bt.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr_alloc.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "driver/periph_ctrl.h"
  38. #include "soc/rtc.h"
  39. #include "soc/soc_memory_layout.h"
  40. #include "esp32/clk.h"
  41. #include "esp_coexist_internal.h"
  42. #if !CONFIG_FREERTOS_UNICORE
  43. #include "esp_ipc.h"
  44. #endif
  45. #include "esp_rom_sys.h"
  46. #if CONFIG_BT_ENABLED
  47. /* Macro definition
  48. ************************************************************************
  49. */
  50. #define BTDM_LOG_TAG "BTDM_INIT"
  51. #define BTDM_INIT_PERIOD (5000) /* ms */
  52. /* Bluetooth system and controller config */
  53. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  54. #define BTDM_CFG_HCI_UART (1<<1)
  55. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  56. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  57. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  58. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  59. /* Sleep mode */
  60. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  61. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  62. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  63. /* Low Power Clock Selection */
  64. #define BTDM_LPCLK_SEL_XTAL (0)
  65. #define BTDM_LPCLK_SEL_XTAL32K (1)
  66. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  67. #define BTDM_LPCLK_SEL_8M (3)
  68. /* Sleep and wakeup interval control */
  69. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  70. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  71. #define BT_DEBUG(...)
  72. #define BT_API_CALL_CHECK(info, api_call, ret) \
  73. do{\
  74. esp_err_t __err = (api_call);\
  75. if ((ret) != __err) {\
  76. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  77. return __err;\
  78. }\
  79. } while(0)
  80. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  81. #define OSI_VERSION 0x00010002
  82. #define OSI_MAGIC_VALUE 0xFADEBEAD
  83. /* SPIRAM Configuration */
  84. #if CONFIG_SPIRAM_USE_MALLOC
  85. #define BTDM_MAX_QUEUE_NUM (5)
  86. #endif
  87. /* Types definition
  88. ************************************************************************
  89. */
  90. /* VHCI function interface */
  91. typedef struct vhci_host_callback {
  92. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  93. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  94. } vhci_host_callback_t;
  95. /* Dram region */
  96. typedef struct {
  97. esp_bt_mode_t mode;
  98. intptr_t start;
  99. intptr_t end;
  100. } btdm_dram_available_region_t;
  101. /* PSRAM configuration */
  102. #if CONFIG_SPIRAM_USE_MALLOC
  103. typedef struct {
  104. QueueHandle_t handle;
  105. void *storage;
  106. void *buffer;
  107. } btdm_queue_item_t;
  108. #endif
  109. /* OSI function */
  110. struct osi_funcs_t {
  111. uint32_t _version;
  112. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  113. void (*_ints_on)(unsigned int mask);
  114. void (*_interrupt_disable)(void);
  115. void (*_interrupt_restore)(void);
  116. void (*_task_yield)(void);
  117. void (*_task_yield_from_isr)(void);
  118. void *(*_semphr_create)(uint32_t max, uint32_t init);
  119. void (*_semphr_delete)(void *semphr);
  120. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  121. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  122. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  123. int32_t (*_semphr_give)(void *semphr);
  124. void *(*_mutex_create)(void);
  125. void (*_mutex_delete)(void *mutex);
  126. int32_t (*_mutex_lock)(void *mutex);
  127. int32_t (*_mutex_unlock)(void *mutex);
  128. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  129. void (* _queue_delete)(void *queue);
  130. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  131. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  132. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  133. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  134. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  135. void (* _task_delete)(void *task_handle);
  136. bool (* _is_in_isr)(void);
  137. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  138. void *(* _malloc)(uint32_t size);
  139. void *(* _malloc_internal)(uint32_t size);
  140. void (* _free)(void *p);
  141. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  142. void (* _srand)(unsigned int seed);
  143. int (* _rand)(void);
  144. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  145. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  146. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  147. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  148. void (* _btdm_sleep_enter_phase2)(void);
  149. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  150. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  151. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  152. bool (* _coex_bt_wakeup_request)(void);
  153. void (* _coex_bt_wakeup_request_end)(void);
  154. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  155. int (* _coex_bt_release)(uint32_t event);
  156. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  157. uint32_t (* _coex_bb_reset_lock)(void);
  158. void (* _coex_bb_reset_unlock)(uint32_t restore);
  159. uint32_t _magic;
  160. };
  161. /* External functions or values
  162. ************************************************************************
  163. */
  164. /* not for user call, so don't put to include file */
  165. /* OSI */
  166. extern int btdm_osi_funcs_register(void *osi_funcs);
  167. /* Initialise and De-initialise */
  168. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  169. extern void btdm_controller_deinit(void);
  170. extern int btdm_controller_enable(esp_bt_mode_t mode);
  171. extern void btdm_controller_disable(void);
  172. extern uint8_t btdm_controller_get_mode(void);
  173. extern const char *btdm_controller_get_compile_version(void);
  174. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  175. /* Sleep */
  176. extern void btdm_controller_enable_sleep(bool enable);
  177. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  178. extern uint8_t btdm_controller_get_sleep_mode(void);
  179. extern bool btdm_power_state_active(void);
  180. extern void btdm_wakeup_request(bool request_lock);
  181. extern void btdm_wakeup_request_end(void);
  182. /* Low Power Clock */
  183. extern bool btdm_lpclk_select_src(uint32_t sel);
  184. extern bool btdm_lpclk_set_div(uint32_t div);
  185. /* VHCI */
  186. extern bool API_vhci_host_check_send_available(void);
  187. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  188. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  189. /* TX power */
  190. extern int ble_txpwr_set(int power_type, int power_level);
  191. extern int ble_txpwr_get(int power_type);
  192. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  193. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  194. extern void bredr_sco_datapath_set(uint8_t data_path);
  195. extern void btdm_controller_scan_duplicate_list_clear(void);
  196. /* Coexistence */
  197. extern int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  198. extern int coex_bt_release_wrapper(uint32_t event);
  199. extern int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  200. extern uint32_t coex_bb_reset_lock_wrapper(void);
  201. extern void coex_bb_reset_unlock_wrapper(uint32_t restore);
  202. extern void coex_ble_adv_priority_high_set(bool high);
  203. extern char _bss_start_btdm;
  204. extern char _bss_end_btdm;
  205. extern char _data_start_btdm;
  206. extern char _data_end_btdm;
  207. extern uint32_t _data_start_btdm_rom;
  208. extern uint32_t _data_end_btdm_rom;
  209. extern uint32_t _bt_bss_start;
  210. extern uint32_t _bt_bss_end;
  211. extern uint32_t _nimble_bss_start;
  212. extern uint32_t _nimble_bss_end;
  213. extern uint32_t _btdm_bss_start;
  214. extern uint32_t _btdm_bss_end;
  215. extern uint32_t _bt_data_start;
  216. extern uint32_t _bt_data_end;
  217. extern uint32_t _nimble_data_start;
  218. extern uint32_t _nimble_data_end;
  219. extern uint32_t _btdm_data_start;
  220. extern uint32_t _btdm_data_end;
  221. /* Local Function Declare
  222. *********************************************************************
  223. */
  224. #if CONFIG_SPIRAM_USE_MALLOC
  225. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  226. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  227. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  228. static void IRAM_ATTR interrupt_disable(void);
  229. static void IRAM_ATTR interrupt_restore(void);
  230. static void IRAM_ATTR task_yield_from_isr(void);
  231. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  232. static void semphr_delete_wrapper(void *semphr);
  233. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  234. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  235. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  236. static int32_t semphr_give_wrapper(void *semphr);
  237. static void *mutex_create_wrapper(void);
  238. static void mutex_delete_wrapper(void *mutex);
  239. static int32_t mutex_lock_wrapper(void *mutex);
  240. static int32_t mutex_unlock_wrapper(void *mutex);
  241. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  242. static void queue_delete_wrapper(void *queue);
  243. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  244. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  245. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  246. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  247. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  248. static void task_delete_wrapper(void *task_handle);
  249. static bool IRAM_ATTR is_in_isr_wrapper(void);
  250. static void IRAM_ATTR cause_sw_intr(void *arg);
  251. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  252. static void *malloc_internal_wrapper(size_t size);
  253. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  254. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  255. static int IRAM_ATTR rand_wrapper(void);
  256. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  257. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  258. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  259. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  260. static void btdm_sleep_enter_phase2_wrapper(void);
  261. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void);
  262. static void btdm_sleep_exit_phase3_wrapper(void);
  263. static bool coex_bt_wakeup_request(void);
  264. static void coex_bt_wakeup_request_end(void);
  265. /* Local variable definition
  266. ***************************************************************************
  267. */
  268. /* OSI funcs */
  269. static const struct osi_funcs_t osi_funcs_ro = {
  270. ._version = OSI_VERSION,
  271. ._set_isr = xt_set_interrupt_handler,
  272. ._ints_on = xt_ints_on,
  273. ._interrupt_disable = interrupt_disable,
  274. ._interrupt_restore = interrupt_restore,
  275. ._task_yield = vPortYield,
  276. ._task_yield_from_isr = task_yield_from_isr,
  277. ._semphr_create = semphr_create_wrapper,
  278. ._semphr_delete = semphr_delete_wrapper,
  279. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  280. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  281. ._semphr_take = semphr_take_wrapper,
  282. ._semphr_give = semphr_give_wrapper,
  283. ._mutex_create = mutex_create_wrapper,
  284. ._mutex_delete = mutex_delete_wrapper,
  285. ._mutex_lock = mutex_lock_wrapper,
  286. ._mutex_unlock = mutex_unlock_wrapper,
  287. ._queue_create = queue_create_wrapper,
  288. ._queue_delete = queue_delete_wrapper,
  289. ._queue_send = queue_send_wrapper,
  290. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  291. ._queue_recv = queue_recv_wrapper,
  292. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  293. ._task_create = task_create_wrapper,
  294. ._task_delete = task_delete_wrapper,
  295. ._is_in_isr = is_in_isr_wrapper,
  296. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  297. ._malloc = malloc,
  298. ._malloc_internal = malloc_internal_wrapper,
  299. ._free = free,
  300. ._read_efuse_mac = read_mac_wrapper,
  301. ._srand = srand_wrapper,
  302. ._rand = rand_wrapper,
  303. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  304. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  305. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  306. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  307. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  308. ._btdm_sleep_exit_phase1 = btdm_sleep_exit_phase1_wrapper,
  309. ._btdm_sleep_exit_phase2 = NULL,
  310. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  311. ._coex_bt_wakeup_request = coex_bt_wakeup_request,
  312. ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end,
  313. ._coex_bt_request = coex_bt_request_wrapper,
  314. ._coex_bt_release = coex_bt_release_wrapper,
  315. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  316. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  317. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  318. ._magic = OSI_MAGIC_VALUE,
  319. };
  320. /* the mode column will be modified by release function to indicate the available region */
  321. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  322. //following is .data
  323. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  324. //following is memory which HW will use
  325. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  326. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  327. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  328. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  329. //following is .bss
  330. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  331. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  332. };
  333. /* Reserve the full memory region used by Bluetooth Controller,
  334. * some may be released later at runtime. */
  335. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  336. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  337. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  338. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  339. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  340. #if CONFIG_SPIRAM_USE_MALLOC
  341. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  342. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  343. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  344. /* Static variable declare */
  345. // timestamp when PHY/RF was switched on
  346. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  347. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  348. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  349. // measured average low power clock period in micro seconds
  350. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  351. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  352. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  353. // used low power clock
  354. static DRAM_ATTR uint8_t btdm_lpclk_sel;
  355. #endif /* #ifdef CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG */
  356. #ifdef CONFIG_PM_ENABLE
  357. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  358. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  359. static DRAM_ATTR QueueHandle_t s_pm_lock_sem = NULL;
  360. static DRAM_ATTR bool s_btdm_allow_light_sleep;
  361. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  362. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  363. static void btdm_slp_tmr_callback(void *arg);
  364. #endif /* #ifdef CONFIG_PM_ENABLE */
  365. static inline void btdm_check_and_init_bb(void)
  366. {
  367. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  368. int64_t latest_ts = esp_phy_rf_get_on_ts();
  369. if (latest_ts != s_time_phy_rf_just_enabled ||
  370. s_time_phy_rf_just_enabled == 0) {
  371. btdm_rf_bb_init_phase2();
  372. s_time_phy_rf_just_enabled = latest_ts;
  373. }
  374. }
  375. #if CONFIG_SPIRAM_USE_MALLOC
  376. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  377. {
  378. if (!btdm_queue_table_mux || !queue) {
  379. return NULL;
  380. }
  381. bool ret = false;
  382. btdm_queue_item_t *item;
  383. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  384. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  385. item = &btdm_queue_table[i];
  386. if (item->handle == NULL) {
  387. memcpy(item, queue, sizeof(btdm_queue_item_t));
  388. ret = true;
  389. break;
  390. }
  391. }
  392. xSemaphoreGive(btdm_queue_table_mux);
  393. return ret;
  394. }
  395. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  396. {
  397. if (!btdm_queue_table_mux || !queue) {
  398. return false;
  399. }
  400. bool ret = false;
  401. btdm_queue_item_t *item;
  402. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  403. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  404. item = &btdm_queue_table[i];
  405. if (item->handle == queue->handle) {
  406. memcpy(queue, item, sizeof(btdm_queue_item_t));
  407. memset(item, 0, sizeof(btdm_queue_item_t));
  408. ret = true;
  409. break;
  410. }
  411. }
  412. xSemaphoreGive(btdm_queue_table_mux);
  413. return ret;
  414. }
  415. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  416. static void IRAM_ATTR interrupt_disable(void)
  417. {
  418. if (xPortInIsrContext()) {
  419. portENTER_CRITICAL_ISR(&global_int_mux);
  420. } else {
  421. portENTER_CRITICAL(&global_int_mux);
  422. }
  423. }
  424. static void IRAM_ATTR interrupt_restore(void)
  425. {
  426. if (xPortInIsrContext()) {
  427. portEXIT_CRITICAL_ISR(&global_int_mux);
  428. } else {
  429. portEXIT_CRITICAL(&global_int_mux);
  430. }
  431. }
  432. static void IRAM_ATTR task_yield_from_isr(void)
  433. {
  434. portYIELD_FROM_ISR();
  435. }
  436. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  437. {
  438. #if !CONFIG_SPIRAM_USE_MALLOC
  439. return (void *)xSemaphoreCreateCounting(max, init);
  440. #else
  441. StaticQueue_t *queue_buffer = NULL;
  442. QueueHandle_t handle = NULL;
  443. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  444. if (!queue_buffer) {
  445. goto error;
  446. }
  447. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  448. if (!handle) {
  449. goto error;
  450. }
  451. btdm_queue_item_t item = {
  452. .handle = handle,
  453. .storage = NULL,
  454. .buffer = queue_buffer,
  455. };
  456. if (!btdm_queue_generic_register(&item)) {
  457. goto error;
  458. }
  459. return handle;
  460. error:
  461. if (handle) {
  462. vSemaphoreDelete(handle);
  463. }
  464. if (queue_buffer) {
  465. free(queue_buffer);
  466. }
  467. return NULL;
  468. #endif
  469. }
  470. static void semphr_delete_wrapper(void *semphr)
  471. {
  472. #if !CONFIG_SPIRAM_USE_MALLOC
  473. vSemaphoreDelete(semphr);
  474. #else
  475. btdm_queue_item_t item = {
  476. .handle = semphr,
  477. .storage = NULL,
  478. .buffer = NULL,
  479. };
  480. if (btdm_queue_generic_deregister(&item)) {
  481. vSemaphoreDelete(item.handle);
  482. free(item.buffer);
  483. }
  484. return;
  485. #endif
  486. }
  487. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  488. {
  489. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  490. }
  491. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  492. {
  493. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  494. }
  495. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  496. {
  497. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  498. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  499. } else {
  500. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  501. }
  502. }
  503. static int32_t semphr_give_wrapper(void *semphr)
  504. {
  505. return (int32_t)xSemaphoreGive(semphr);
  506. }
  507. static void *mutex_create_wrapper(void)
  508. {
  509. #if CONFIG_SPIRAM_USE_MALLOC
  510. StaticQueue_t *queue_buffer = NULL;
  511. QueueHandle_t handle = NULL;
  512. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  513. if (!queue_buffer) {
  514. goto error;
  515. }
  516. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  517. if (!handle) {
  518. goto error;
  519. }
  520. btdm_queue_item_t item = {
  521. .handle = handle,
  522. .storage = NULL,
  523. .buffer = queue_buffer,
  524. };
  525. if (!btdm_queue_generic_register(&item)) {
  526. goto error;
  527. }
  528. return handle;
  529. error:
  530. if (handle) {
  531. vSemaphoreDelete(handle);
  532. }
  533. if (queue_buffer) {
  534. free(queue_buffer);
  535. }
  536. return NULL;
  537. #else
  538. return (void *)xSemaphoreCreateMutex();
  539. #endif
  540. }
  541. static void mutex_delete_wrapper(void *mutex)
  542. {
  543. #if !CONFIG_SPIRAM_USE_MALLOC
  544. vSemaphoreDelete(mutex);
  545. #else
  546. btdm_queue_item_t item = {
  547. .handle = mutex,
  548. .storage = NULL,
  549. .buffer = NULL,
  550. };
  551. if (btdm_queue_generic_deregister(&item)) {
  552. vSemaphoreDelete(item.handle);
  553. free(item.buffer);
  554. }
  555. return;
  556. #endif
  557. }
  558. static int32_t mutex_lock_wrapper(void *mutex)
  559. {
  560. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  561. }
  562. static int32_t mutex_unlock_wrapper(void *mutex)
  563. {
  564. return (int32_t)xSemaphoreGive(mutex);
  565. }
  566. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  567. {
  568. #if CONFIG_SPIRAM_USE_MALLOC
  569. StaticQueue_t *queue_buffer = NULL;
  570. uint8_t *queue_storage = NULL;
  571. QueueHandle_t handle = NULL;
  572. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  573. if (!queue_buffer) {
  574. goto error;
  575. }
  576. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  577. if (!queue_storage ) {
  578. goto error;
  579. }
  580. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  581. if (!handle) {
  582. goto error;
  583. }
  584. btdm_queue_item_t item = {
  585. .handle = handle,
  586. .storage = queue_storage,
  587. .buffer = queue_buffer,
  588. };
  589. if (!btdm_queue_generic_register(&item)) {
  590. goto error;
  591. }
  592. return handle;
  593. error:
  594. if (handle) {
  595. vQueueDelete(handle);
  596. }
  597. if (queue_storage) {
  598. free(queue_storage);
  599. }
  600. if (queue_buffer) {
  601. free(queue_buffer);
  602. }
  603. return NULL;
  604. #else
  605. return (void *)xQueueCreate(queue_len, item_size);
  606. #endif
  607. }
  608. static void queue_delete_wrapper(void *queue)
  609. {
  610. #if !CONFIG_SPIRAM_USE_MALLOC
  611. vQueueDelete(queue);
  612. #else
  613. btdm_queue_item_t item = {
  614. .handle = queue,
  615. .storage = NULL,
  616. .buffer = NULL,
  617. };
  618. if (btdm_queue_generic_deregister(&item)) {
  619. vQueueDelete(item.handle);
  620. free(item.storage);
  621. free(item.buffer);
  622. }
  623. return;
  624. #endif
  625. }
  626. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  627. {
  628. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  629. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  630. } else {
  631. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  632. }
  633. }
  634. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  635. {
  636. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  637. }
  638. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  639. {
  640. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  641. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  642. } else {
  643. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  644. }
  645. }
  646. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  647. {
  648. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  649. }
  650. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  651. {
  652. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  653. }
  654. static void task_delete_wrapper(void *task_handle)
  655. {
  656. vTaskDelete(task_handle);
  657. }
  658. static bool IRAM_ATTR is_in_isr_wrapper(void)
  659. {
  660. return !xPortCanYield();
  661. }
  662. static void IRAM_ATTR cause_sw_intr(void *arg)
  663. {
  664. /* just convert void * to int, because the width is the same */
  665. uint32_t intr_no = (uint32_t)arg;
  666. XTHAL_SET_INTSET((1<<intr_no));
  667. }
  668. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  669. {
  670. esp_err_t err = ESP_OK;
  671. #if CONFIG_FREERTOS_UNICORE
  672. cause_sw_intr((void *)intr_no);
  673. #else /* CONFIG_FREERTOS_UNICORE */
  674. if (xPortGetCoreID() == core_id) {
  675. cause_sw_intr((void *)intr_no);
  676. } else {
  677. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  678. }
  679. #endif /* !CONFIG_FREERTOS_UNICORE */
  680. return err;
  681. }
  682. static void *malloc_internal_wrapper(size_t size)
  683. {
  684. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  685. }
  686. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  687. {
  688. return esp_read_mac(mac, ESP_MAC_BT);
  689. }
  690. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  691. {
  692. /* empty function */
  693. }
  694. static int IRAM_ATTR rand_wrapper(void)
  695. {
  696. return (int)esp_random();
  697. }
  698. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  699. {
  700. // The number of lp cycles should not lead to overflow. Thrs: 100s
  701. // clock measurement is conducted
  702. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  703. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  704. return (uint32_t)us;
  705. }
  706. /*
  707. * @brief Converts a duration in slots into a number of low power clock cycles.
  708. */
  709. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  710. {
  711. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  712. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  713. // clock measurement is conducted
  714. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  715. return (uint32_t)cycles;
  716. }
  717. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  718. {
  719. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  720. return false;
  721. }
  722. /* wake up in advance considering the delay in enabling PHY/RF */
  723. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  724. return true;
  725. }
  726. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  727. {
  728. #ifdef CONFIG_PM_ENABLE
  729. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  730. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  731. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  732. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  733. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  734. // and set the timer in advance
  735. uint32_t uncertainty = (us_to_sleep >> 11);
  736. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  737. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  738. }
  739. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  740. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  741. }
  742. #endif
  743. }
  744. static void btdm_sleep_enter_phase2_wrapper(void)
  745. {
  746. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  747. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  748. esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
  749. #ifdef CONFIG_PM_ENABLE
  750. esp_pm_lock_release(s_pm_lock);
  751. semphr_give_wrapper(s_pm_lock_sem);
  752. #endif
  753. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  754. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  755. // pause bluetooth baseband
  756. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  757. }
  758. }
  759. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void)
  760. {
  761. #ifdef CONFIG_PM_ENABLE
  762. if (semphr_take_from_isr_wrapper(s_pm_lock_sem, NULL) == pdTRUE) {
  763. esp_pm_lock_acquire(s_pm_lock);
  764. }
  765. #endif
  766. }
  767. static void btdm_sleep_exit_phase3_wrapper(void)
  768. {
  769. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  770. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  771. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  772. btdm_check_and_init_bb();
  773. #ifdef CONFIG_PM_ENABLE
  774. esp_timer_stop(s_btdm_slp_tmr);
  775. #endif
  776. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  777. // resume bluetooth baseband
  778. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  779. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  780. }
  781. }
  782. #ifdef CONFIG_PM_ENABLE
  783. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  784. {
  785. if (semphr_take_wrapper(s_pm_lock_sem, 0) == pdTRUE) {
  786. esp_pm_lock_acquire(s_pm_lock);
  787. }
  788. }
  789. #endif
  790. #define BTDM_ASYNC_WAKEUP_REQ_HCI 0
  791. #define BTDM_ASYNC_WAKEUP_REQ_COEX 1
  792. #define BTDM_ASYNC_WAKEUP_REQMAX 2
  793. static bool async_wakeup_request(int event)
  794. {
  795. bool request_lock = false;
  796. switch (event) {
  797. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  798. request_lock = true;
  799. break;
  800. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  801. request_lock = false;
  802. break;
  803. default:
  804. return false;
  805. }
  806. bool do_wakeup_request = false;
  807. if (!btdm_power_state_active()) {
  808. #if CONFIG_PM_ENABLE
  809. if (semphr_take_wrapper(s_pm_lock_sem, 0)) {
  810. esp_pm_lock_acquire(s_pm_lock);
  811. }
  812. esp_timer_stop(s_btdm_slp_tmr);
  813. #endif
  814. do_wakeup_request = true;
  815. btdm_wakeup_request(request_lock);
  816. }
  817. return do_wakeup_request;
  818. }
  819. static void async_wakeup_request_end(int event)
  820. {
  821. bool request_lock = false;
  822. switch (event) {
  823. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  824. request_lock = true;
  825. break;
  826. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  827. request_lock = false;
  828. break;
  829. default:
  830. return;
  831. }
  832. if (request_lock) {
  833. btdm_wakeup_request_end();
  834. }
  835. return;
  836. }
  837. static bool coex_bt_wakeup_request(void)
  838. {
  839. return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX);
  840. }
  841. static void coex_bt_wakeup_request_end(void)
  842. {
  843. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX);
  844. return;
  845. }
  846. bool esp_vhci_host_check_send_available(void)
  847. {
  848. return API_vhci_host_check_send_available();
  849. }
  850. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  851. {
  852. bool do_wakeup_request = async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI);
  853. API_vhci_host_send_packet(data, len);
  854. if (do_wakeup_request) {
  855. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI);
  856. }
  857. }
  858. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  859. {
  860. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  861. }
  862. static uint32_t btdm_config_mask_load(void)
  863. {
  864. uint32_t mask = 0x0;
  865. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  866. mask |= BTDM_CFG_HCI_UART;
  867. #endif
  868. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  869. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  870. #endif
  871. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  872. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  873. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  874. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  875. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  876. return mask;
  877. }
  878. static void btdm_controller_mem_init(void)
  879. {
  880. /* initialise .data section */
  881. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  882. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  883. //initial em, .bss section
  884. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  885. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  886. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  887. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  888. }
  889. }
  890. }
  891. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  892. {
  893. int ret = heap_caps_add_region(start, end);
  894. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  895. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  896. * we replace it by ESP_OK
  897. */
  898. if (ret == ESP_ERR_INVALID_SIZE) {
  899. return ESP_OK;
  900. }
  901. return ret;
  902. }
  903. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  904. {
  905. bool update = true;
  906. intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
  907. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  908. return ESP_ERR_INVALID_STATE;
  909. }
  910. //already released
  911. if (!(mode & btdm_dram_available_region[0].mode)) {
  912. return ESP_ERR_INVALID_STATE;
  913. }
  914. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  915. //skip the share mode, idle mode and other mode
  916. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  917. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  918. //clear the bit of the mode which will be released
  919. btdm_dram_available_region[i].mode &= ~mode;
  920. continue;
  921. } else {
  922. //clear the bit of the mode which will be released
  923. btdm_dram_available_region[i].mode &= ~mode;
  924. }
  925. if (update) {
  926. mem_start = btdm_dram_available_region[i].start;
  927. mem_end = btdm_dram_available_region[i].end;
  928. update = false;
  929. }
  930. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  931. mem_end = btdm_dram_available_region[i].end;
  932. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  933. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  934. && mem_end == btdm_dram_available_region[i+1].start) {
  935. continue;
  936. } else {
  937. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  938. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  939. update = true;
  940. }
  941. } else {
  942. mem_end = btdm_dram_available_region[i].end;
  943. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  944. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  945. update = true;
  946. }
  947. }
  948. if (mode == ESP_BT_MODE_BTDM) {
  949. mem_start = (intptr_t)&_btdm_bss_start;
  950. mem_end = (intptr_t)&_btdm_bss_end;
  951. if (mem_start != mem_end) {
  952. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  953. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  954. }
  955. mem_start = (intptr_t)&_btdm_data_start;
  956. mem_end = (intptr_t)&_btdm_data_end;
  957. if (mem_start != mem_end) {
  958. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  959. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  960. }
  961. }
  962. return ESP_OK;
  963. }
  964. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  965. {
  966. int ret;
  967. intptr_t mem_start, mem_end;
  968. ret = esp_bt_controller_mem_release(mode);
  969. if (ret != ESP_OK) {
  970. return ret;
  971. }
  972. if (mode == ESP_BT_MODE_BTDM) {
  973. mem_start = (intptr_t)&_bt_bss_start;
  974. mem_end = (intptr_t)&_bt_bss_end;
  975. if (mem_start != mem_end) {
  976. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  977. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  978. }
  979. mem_start = (intptr_t)&_bt_data_start;
  980. mem_end = (intptr_t)&_bt_data_end;
  981. if (mem_start != mem_end) {
  982. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  983. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  984. }
  985. mem_start = (intptr_t)&_nimble_bss_start;
  986. mem_end = (intptr_t)&_nimble_bss_end;
  987. if (mem_start != mem_end) {
  988. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  989. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  990. }
  991. mem_start = (intptr_t)&_nimble_data_start;
  992. mem_end = (intptr_t)&_nimble_data_end;
  993. if (mem_start != mem_end) {
  994. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  995. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  996. }
  997. }
  998. return ESP_OK;
  999. }
  1000. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  1001. {
  1002. esp_err_t err;
  1003. uint32_t btdm_cfg_mask = 0;
  1004. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  1005. if (osi_funcs_p == NULL) {
  1006. return ESP_ERR_NO_MEM;
  1007. }
  1008. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  1009. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  1010. return ESP_ERR_INVALID_ARG;
  1011. }
  1012. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1013. return ESP_ERR_INVALID_STATE;
  1014. }
  1015. //if all the bt available memory was already released, cannot initialize bluetooth controller
  1016. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  1017. return ESP_ERR_INVALID_STATE;
  1018. }
  1019. if (cfg == NULL) {
  1020. return ESP_ERR_INVALID_ARG;
  1021. }
  1022. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  1023. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  1024. return ESP_ERR_INVALID_ARG;
  1025. }
  1026. //overwrite some parameters
  1027. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  1028. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  1029. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  1030. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  1031. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  1032. return ESP_ERR_INVALID_ARG;
  1033. }
  1034. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  1035. #if CONFIG_SPIRAM_USE_MALLOC
  1036. btdm_queue_table_mux = xSemaphoreCreateMutex();
  1037. if (btdm_queue_table_mux == NULL) {
  1038. return ESP_ERR_NO_MEM;
  1039. }
  1040. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1041. #endif
  1042. btdm_controller_mem_init();
  1043. periph_module_enable(PERIPH_BT_MODULE);
  1044. #ifdef CONFIG_PM_ENABLE
  1045. s_btdm_allow_light_sleep = false;
  1046. #endif
  1047. // set default sleep clock cycle and its fractional bits
  1048. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1049. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1050. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  1051. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1052. #if CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
  1053. // check whether or not EXT_CRYS is working
  1054. if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) {
  1055. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // set default value
  1056. #ifdef CONFIG_PM_ENABLE
  1057. s_btdm_allow_light_sleep = true;
  1058. #endif
  1059. } else {
  1060. ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
  1061. "light sleep mode will not be able to apply when bluetooth is enabled");
  1062. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1063. }
  1064. #else
  1065. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1066. #endif
  1067. bool select_src_ret, set_div_ret;
  1068. if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
  1069. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1070. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  1071. assert(select_src_ret && set_div_ret);
  1072. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1073. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1074. } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
  1075. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1076. set_div_ret = btdm_lpclk_set_div(0);
  1077. assert(select_src_ret && set_div_ret);
  1078. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1079. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1080. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1081. assert(btdm_lpcycle_us != 0);
  1082. }
  1083. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1084. #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
  1085. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1086. #else
  1087. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1088. #endif
  1089. #ifdef CONFIG_PM_ENABLE
  1090. if (!s_btdm_allow_light_sleep) {
  1091. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  1092. goto error;
  1093. }
  1094. }
  1095. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1096. goto error;
  1097. }
  1098. esp_timer_create_args_t create_args = {
  1099. .callback = btdm_slp_tmr_callback,
  1100. .arg = NULL,
  1101. .name = "btSlp"
  1102. };
  1103. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1104. goto error;
  1105. }
  1106. s_pm_lock_sem = semphr_create_wrapper(1, 0);
  1107. if (s_pm_lock_sem == NULL) {
  1108. err = ESP_ERR_NO_MEM;
  1109. goto error;
  1110. }
  1111. #endif
  1112. btdm_cfg_mask = btdm_config_mask_load();
  1113. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1114. err = ESP_ERR_NO_MEM;
  1115. goto error;
  1116. }
  1117. #ifdef CONFIG_BTDM_COEX_BLE_ADV_HIGH_PRIORITY
  1118. coex_ble_adv_priority_high_set(true);
  1119. #else
  1120. coex_ble_adv_priority_high_set(false);
  1121. #endif
  1122. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1123. return ESP_OK;
  1124. error:
  1125. #ifdef CONFIG_PM_ENABLE
  1126. if (!s_btdm_allow_light_sleep) {
  1127. if (s_light_sleep_pm_lock != NULL) {
  1128. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1129. s_light_sleep_pm_lock = NULL;
  1130. }
  1131. }
  1132. if (s_pm_lock != NULL) {
  1133. esp_pm_lock_delete(s_pm_lock);
  1134. s_pm_lock = NULL;
  1135. }
  1136. if (s_btdm_slp_tmr != NULL) {
  1137. esp_timer_delete(s_btdm_slp_tmr);
  1138. s_btdm_slp_tmr = NULL;
  1139. }
  1140. if (s_pm_lock_sem) {
  1141. semphr_delete_wrapper(s_pm_lock_sem);
  1142. s_pm_lock_sem = NULL;
  1143. }
  1144. #endif
  1145. return err;
  1146. }
  1147. esp_err_t esp_bt_controller_deinit(void)
  1148. {
  1149. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1150. return ESP_ERR_INVALID_STATE;
  1151. }
  1152. btdm_controller_deinit();
  1153. periph_module_disable(PERIPH_BT_MODULE);
  1154. #ifdef CONFIG_PM_ENABLE
  1155. if (!s_btdm_allow_light_sleep) {
  1156. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1157. s_light_sleep_pm_lock = NULL;
  1158. }
  1159. esp_pm_lock_delete(s_pm_lock);
  1160. s_pm_lock = NULL;
  1161. esp_timer_stop(s_btdm_slp_tmr);
  1162. esp_timer_delete(s_btdm_slp_tmr);
  1163. s_btdm_slp_tmr = NULL;
  1164. semphr_delete_wrapper(s_pm_lock_sem);
  1165. s_pm_lock_sem = NULL;
  1166. #endif
  1167. #if CONFIG_SPIRAM_USE_MALLOC
  1168. vSemaphoreDelete(btdm_queue_table_mux);
  1169. btdm_queue_table_mux = NULL;
  1170. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1171. #endif
  1172. free(osi_funcs_p);
  1173. osi_funcs_p = NULL;
  1174. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1175. btdm_lpcycle_us = 0;
  1176. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1177. return ESP_OK;
  1178. }
  1179. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1180. {
  1181. int ret;
  1182. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1183. return ESP_ERR_INVALID_STATE;
  1184. }
  1185. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1186. if (mode != btdm_controller_get_mode()) {
  1187. return ESP_ERR_INVALID_ARG;
  1188. }
  1189. #ifdef CONFIG_PM_ENABLE
  1190. if (!s_btdm_allow_light_sleep) {
  1191. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1192. }
  1193. esp_pm_lock_acquire(s_pm_lock);
  1194. #endif
  1195. esp_phy_load_cal_and_init(PHY_BT_MODULE);
  1196. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
  1197. //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
  1198. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
  1199. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1200. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1201. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  1202. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  1203. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1204. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1205. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1206. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1207. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1208. }
  1209. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1210. btdm_controller_enable_sleep(true);
  1211. }
  1212. // inititalize bluetooth baseband
  1213. btdm_check_and_init_bb();
  1214. ret = btdm_controller_enable(mode);
  1215. if (ret) {
  1216. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1217. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1218. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1219. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1220. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1221. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1222. }
  1223. esp_phy_rf_deinit(PHY_BT_MODULE);
  1224. #ifdef CONFIG_PM_ENABLE
  1225. if (!s_btdm_allow_light_sleep) {
  1226. esp_pm_lock_release(s_light_sleep_pm_lock);
  1227. }
  1228. esp_pm_lock_release(s_pm_lock);
  1229. #endif
  1230. return ESP_ERR_INVALID_STATE;
  1231. }
  1232. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1233. return ESP_OK;
  1234. }
  1235. esp_err_t esp_bt_controller_disable(void)
  1236. {
  1237. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1238. return ESP_ERR_INVALID_STATE;
  1239. }
  1240. // disable modem sleep and wake up from sleep mode
  1241. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1242. btdm_controller_enable_sleep(false);
  1243. if (!btdm_power_state_active()) {
  1244. btdm_wakeup_request(false);
  1245. }
  1246. while (!btdm_power_state_active()) {
  1247. esp_rom_delay_us(1000);
  1248. }
  1249. }
  1250. btdm_controller_disable();
  1251. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1252. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1253. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1254. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1255. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1256. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1257. }
  1258. esp_phy_rf_deinit(PHY_BT_MODULE);
  1259. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1260. #ifdef CONFIG_PM_ENABLE
  1261. if (!s_btdm_allow_light_sleep) {
  1262. esp_pm_lock_release(s_light_sleep_pm_lock);
  1263. }
  1264. esp_pm_lock_release(s_pm_lock);
  1265. #endif
  1266. return ESP_OK;
  1267. }
  1268. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1269. {
  1270. return btdm_controller_status;
  1271. }
  1272. /* extra functions */
  1273. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1274. {
  1275. if (ble_txpwr_set(power_type, power_level) != 0) {
  1276. return ESP_ERR_INVALID_ARG;
  1277. }
  1278. return ESP_OK;
  1279. }
  1280. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1281. {
  1282. return (esp_power_level_t)ble_txpwr_get(power_type);
  1283. }
  1284. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1285. {
  1286. esp_err_t err;
  1287. int ret;
  1288. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1289. if (ret == 0) {
  1290. err = ESP_OK;
  1291. } else if (ret == -1) {
  1292. err = ESP_ERR_INVALID_ARG;
  1293. } else {
  1294. err = ESP_ERR_INVALID_STATE;
  1295. }
  1296. return err;
  1297. }
  1298. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1299. {
  1300. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1301. return ESP_ERR_INVALID_ARG;
  1302. }
  1303. return ESP_OK;
  1304. }
  1305. esp_err_t esp_bt_sleep_enable (void)
  1306. {
  1307. esp_err_t status;
  1308. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1309. return ESP_ERR_INVALID_STATE;
  1310. }
  1311. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1312. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1313. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1314. btdm_controller_enable_sleep (true);
  1315. status = ESP_OK;
  1316. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1317. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1318. btdm_controller_enable_sleep (true);
  1319. status = ESP_OK;
  1320. } else {
  1321. status = ESP_ERR_NOT_SUPPORTED;
  1322. }
  1323. return status;
  1324. }
  1325. esp_err_t esp_bt_sleep_disable (void)
  1326. {
  1327. esp_err_t status;
  1328. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1329. return ESP_ERR_INVALID_STATE;
  1330. }
  1331. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1332. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1333. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1334. btdm_controller_enable_sleep (false);
  1335. status = ESP_OK;
  1336. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1337. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1338. btdm_controller_enable_sleep (false);
  1339. status = ESP_OK;
  1340. } else {
  1341. status = ESP_ERR_NOT_SUPPORTED;
  1342. }
  1343. return status;
  1344. }
  1345. bool esp_bt_controller_is_sleeping(void)
  1346. {
  1347. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1348. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1349. return false;
  1350. }
  1351. return !btdm_power_state_active();
  1352. }
  1353. void esp_bt_controller_wakeup_request(void)
  1354. {
  1355. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1356. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1357. return;
  1358. }
  1359. btdm_wakeup_request(false);
  1360. }
  1361. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1362. {
  1363. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1364. return ESP_ERR_INVALID_STATE;
  1365. }
  1366. bredr_sco_datapath_set(data_path);
  1367. return ESP_OK;
  1368. }
  1369. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1370. {
  1371. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1372. return ESP_ERR_INVALID_STATE;
  1373. }
  1374. btdm_controller_scan_duplicate_list_clear();
  1375. return ESP_OK;
  1376. }
  1377. #endif /* CONFIG_BT_ENABLED */