm2, uint32_t o_div)
- {
- REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD, enable ? 0 : 1);
- REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU, enable ? 1 : 0);
- REG_SET_FIELD(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD, enable ? 0 : 1);
- if (!enable &&
- REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL) != RTC_CNTL_SOC_CLK_SEL_PLL) {
- SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
- }
- if (enable) {
- uint8_t sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV1;
- uint32_t is_rev0 = (GET_PERI_REG_BITS2(EFUSE_BLK0_RDATA3_REG, 1, 15) == 0);
- if (is_rev0) {
- sdm0 = 0;
- sdm1 = 0;
- sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV0;
- }
- I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM2, sdm2);
- I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM0, sdm0);
- I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM1, sdm1);
- I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, APLL_SDM_STOP_VAL_1);
- I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, sdm_stop_val_2);
- I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_OUTPUT_DIV, o_div);
- /* calibration */
- I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_1);
- I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_2);
- I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_3);
- /* wait for calibration end */
- while (!(I2C_READREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_CAL_END))) {
- /* use ets_delay_us so the RTC bus doesn't get flooded */
- ets_delay_us(1);
- }
- }
- }
- void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq)
- {
- REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, slow_freq);
- ets_delay_us(DELAY_SLOW_CLK_SWITCH);
- }
- rtc_slow_freq_t rtc_clk_slow_freq_get()
- {
- return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
- }
- void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq)
- {
- REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, fast_freq);
- ets_delay_us(DELAY_FAST_CLK_SWITCH);
- }
- rtc_fast_freq_t rtc_clk_fast_freq_get()
- {
- return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL);
- }
- void rtc_clk_bbpll_set(rtc_xtal_freq_t xtal_freq, rtc_cpu_freq_t cpu_freq)
- {
- uint8_t div_ref;
- uint8_t div7_0;
- uint8_t div10_8;
- uint8_t lref;
- uint8_t dcur;
- uint8_t bw;
- if (cpu_freq != RTC_CPU_FREQ_240M) {
- /* Configure 320M PLL */
- switch (xtal_freq) {
- case RTC_XTAL_FREQ_40M:
- div_ref = 0;
- div7_0 = 32;
- div10_8 = 0;
- lref = 0;
- dcur = 6;
- bw = 3;
- break;
- case RTC_XTAL_FREQ_26M:
- div_ref = 12;
- div7_0 = 224;
- div10_8 = 4;
- lref = 1;
- dcur = 0;
- bw = 1;
- break;
- case RTC_XTAL_FREQ_24M:
- div_ref = 11;
- div7_0 = 224;
- div10_8 = 4;
- lref = 1;
- dcur = 0;
- bw = 1;
- break;
- default:
- div_ref = 12;
- div7_0 = 224;
- div10_8 = 4;
- lref = 0;
- dcur = 0;
- bw = 0;
- break;
- }
- I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_320M);
- I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_320M);
- } else {
- /* Raise the voltage */
- REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DBIAS_1V25);
- ets_delay_us(DELAY_PLL_DBIAS_RAISE);
- /* Configure 480M PLL */
- switch (xtal_freq) {
- case RTC_XTAL_FREQ_40M:
- div_ref = 0;
- div7_0 = 28;
- div10_8 = 0;
- lref = 0;
- dcur = 6;
- bw = 3;
- break;
- case RTC_XTAL_FREQ_26M:
- div_ref = 12;
- div7_0 = 144;
- div10_8 = 4;
- lref = 1;
- dcur = 0;
- bw = 1;
- break;
- case RTC_XTAL_FREQ_24M:
- div_ref = 11;
- div7_0 = 144;
- div10_8 = 4;
- lref = 1;
- dcur = 0;
- bw = 1;
- break;
- default:
- div_ref = 12;
- div7_0 = 224;
- div10_8 = 4;
- lref = 0;
- dcur = 0;
- bw = 0;
- break;
- }
- I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_480M);
- I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_480M);
- }
- uint8_t i2c_bbpll_lref = (lref << 7) | (div10_8 << 4) | (div_ref);
- uint8_t i2c_bbpll_div_7_0 = div7_0;
- uint8_t i2c_bbpll_dcur = (bw << 6) | dcur;
- I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_LREF, i2c_bbpll_lref);
- I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
- I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
- ets_delay_us(DELAY_PLL_ENABLE);
- }
- void rtc_clk_cpu_freq_set(rtc_cpu_freq_t cpu_freq)
- {
- rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
- /* Switch CPU to XTAL frequency first */
- REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DBIAS_1V10);
- REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_XTL);
- REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, 0);
- ets_update_cpu_frequency(xtal_freq);
- ets_delay_us(DELAY_CPU_FREQ_SWITCH_TO_XTAL);
- REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 0);
- SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
- RTC_CNTL_BB_I2C_FORCE_PD | RTC_CNTL_BBPLL_FORCE_PD |
- RTC_CNTL_BBPLL_I2C_FORCE_PD);
- rtc_clk_apb_freq_update(xtal_freq * MHZ);
- /* is APLL under force power down? */
- uint32_t apll_fpd = REG_GET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
- if (apll_fpd) {
- /* then also power down the internal I2C bus */
- SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
- }
- /* now switch to the desired frequency */
- if (cpu_freq == RTC_CPU_FREQ_XTAL) {
- /* already at XTAL, nothing to do */
- } else if (cpu_freq == RTC_CPU_FREQ_2M) {
- /* set up divider to produce 2MHz from XTAL */
- REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, (xtal_freq / 2) - 1);
- ets_update_cpu_frequency(2);
- rtc_clk_apb_freq_update(2 * MHZ);
- /* lower the voltage */
- REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DBIAS_1V00);
- } else {
- /* use PLL as clock source */
- CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
- RTC_CNTL_BIAS_I2C_FORCE_PD | RTC_CNTL_BB_I2C_FORCE_PD |
- RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
- rtc_clk_bbpll_set(xtal_freq, cpu_freq);
- if (cpu_freq == RTC_CPU_FREQ_80M) {
- REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 0);
- ets_update_cpu_frequency(80);
- } else if (cpu_freq == RTC_CPU_FREQ_160M) {
- REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 1);
- ets_update_cpu_frequency(160);
- } else if (cpu_freq == RTC_CPU_FREQ_240M) {
- REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 2);
- ets_update_cpu_frequency(240);
- }
- REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_PLL);
- ets_delay_us(DELAY_CPU_FREQ_SWITCH_TO_PLL);
- rtc_clk_apb_freq_update(80 * MHZ);
- }
- }
- rtc_cpu_freq_t rtc_clk_cpu_freq_get()
- {
- uint32_t soc_clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL);
- switch (soc_clk_sel) {
- case RTC_CNTL_SOC_CLK_SEL_XTL: {
- uint32_t pre_div = REG_GET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT);
- if (pre_div == 0) {
- return RTC_CPU_FREQ_XTAL;
- } else if (pre_div == rtc_clk_xtal_freq_get() / 2 - 1) {
- return RTC_CPU_FREQ_2M;
- } else {
- assert(false && "unsupported frequency");
- }
- break;
- }
- case RTC_CNTL_SOC_CLK_SEL_PLL: {
- uint32_t cpuperiod_sel = REG_GET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL);
- if (cpuperiod_sel == 0) {
- return RTC_CPU_FREQ_80M;
- } else if (cpuperiod_sel == 1) {
- return RTC_CPU_FREQ_160M;
- } else if (cpuperiod_sel == 2) {
- return RTC_CPU_FREQ_240M;
- } else {
- assert(false && "unsupported frequency");
- }
- break;
- }
- case RTC_CNTL_SOC_CLK_SEL_APLL:
- case RTC_CNTL_SOC_CLK_SEL_8M:
- default:
- assert(false && "unsupported frequency");
- }
- return RTC_CNTL_SOC_CLK_SEL_XTL;
- }
- uint32_t rtc_clk_cpu_freq_value(rtc_cpu_freq_t cpu_freq)
- {
- switch (cpu_freq) {
- case RTC_CPU_FREQ_XTAL:
- return ((uint32_t) rtc_clk_xtal_freq_get()) * MHZ;
- case RTC_CPU_FREQ_2M:
- return 2 * MHZ;
- case RTC_CPU_FREQ_80M:
- return 80 * MHZ;
- case RTC_CPU_FREQ_160M:
- return 160 * MHZ;
- case RTC_CPU_FREQ_240M:
- return 240 * MHZ;
- default:
- assert(false && "invalid rtc_cpu_freq_t value");
- return 0;
- }
- }
- /* Values of RTC_XTAL_FREQ_REG and RTC_APB_FREQ_REG are stored as two copies in
- * lower and upper 16-bit halves. These are the routines to work with such a
- * representation.
- */
- static bool clk_val_is_valid(uint32_t val) {
- return (val & 0xffff) == ((val >> 16) & 0xffff) &&
- val != 0 &&
- val != UINT32_MAX;
- }
- static uint32_t reg_val_to_clk_val(uint32_t val) {
- return val & UINT16_MAX;
- }
- static uint32_t clk_val_to_reg_val(uint32_t val) {
- return (val & UINT16_MAX) | ((val & UINT16_MAX) << 16);
- }
- rtc_xtal_freq_t rtc_clk_xtal_freq_get()
- {
- /* We may have already written XTAL value into RTC_XTAL_FREQ_REG */
- uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
- if (!clk_val_is_valid(xtal_freq_reg)) {
- SOC_LOGW(TAG, "invalid RTC_XTAL_FREQ_REG value: 0x%08x", xtal_freq_reg);
- return RTC_XTAL_FREQ_AUTO;
- }
- return reg_val_to_clk_val(xtal_freq_reg);
- }
- void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq)
- {
- WRITE_PERI_REG(RTC_XTAL_FREQ_REG, clk_val_to_reg_val(xtal_freq));
- }
- static rtc_xtal_freq_t rtc_clk_xtal_freq_estimate()
- {
- /* ROM startup code estimates XTAL frequency using an 8MD256 clock and stores
- * the value into RTC_APB_FREQ_REG. The value is in Hz, right shifted by 12.
- * Use this value to guess the real XTAL frequency.
- *
- * TODO: make this more robust by calibrating again after setting
- * RTC_CNTL_CK8M_DFREQ.
- */
- uint32_t apb_freq_reg = READ_PERI_REG(RTC_APB_FREQ_REG);
- if (!clk_val_is_valid(apb_freq_reg)) {
- SOC_LOGW(TAG, "invalid RTC_APB_FREQ_REG value: 0x%08x", apb_freq_reg);
- return RTC_XTAL_FREQ_AUTO;
- }
- uint32_t freq_mhz = (reg_val_to_clk_val(apb_freq_reg) << 12) / MHZ;
- /* Guess the XTAL type. For now, only 40 and 26MHz are supported.
- */
- switch (freq_mhz) {
- case 21 ... 31:
- return RTC_XTAL_FREQ_26M;
- case 32 ... 33:
- SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 26 MHz", freq_mhz);
- return RTC_XTAL_FREQ_26M;
- case 34 ... 35:
- SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 40 MHz", freq_mhz);
- return RTC_XTAL_FREQ_40M;
- case 36 ... 45:
- return RTC_XTAL_FREQ_40M;
- default:
- SOC_LOGW(TAG, "Bogus XTAL frequency: %d MHz", freq_mhz);
- return RTC_XTAL_FREQ_AUTO;
- }
- }
- void rtc_clk_apb_freq_update(uint32_t apb_freq)
- {
- WRITE_PERI_REG(RTC_APB_FREQ_REG, clk_val_to_reg_val(apb_freq >> 12));
- }
- uint32_t rtc_clk_apb_freq_get()
- {
- return reg_val_to_clk_val(READ_PERI_REG(RTC_APB_FREQ_REG)) << 12;
- }
- void rtc_clk_init(rtc_clk_config_t cfg)
- {
- /* Set tuning parameters for 8M and 150k clocks.
- * Note: this doesn't attempt to set the clocks to precise frequencies.
- * Instead, we calibrate these clocks against XTAL frequency later, when necessary.
- * - SCK_DCAP value controls tuning of 150k clock.
- * The higher the value of DCAP is, the lower is the frequency.
- * - CK8M_DFREQ value controls tuning of 8M clock.
- * CLK_8M_DFREQ constant gives the best temperature characteristics.
- */
- REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_SCK_DCAP, cfg.slow_clk_dcap);
- REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DFREQ, cfg.clk_8m_dfreq);
- /* Configure 8M clock division */
- REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, cfg.clk_8m_div);
- /* Enable the internal bus used to configure PLLs */
- SET_PERI_REG_BITS(ANA_CONFIG_REG, ANA_CONFIG_M, ANA_CONFIG_M, ANA_CONFIG_S);
- CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_APLL_M | I2C_BBPLL_M);
- /* Estimate XTAL frequency if requested */
- rtc_xtal_freq_t xtal_freq = cfg.xtal_freq;
- if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
- xtal_freq = rtc_clk_xtal_freq_estimate();
- if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
- SOC_LOGW(TAG, "Can't estimate XTAL frequency, assuming 26MHz");
- xtal_freq = RTC_XTAL_FREQ_26M;
- }
- }
- rtc_clk_xtal_freq_update(xtal_freq);
- rtc_clk_apb_freq_update(xtal_freq * MHZ);
- /* Set CPU frequency */
- rtc_clk_cpu_freq_set(cfg.cpu_freq);
- /* Slow & fast clocks setup */
- if (cfg.slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
- rtc_clk_32k_enable(false);
- }
- if (cfg.fast_freq == RTC_FAST_FREQ_8M) {
- bool need_8md256 = cfg.slow_freq == RTC_SLOW_FREQ_8MD256;
- rtc_clk_8m_enable(true, need_8md256);
- }
- rtc_clk_fast_freq_set(cfg.fast_freq);
- rtc_clk_slow_freq_set(cfg.slow_freq);
- }
- /* Name used in libphy.a:phy_chip_v7.o
- * TODO: update the library to use rtc_clk_xtal_freq_get
- */
- rtc_xtal_freq_t rtc_get_xtal() __attribute__((alias("rtc_clk_xtal_freq_get")));
- /* Referenced in librtc.a:rtc.o.
- * TODO: remove
- */
- void rtc_uart_div_modify(int latch)
- {
- }
- /* Referenced in librtc.a:rtc.o.
- * TODO: remove
- */
- void rtc_uart_tx_wait_idle(int uart)
- {
- }
|