uart.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_log.h"
  18. #include "malloc.h"
  19. #include "freertos/FreeRTOS.h"
  20. #include "freertos/semphr.h"
  21. #include "freertos/xtensa_api.h"
  22. #include "freertos/task.h"
  23. #include "freertos/ringbuf.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/uart_struct.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. static const char* UART_TAG = "UART";
  29. #define UART_CHECK(a, str, ret) if (!(a)) { \
  30. ESP_LOGE(UART_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
  31. return (ret); \
  32. }
  33. #define UART_EMPTY_THRESH_DEFAULT (10)
  34. #define UART_FULL_THRESH_DEFAULT (120)
  35. #define UART_TOUT_THRESH_DEFAULT (10)
  36. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  37. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  38. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  39. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  40. typedef struct {
  41. uart_event_type_t type; /*!< UART TX data type */
  42. struct {
  43. int brk_len;
  44. size_t size;
  45. uint8_t data[0];
  46. } tx_data;
  47. } uart_tx_data_t;
  48. typedef struct {
  49. uart_port_t uart_num; /*!< UART port number*/
  50. int queue_size; /*!< UART event queue size*/
  51. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  52. int intr_num; /*!< UART interrupt number*/
  53. //rx parameters
  54. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  55. int rx_buf_size; /*!< RX ring buffer size */
  56. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  57. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  58. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  59. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  60. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  61. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  62. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  63. //tx parameters
  64. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  65. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  66. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  67. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  68. int tx_buf_size; /*!< TX ring buffer size */
  69. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  70. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  71. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  72. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  73. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  74. uint32_t tx_len_cur;
  75. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  76. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  77. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  78. } uart_obj_t;
  79. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  80. static uart_dev_t* UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  81. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  82. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  83. {
  84. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  85. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  86. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  87. UART[uart_num]->conf0.bit_num = data_bit;
  88. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  89. return ESP_OK;
  90. }
  91. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  92. {
  93. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  94. *(data_bit) = UART[uart_num]->conf0.bit_num;
  95. return ESP_OK;
  96. }
  97. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  98. {
  99. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  100. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  101. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  102. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  103. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  104. return ESP_OK;
  105. }
  106. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  107. {
  108. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  109. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  110. return ESP_OK;
  111. }
  112. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  113. {
  114. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  115. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  116. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  117. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  118. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  119. return ESP_OK;
  120. }
  121. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  122. {
  123. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  124. int val = UART[uart_num]->conf0.val;
  125. if(val & UART_PARITY_EN_M) {
  126. if(val & UART_PARITY_M) {
  127. (*parity_mode) = UART_PARITY_ODD;
  128. } else {
  129. (*parity_mode) = UART_PARITY_EVEN;
  130. }
  131. } else {
  132. (*parity_mode) = UART_PARITY_DISABLE;
  133. }
  134. return ESP_OK;
  135. }
  136. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  137. {
  138. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  139. UART_CHECK((baud_rate < UART_BITRATE_MAX), "baud_rate error", ESP_FAIL);
  140. uint32_t clk_div = (((UART_CLK_FREQ) << 4) / baud_rate);
  141. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  142. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  143. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  144. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  145. return ESP_OK;
  146. }
  147. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  148. {
  149. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  150. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  151. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  152. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  153. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  154. return ESP_OK;
  155. }
  156. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  157. {
  158. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  159. UART_CHECK((((inverse_mask & UART_LINE_INV_MASK) == 0) && (inverse_mask != 0)), "inverse_mask error", ESP_FAIL);
  160. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  161. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  162. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  163. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  164. return ESP_OK;
  165. }
  166. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  167. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  168. {
  169. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  170. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  171. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  172. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  173. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  174. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  175. UART[uart_num]->conf1.rx_flow_en = 1;
  176. } else {
  177. UART[uart_num]->conf1.rx_flow_en = 0;
  178. }
  179. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  180. UART[uart_num]->conf0.tx_flow_en = 1;
  181. } else {
  182. UART[uart_num]->conf0.tx_flow_en = 0;
  183. }
  184. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  185. return ESP_OK;
  186. }
  187. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  188. {
  189. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  190. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  191. if(UART[uart_num]->conf1.rx_flow_en) {
  192. val |= UART_HW_FLOWCTRL_RTS;
  193. }
  194. if(UART[uart_num]->conf0.tx_flow_en) {
  195. val |= UART_HW_FLOWCTRL_CTS;
  196. }
  197. (*flow_ctrl) = val;
  198. return ESP_OK;
  199. }
  200. static esp_err_t uart_reset_fifo(uart_port_t uart_num)
  201. {
  202. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  203. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  204. UART[uart_num]->conf0.rxfifo_rst = 1;
  205. UART[uart_num]->conf0.rxfifo_rst = 0;
  206. UART[uart_num]->conf0.txfifo_rst = 1;
  207. UART[uart_num]->conf0.txfifo_rst = 0;
  208. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  209. return ESP_OK;
  210. }
  211. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  212. {
  213. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  214. //intr_clr register is write-only
  215. UART[uart_num]->int_clr.val = clr_mask;
  216. return ESP_OK;
  217. }
  218. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  219. {
  220. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  221. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  222. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  223. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  224. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  225. return ESP_OK;
  226. }
  227. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  228. {
  229. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  230. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  231. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  232. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  233. return ESP_OK;
  234. }
  235. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  236. {
  237. uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  238. return ESP_OK;
  239. }
  240. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  241. {
  242. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  243. return ESP_OK;
  244. }
  245. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  246. {
  247. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  248. return ESP_OK;
  249. }
  250. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  251. {
  252. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  253. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  254. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  255. UART[uart_num]->int_clr.txfifo_empty = 1;
  256. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  257. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  258. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  259. ESP_INTR_ENABLE(p_uart_obj[uart_num]->intr_num);
  260. return ESP_OK;
  261. }
  262. esp_err_t uart_isr_register(uart_port_t uart_num, uint8_t uart_intr_num, void (*fn)(void*), void * arg)
  263. {
  264. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  265. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  266. ESP_INTR_DISABLE(uart_intr_num);
  267. switch(uart_num) {
  268. case UART_NUM_1:
  269. intr_matrix_set(xPortGetCoreID(), ETS_UART1_INTR_SOURCE, uart_intr_num);
  270. break;
  271. case UART_NUM_2:
  272. intr_matrix_set(xPortGetCoreID(), ETS_UART2_INTR_SOURCE, uart_intr_num);
  273. break;
  274. case UART_NUM_0:
  275. default:
  276. intr_matrix_set(xPortGetCoreID(), ETS_UART0_INTR_SOURCE, uart_intr_num);
  277. break;
  278. }
  279. xt_set_interrupt_handler(uart_intr_num, fn, arg);
  280. ESP_INTR_ENABLE(uart_intr_num);
  281. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  282. return ESP_OK;
  283. }
  284. //internal signal can be output to multiple GPIO pads
  285. //only one GPIO pad can connect with input signal
  286. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  287. {
  288. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  289. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  290. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  291. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  292. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  293. int tx_sig, rx_sig, rts_sig, cts_sig;
  294. switch(uart_num) {
  295. case UART_NUM_0:
  296. tx_sig = U0TXD_OUT_IDX;
  297. rx_sig = U0RXD_IN_IDX;
  298. rts_sig = U0RTS_OUT_IDX;
  299. cts_sig = U0CTS_IN_IDX;
  300. break;
  301. case UART_NUM_1:
  302. tx_sig = U1TXD_OUT_IDX;
  303. rx_sig = U1RXD_IN_IDX;
  304. rts_sig = U1RTS_OUT_IDX;
  305. cts_sig = U1CTS_IN_IDX;
  306. break;
  307. case UART_NUM_2:
  308. tx_sig = U2TXD_OUT_IDX;
  309. rx_sig = U2RXD_IN_IDX;
  310. rts_sig = U2RTS_OUT_IDX;
  311. cts_sig = U2CTS_IN_IDX;
  312. break;
  313. case UART_NUM_MAX:
  314. default:
  315. tx_sig = U0TXD_OUT_IDX;
  316. rx_sig = U0RXD_IN_IDX;
  317. rts_sig = U0RTS_OUT_IDX;
  318. cts_sig = U0CTS_IN_IDX;
  319. break;
  320. }
  321. if(tx_io_num >= 0) {
  322. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  323. gpio_set_direction(tx_io_num, GPIO_MODE_OUTPUT);
  324. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  325. }
  326. if(rx_io_num >= 0) {
  327. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  328. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  329. gpio_matrix_in(rx_io_num, rx_sig, 0);
  330. }
  331. if(rts_io_num >= 0) {
  332. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  333. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  334. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  335. }
  336. if(cts_io_num >= 0) {
  337. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  338. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  339. gpio_matrix_in(cts_io_num, cts_sig, 0);
  340. }
  341. return ESP_OK;
  342. }
  343. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  344. {
  345. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  346. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  347. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  348. UART[uart_num]->conf0.sw_rts = level & 0x1;
  349. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  350. return ESP_OK;
  351. }
  352. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  353. {
  354. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  355. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  356. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  357. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  358. return ESP_OK;
  359. }
  360. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  361. {
  362. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  363. UART_CHECK((uart_config), "param null", ESP_FAIL);
  364. if(uart_num == UART_NUM_0) {
  365. periph_module_enable(PERIPH_UART0_MODULE);
  366. } else if(uart_num == UART_NUM_1) {
  367. periph_module_enable(PERIPH_UART1_MODULE);
  368. } else if(uart_num == UART_NUM_2) {
  369. periph_module_enable(PERIPH_UART2_MODULE);
  370. }
  371. uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  372. uart_set_baudrate(uart_num, uart_config->baud_rate);
  373. UART[uart_num]->conf0.val = (
  374. (uart_config->parity << UART_PARITY_S)
  375. | (uart_config->stop_bits << UART_STOP_BIT_NUM_S)
  376. | (uart_config->data_bits << UART_BIT_NUM_S)
  377. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  378. | UART_TICK_REF_ALWAYS_ON_M);
  379. return ESP_OK;
  380. }
  381. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  382. {
  383. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  384. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  385. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  386. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  387. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  388. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  389. UART[uart_num]->conf1.rx_tout_en = 1;
  390. } else {
  391. UART[uart_num]->conf1.rx_tout_en = 0;
  392. }
  393. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  394. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  395. }
  396. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  397. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  398. }
  399. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  400. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  401. return ESP_FAIL;
  402. }
  403. //internal isr handler for default driver code.
  404. static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
  405. {
  406. uart_obj_t *p_uart = (uart_obj_t*) param;
  407. uint8_t uart_num = p_uart->uart_num;
  408. uart_dev_t* uart_reg = UART[uart_num];
  409. uint8_t buf_idx = 0;
  410. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  411. int rx_fifo_len = 0;
  412. uart_event_t uart_event;
  413. portBASE_TYPE HPTaskAwoken = 0;
  414. while(uart_intr_status != 0x0) {
  415. buf_idx = 0;
  416. uart_event.type = UART_EVENT_MAX;
  417. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  418. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  419. uart_reg->int_ena.txfifo_empty = 0;
  420. uart_reg->int_clr.txfifo_empty = 1;
  421. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  422. if(p_uart->tx_waiting_brk) {
  423. continue;
  424. }
  425. //TX semaphore will only be used when tx_buf_size is zero.
  426. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  427. p_uart->tx_waiting_fifo = false;
  428. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  429. if(HPTaskAwoken == pdTRUE) {
  430. portYIELD_FROM_ISR() ;
  431. }
  432. }
  433. else {
  434. //We don't use TX ring buffer, because the size is zero.
  435. if(p_uart->tx_buf_size == 0) {
  436. continue;
  437. }
  438. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  439. bool en_tx_flg = false;
  440. //We need to put a loop here, in case all the buffer items are very short.
  441. //That would cause a watch_dog reset because empty interrupt happens so often.
  442. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  443. while(tx_fifo_rem) {
  444. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  445. size_t size;
  446. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  447. if(p_uart->tx_head) {
  448. //The first item is the data description
  449. //Get the first item to get the data information
  450. if(p_uart->tx_len_tot == 0) {
  451. p_uart->tx_ptr = NULL;
  452. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  453. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  454. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  455. p_uart->tx_brk_flg = 1;
  456. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  457. }
  458. //We have saved the data description from the 1st item, return buffer.
  459. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  460. if(HPTaskAwoken == pdTRUE) {
  461. portYIELD_FROM_ISR() ;
  462. }
  463. }else if(p_uart->tx_ptr == NULL) {
  464. //Update the TX item pointer, we will need this to return item to buffer.
  465. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  466. en_tx_flg = true;
  467. p_uart->tx_len_cur = size;
  468. }
  469. }
  470. else {
  471. //Can not get data from ring buffer, return;
  472. break;
  473. }
  474. }
  475. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  476. //To fill the TX FIFO.
  477. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  478. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  479. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  480. }
  481. p_uart->tx_len_tot -= send_len;
  482. p_uart->tx_len_cur -= send_len;
  483. tx_fifo_rem -= send_len;
  484. if(p_uart->tx_len_cur == 0) {
  485. //Return item to ring buffer.
  486. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  487. if(HPTaskAwoken == pdTRUE) {
  488. portYIELD_FROM_ISR() ;
  489. }
  490. p_uart->tx_head = NULL;
  491. p_uart->tx_ptr = NULL;
  492. //Sending item done, now we need to send break if there is a record.
  493. //Set TX break signal after FIFO is empty
  494. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  495. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  496. uart_reg->int_ena.tx_brk_done = 0;
  497. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  498. uart_reg->conf0.txd_brk = 1;
  499. uart_reg->int_clr.tx_brk_done = 1;
  500. uart_reg->int_ena.tx_brk_done = 1;
  501. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  502. p_uart->tx_waiting_brk = 1;
  503. } else {
  504. //enable TX empty interrupt
  505. en_tx_flg = true;
  506. }
  507. } else {
  508. //enable TX empty interrupt
  509. en_tx_flg = true;
  510. }
  511. }
  512. }
  513. if(en_tx_flg) {
  514. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  515. uart_reg->int_clr.txfifo_empty = 1;
  516. uart_reg->int_ena.txfifo_empty = 1;
  517. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  518. }
  519. }
  520. }
  521. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  522. if(p_uart->rx_buffer_full_flg == false) {
  523. //Get the buffer from the FIFO
  524. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  525. p_uart->rx_stash_len = rx_fifo_len;
  526. //We have to read out all data in RX FIFO to clear the interrupt signal
  527. while(buf_idx < rx_fifo_len) {
  528. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  529. }
  530. //After Copying the Data From FIFO ,Clear intr_status
  531. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  532. uart_reg->int_clr.rxfifo_tout = 1;
  533. uart_reg->int_clr.rxfifo_full = 1;
  534. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  535. uart_event.type = UART_DATA;
  536. uart_event.size = rx_fifo_len;
  537. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  538. //Mainly for applications that uses flow control or small ring buffer.
  539. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  540. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  541. uart_reg->int_ena.rxfifo_full = 0;
  542. uart_reg->int_ena.rxfifo_tout = 0;
  543. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  544. p_uart->rx_buffer_full_flg = true;
  545. uart_event.type = UART_BUFFER_FULL;
  546. } else {
  547. uart_event.type = UART_DATA;
  548. }
  549. if(HPTaskAwoken == pdTRUE) {
  550. portYIELD_FROM_ISR() ;
  551. }
  552. } else {
  553. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  554. uart_reg->int_ena.rxfifo_full = 0;
  555. uart_reg->int_ena.rxfifo_tout = 0;
  556. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  557. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  558. uart_event.type = UART_BUFFER_FULL;
  559. }
  560. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  561. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  562. uart_reg->conf0.rxfifo_rst = 1;
  563. uart_reg->conf0.rxfifo_rst = 0;
  564. uart_reg->int_clr.rxfifo_ovf = 1;
  565. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  566. uart_event.type = UART_FIFO_OVF;
  567. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  568. uart_reg->int_clr.brk_det = 1;
  569. uart_event.type = UART_BREAK;
  570. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M ) {
  571. uart_reg->int_clr.parity_err = 1;
  572. uart_event.type = UART_FRAME_ERR;
  573. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  574. uart_reg->int_clr.frm_err = 1;
  575. uart_event.type = UART_PARITY_ERR;
  576. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  577. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  578. uart_reg->conf0.txd_brk = 0;
  579. uart_reg->int_ena.tx_brk_done = 0;
  580. uart_reg->int_clr.tx_brk_done = 1;
  581. if(p_uart->tx_brk_flg == 1) {
  582. uart_reg->int_ena.txfifo_empty = 1;
  583. }
  584. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  585. if(p_uart->tx_brk_flg == 1) {
  586. p_uart->tx_brk_flg = 0;
  587. p_uart->tx_waiting_brk = 0;
  588. } else {
  589. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  590. if(HPTaskAwoken == pdTRUE) {
  591. portYIELD_FROM_ISR() ;
  592. }
  593. }
  594. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  595. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  596. uart_reg->int_ena.tx_brk_idle_done = 0;
  597. uart_reg->int_clr.tx_brk_idle_done = 1;
  598. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  599. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  600. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  601. uart_reg->int_ena.tx_done = 0;
  602. uart_reg->int_clr.tx_done = 1;
  603. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  604. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  605. if(HPTaskAwoken == pdTRUE) {
  606. portYIELD_FROM_ISR() ;
  607. }
  608. }
  609. else {
  610. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  611. uart_event.type = UART_EVENT_MAX;
  612. }
  613. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  614. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  615. if(HPTaskAwoken == pdTRUE) {
  616. portYIELD_FROM_ISR() ;
  617. }
  618. }
  619. uart_intr_status = uart_reg->int_st.val;
  620. }
  621. }
  622. /**************************************************************/
  623. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  624. {
  625. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  626. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  627. BaseType_t res;
  628. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  629. //Take tx_mux
  630. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  631. if(res == pdFALSE) {
  632. return ESP_ERR_TIMEOUT;
  633. }
  634. ticks_to_wait = ticks_end - xTaskGetTickCount();
  635. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  636. ticks_to_wait = ticks_end - xTaskGetTickCount();
  637. if(UART[uart_num]->status.txfifo_cnt == 0) {
  638. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  639. return ESP_OK;
  640. }
  641. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  642. //take 2nd tx_done_sem, wait given from ISR
  643. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  644. if(res == pdFALSE) {
  645. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  646. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  647. return ESP_ERR_TIMEOUT;
  648. }
  649. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  650. return ESP_OK;
  651. }
  652. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  653. {
  654. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  655. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  656. UART[uart_num]->conf0.txd_brk = 1;
  657. UART[uart_num]->int_clr.tx_brk_done = 1;
  658. UART[uart_num]->int_ena.tx_brk_done = 1;
  659. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  660. return ESP_OK;
  661. }
  662. //Fill UART tx_fifo and return a number,
  663. //This function by itself is not thread-safe, always call from within a muxed section.
  664. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  665. {
  666. uint8_t i = 0;
  667. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  668. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  669. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  670. for(i = 0; i < copy_cnt; i++) {
  671. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  672. }
  673. return copy_cnt;
  674. }
  675. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  676. {
  677. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  678. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  679. UART_CHECK(buffer, "buffer null", (-1));
  680. if(len == 0) {
  681. return 0;
  682. }
  683. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  684. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  685. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  686. return tx_len;
  687. }
  688. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  689. {
  690. if(size == 0) {
  691. return 0;
  692. }
  693. size_t original_size = size;
  694. //lock for uart_tx
  695. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  696. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  697. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  698. int offset = 0;
  699. uart_tx_data_t evt;
  700. evt.tx_data.size = size;
  701. evt.tx_data.brk_len = brk_len;
  702. if(brk_en) {
  703. evt.type = UART_DATA_BREAK;
  704. } else {
  705. evt.type = UART_DATA;
  706. }
  707. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  708. while(size > 0) {
  709. int send_size = size > max_size / 2 ? max_size / 2 : size;
  710. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  711. size -= send_size;
  712. offset += send_size;
  713. }
  714. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  715. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  716. } else {
  717. while(size) {
  718. //semaphore for tx_fifo available
  719. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  720. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  721. if(sent < size) {
  722. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  723. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  724. }
  725. size -= sent;
  726. src += sent;
  727. }
  728. }
  729. if(brk_en) {
  730. uart_set_break(uart_num, brk_len);
  731. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  732. }
  733. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  734. }
  735. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  736. return original_size;
  737. }
  738. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  739. {
  740. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  741. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  742. UART_CHECK(src, "buffer null", (-1));
  743. return uart_tx_all(uart_num, src, size, 0, 0);
  744. }
  745. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  746. {
  747. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  748. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  749. UART_CHECK((size > 0), "uart size error", (-1));
  750. UART_CHECK((src), "uart data null", (-1));
  751. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  752. return uart_tx_all(uart_num, src, size, 1, brk_len);
  753. }
  754. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  755. {
  756. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  757. UART_CHECK((buf), "uart_num error", (-1));
  758. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  759. uint8_t* data = NULL;
  760. size_t size;
  761. size_t copy_len = 0;
  762. int len_tmp;
  763. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  764. return -1;
  765. }
  766. while(length) {
  767. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  768. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  769. if(data) {
  770. p_uart_obj[uart_num]->rx_head_ptr = data;
  771. p_uart_obj[uart_num]->rx_ptr = data;
  772. p_uart_obj[uart_num]->rx_cur_remain = size;
  773. } else {
  774. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  775. return copy_len;
  776. }
  777. }
  778. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  779. len_tmp = length;
  780. } else {
  781. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  782. }
  783. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  784. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  785. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  786. copy_len += len_tmp;
  787. length -= len_tmp;
  788. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  789. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  790. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  791. p_uart_obj[uart_num]->rx_ptr = NULL;
  792. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  793. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  794. if(res == pdTRUE) {
  795. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  796. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  797. }
  798. }
  799. }
  800. }
  801. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  802. return copy_len;
  803. }
  804. esp_err_t uart_flush(uart_port_t uart_num)
  805. {
  806. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  807. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  808. uart_obj_t* p_uart = p_uart_obj[uart_num];
  809. uint8_t* data;
  810. size_t size;
  811. //rx sem protect the ring buffer read related functions
  812. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  813. ESP_INTR_DISABLE(p_uart->intr_num);
  814. while(true) {
  815. if(p_uart->rx_head_ptr) {
  816. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  817. p_uart->rx_ptr = NULL;
  818. p_uart->rx_cur_remain = 0;
  819. p_uart->rx_head_ptr = NULL;
  820. }
  821. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  822. if(data == NULL) {
  823. break;
  824. }
  825. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  826. }
  827. p_uart->rx_ptr = NULL;
  828. p_uart->rx_cur_remain = 0;
  829. p_uart->rx_head_ptr = NULL;
  830. ESP_INTR_ENABLE(p_uart->intr_num);
  831. xSemaphoreGive(p_uart->rx_mux);
  832. if(p_uart->tx_buf_size > 0) {
  833. xSemaphoreTake(p_uart->tx_mux, (portTickType)portMAX_DELAY);
  834. ESP_INTR_DISABLE(p_uart->intr_num);
  835. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  836. UART[uart_num]->int_ena.txfifo_empty = 0;
  837. UART[uart_num]->int_clr.txfifo_empty = 1;
  838. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  839. do {
  840. data = (uint8_t*) xRingbufferReceive(p_uart->tx_ring_buf, &size, (portTickType) 0);
  841. if(data == NULL) {
  842. break;
  843. }
  844. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  845. } while(1);
  846. p_uart->tx_brk_flg = 0;
  847. p_uart->tx_brk_len = 0;
  848. p_uart->tx_head = NULL;
  849. p_uart->tx_len_cur = 0;
  850. p_uart->tx_len_tot = 0;
  851. p_uart->tx_ptr = NULL;
  852. p_uart->tx_waiting_brk = 0;
  853. p_uart->tx_waiting_fifo = false;
  854. ESP_INTR_ENABLE(p_uart->intr_num);
  855. xSemaphoreGive(p_uart->tx_mux);
  856. }
  857. uart_reset_fifo(uart_num);
  858. return ESP_OK;
  859. }
  860. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, int uart_intr_num, void* uart_queue)
  861. {
  862. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  863. UART_CHECK((rx_buffer_size > 0), "uart rx buffer length error", ESP_FAIL);
  864. if(p_uart_obj[uart_num] == NULL) {
  865. ESP_INTR_DISABLE(uart_intr_num);
  866. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  867. if(p_uart_obj[uart_num] == NULL) {
  868. ESP_LOGE(UART_TAG, "UART driver malloc error");
  869. return ESP_FAIL;
  870. }
  871. p_uart_obj[uart_num]->uart_num = uart_num;
  872. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  873. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  874. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  875. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  876. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  877. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  878. p_uart_obj[uart_num]->intr_num = uart_intr_num;
  879. p_uart_obj[uart_num]->queue_size = queue_size;
  880. p_uart_obj[uart_num]->tx_ptr = NULL;
  881. p_uart_obj[uart_num]->tx_head = NULL;
  882. p_uart_obj[uart_num]->tx_len_tot = 0;
  883. p_uart_obj[uart_num]->tx_brk_flg = 0;
  884. p_uart_obj[uart_num]->tx_brk_len = 0;
  885. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  886. if(uart_queue) {
  887. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  888. *((QueueHandle_t*) uart_queue) = p_uart_obj[uart_num]->xQueueUart;
  889. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  890. } else {
  891. p_uart_obj[uart_num]->xQueueUart = NULL;
  892. }
  893. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  894. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  895. p_uart_obj[uart_num]->rx_ptr = NULL;
  896. p_uart_obj[uart_num]->rx_cur_remain = 0;
  897. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  898. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  899. if(tx_buffer_size > 0) {
  900. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  901. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  902. } else {
  903. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  904. p_uart_obj[uart_num]->tx_buf_size = 0;
  905. }
  906. } else {
  907. ESP_LOGE(UART_TAG, "UART driver already installed");
  908. return ESP_FAIL;
  909. }
  910. uart_isr_register(uart_num, uart_intr_num, uart_rx_intr_handler_default, p_uart_obj[uart_num]);
  911. uart_intr_config_t uart_intr = {
  912. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  913. | UART_RXFIFO_TOUT_INT_ENA_M
  914. | UART_FRM_ERR_INT_ENA_M
  915. | UART_RXFIFO_OVF_INT_ENA_M
  916. | UART_BRK_DET_INT_ENA_M
  917. | UART_PARITY_ERR_INT_ENA_M,
  918. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  919. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  920. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  921. };
  922. uart_intr_config(uart_num, &uart_intr);
  923. ESP_INTR_ENABLE(uart_intr_num);
  924. return ESP_OK;
  925. }
  926. //Make sure no other tasks are still using UART before you call this function
  927. esp_err_t uart_driver_delete(uart_port_t uart_num)
  928. {
  929. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  930. if(p_uart_obj[uart_num] == NULL) {
  931. ESP_LOGI(UART_TAG, "ALREADY NULL");
  932. return ESP_OK;
  933. }
  934. ESP_INTR_DISABLE(p_uart_obj[uart_num]->intr_num);
  935. uart_disable_rx_intr(uart_num);
  936. uart_disable_tx_intr(uart_num);
  937. uart_isr_register(uart_num, p_uart_obj[uart_num]->intr_num, NULL, NULL);
  938. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  939. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  940. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  941. }
  942. if(p_uart_obj[uart_num]->tx_done_sem) {
  943. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  944. p_uart_obj[uart_num]->tx_done_sem = NULL;
  945. }
  946. if(p_uart_obj[uart_num]->tx_brk_sem) {
  947. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  948. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  949. }
  950. if(p_uart_obj[uart_num]->tx_mux) {
  951. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  952. p_uart_obj[uart_num]->tx_mux = NULL;
  953. }
  954. if(p_uart_obj[uart_num]->rx_mux) {
  955. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  956. p_uart_obj[uart_num]->rx_mux = NULL;
  957. }
  958. if(p_uart_obj[uart_num]->xQueueUart) {
  959. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  960. p_uart_obj[uart_num]->xQueueUart = NULL;
  961. }
  962. if(p_uart_obj[uart_num]->rx_ring_buf) {
  963. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  964. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  965. }
  966. if(p_uart_obj[uart_num]->tx_ring_buf) {
  967. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  968. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  969. }
  970. free(p_uart_obj[uart_num]);
  971. p_uart_obj[uart_num] = NULL;
  972. return ESP_OK;
  973. }