uart.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/ringbuf.h"
  24. #include "hal/uart_hal.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "driver/periph_ctrl.h"
  30. #include "sdkconfig.h"
  31. #include "esp_rom_gpio.h"
  32. #if CONFIG_IDF_TARGET_ESP32
  33. #include "esp32/clk.h"
  34. #elif CONFIG_IDF_TARGET_ESP32S2
  35. #include "esp32s2/clk.h"
  36. #endif
  37. #ifdef CONFIG_UART_ISR_IN_IRAM
  38. #define UART_ISR_ATTR IRAM_ATTR
  39. #else
  40. #define UART_ISR_ATTR
  41. #endif
  42. #define XOFF (0x13)
  43. #define XON (0x11)
  44. static const char* UART_TAG = "uart";
  45. #define UART_CHECK(a, str, ret_val) \
  46. if (!(a)) { \
  47. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  48. return (ret_val); \
  49. }
  50. #define UART_EMPTY_THRESH_DEFAULT (10)
  51. #define UART_FULL_THRESH_DEFAULT (120)
  52. #define UART_TOUT_THRESH_DEFAULT (10)
  53. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  54. #define UART_TX_IDLE_NUM_DEFAULT (0)
  55. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  56. #define UART_MIN_WAKEUP_THRESH (SOC_UART_MIN_WAKEUP_THRESH)
  57. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  58. | (UART_INTR_RXFIFO_TOUT) \
  59. | (UART_INTR_RXFIFO_OVF) \
  60. | (UART_INTR_BRK_DET) \
  61. | (UART_INTR_PARITY_ERR))
  62. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  63. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  64. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  65. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  66. // Check actual UART mode set
  67. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  68. #define UART_CONTEX_INIT_DEF(uart_num) {\
  69. .hal.dev = UART_LL_GET_HW(uart_num),\
  70. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  71. .hw_enabled = false,\
  72. }
  73. typedef struct {
  74. uart_event_type_t type; /*!< UART TX data type */
  75. struct {
  76. int brk_len;
  77. size_t size;
  78. uint8_t data[0];
  79. } tx_data;
  80. } uart_tx_data_t;
  81. typedef struct {
  82. int wr;
  83. int rd;
  84. int len;
  85. int* data;
  86. } uart_pat_rb_t;
  87. typedef struct {
  88. uart_port_t uart_num; /*!< UART port number*/
  89. int queue_size; /*!< UART event queue size*/
  90. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  91. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  92. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  93. bool coll_det_flg; /*!< UART collision detection flag */
  94. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  95. //rx parameters
  96. int rx_buffered_len; /*!< UART cached data length */
  97. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  98. int rx_buf_size; /*!< RX ring buffer size */
  99. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  100. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  101. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  102. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  103. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  104. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  105. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  106. uart_pat_rb_t rx_pattern_pos;
  107. //tx parameters
  108. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  109. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  110. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  111. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  112. int tx_buf_size; /*!< TX ring buffer size */
  113. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  114. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  115. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  116. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  117. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  118. uint32_t tx_len_cur;
  119. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  120. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  121. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  122. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  123. } uart_obj_t;
  124. typedef struct {
  125. uart_hal_context_t hal; /*!< UART hal context*/
  126. portMUX_TYPE spinlock;
  127. bool hw_enabled;
  128. } uart_context_t;
  129. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  130. static uart_context_t uart_context[UART_NUM_MAX] = {
  131. UART_CONTEX_INIT_DEF(UART_NUM_0),
  132. UART_CONTEX_INIT_DEF(UART_NUM_1),
  133. #if UART_NUM_MAX > 2
  134. UART_CONTEX_INIT_DEF(UART_NUM_2),
  135. #endif
  136. };
  137. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  138. static void uart_module_enable(uart_port_t uart_num)
  139. {
  140. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  141. if (uart_context[uart_num].hw_enabled != true) {
  142. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  143. periph_module_reset(uart_periph_signal[uart_num].module);
  144. }
  145. periph_module_enable(uart_periph_signal[uart_num].module);
  146. uart_context[uart_num].hw_enabled = true;
  147. }
  148. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  149. }
  150. static void uart_module_disable(uart_port_t uart_num)
  151. {
  152. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  153. if (uart_context[uart_num].hw_enabled != false) {
  154. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  155. periph_module_disable(uart_periph_signal[uart_num].module);
  156. }
  157. uart_context[uart_num].hw_enabled = false;
  158. }
  159. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  160. }
  161. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  162. {
  163. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  164. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  165. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  166. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  167. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  168. return ESP_OK;
  169. }
  170. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  171. {
  172. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  173. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  174. return ESP_OK;
  175. }
  176. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  177. {
  178. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  179. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  180. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  181. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  182. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  183. return ESP_OK;
  184. }
  185. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  186. {
  187. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  188. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  189. return ESP_OK;
  190. }
  191. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  192. {
  193. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  194. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  195. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  196. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  197. return ESP_OK;
  198. }
  199. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  200. {
  201. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  202. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  203. return ESP_OK;
  204. }
  205. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  206. {
  207. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  208. uart_sclk_t source_clk = 0;
  209. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  210. uart_hal_get_sclk(&(uart_context[uart_num].hal), &source_clk);
  211. uart_hal_set_baudrate(&(uart_context[uart_num].hal), source_clk, baud_rate);
  212. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  213. return ESP_OK;
  214. }
  215. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  216. {
  217. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  218. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  219. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  220. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  221. return ESP_OK;
  222. }
  223. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  224. {
  225. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  227. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  228. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  229. return ESP_OK;
  230. }
  231. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  232. {
  233. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  234. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  235. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  236. uart_sw_flowctrl_t sw_flow_ctl = {
  237. .xon_char = XON,
  238. .xoff_char = XOFF,
  239. .xon_thrd = rx_thresh_xon,
  240. .xoff_thrd = rx_thresh_xoff,
  241. };
  242. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  243. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  244. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  245. return ESP_OK;
  246. }
  247. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  248. {
  249. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  250. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  251. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  252. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  253. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  254. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  255. return ESP_OK;
  256. }
  257. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  258. {
  259. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  260. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  261. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  262. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  263. return ESP_OK;
  264. }
  265. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  266. {
  267. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  268. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  269. return ESP_OK;
  270. }
  271. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  272. {
  273. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  274. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  275. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  276. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  277. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  278. return ESP_OK;
  279. }
  280. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  281. {
  282. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  283. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  284. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  285. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  286. return ESP_OK;
  287. }
  288. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  289. {
  290. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  291. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  292. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  293. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  294. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  295. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  296. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  297. free(pdata);
  298. }
  299. return ESP_OK;
  300. }
  301. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  302. {
  303. esp_err_t ret = ESP_OK;
  304. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  305. int next = p_pos->wr + 1;
  306. if (next >= p_pos->len) {
  307. next = 0;
  308. }
  309. if (next == p_pos->rd) {
  310. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  311. ret = ESP_FAIL;
  312. } else {
  313. p_pos->data[p_pos->wr] = pos;
  314. p_pos->wr = next;
  315. ret = ESP_OK;
  316. }
  317. return ret;
  318. }
  319. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  320. {
  321. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  322. return ESP_ERR_INVALID_STATE;
  323. } else {
  324. esp_err_t ret = ESP_OK;
  325. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  326. if (p_pos->rd == p_pos->wr) {
  327. ret = ESP_FAIL;
  328. } else {
  329. p_pos->rd++;
  330. }
  331. if (p_pos->rd >= p_pos->len) {
  332. p_pos->rd = 0;
  333. }
  334. return ret;
  335. }
  336. }
  337. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  338. {
  339. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  340. int rd = p_pos->rd;
  341. while(rd != p_pos->wr) {
  342. p_pos->data[rd] -= diff_len;
  343. int rd_rec = rd;
  344. rd ++;
  345. if (rd >= p_pos->len) {
  346. rd = 0;
  347. }
  348. if (p_pos->data[rd_rec] < 0) {
  349. p_pos->rd = rd;
  350. }
  351. }
  352. return ESP_OK;
  353. }
  354. int uart_pattern_pop_pos(uart_port_t uart_num)
  355. {
  356. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  357. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  358. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  359. int pos = -1;
  360. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  361. pos = pat_pos->data[pat_pos->rd];
  362. uart_pattern_dequeue(uart_num);
  363. }
  364. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  365. return pos;
  366. }
  367. int uart_pattern_get_pos(uart_port_t uart_num)
  368. {
  369. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  370. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  371. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  372. int pos = -1;
  373. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  374. pos = pat_pos->data[pat_pos->rd];
  375. }
  376. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  377. return pos;
  378. }
  379. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  380. {
  381. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  382. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  383. int* pdata = (int*) malloc(queue_length * sizeof(int));
  384. if(pdata == NULL) {
  385. return ESP_ERR_NO_MEM;
  386. }
  387. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  388. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  389. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  390. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  391. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  392. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  393. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  394. free(ptmp);
  395. return ESP_OK;
  396. }
  397. #if CONFIG_IDF_TARGET_ESP32
  398. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  399. {
  400. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  401. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  402. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  403. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  404. uart_at_cmd_t at_cmd = {0};
  405. at_cmd.cmd_char = pattern_chr;
  406. at_cmd.char_num = chr_num;
  407. at_cmd.gap_tout = chr_tout;
  408. at_cmd.pre_idle = pre_idle;
  409. at_cmd.post_idle = post_idle;
  410. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  411. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  412. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  413. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  414. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  415. return ESP_OK;
  416. }
  417. #endif
  418. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  419. {
  420. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  421. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  422. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  423. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  424. uart_at_cmd_t at_cmd = {0};
  425. at_cmd.cmd_char = pattern_chr;
  426. at_cmd.char_num = chr_num;
  427. #if CONFIG_IDF_TARGET_ESP32
  428. int apb_clk_freq = 0;
  429. uint32_t uart_baud = 0;
  430. uint32_t uart_div = 0;
  431. uart_get_baudrate(uart_num, &uart_baud);
  432. apb_clk_freq = esp_clk_apb_freq();
  433. uart_div = apb_clk_freq / uart_baud;
  434. at_cmd.gap_tout = chr_tout * uart_div;
  435. at_cmd.pre_idle = pre_idle * uart_div;
  436. at_cmd.post_idle = post_idle * uart_div;
  437. #elif CONFIG_IDF_TARGET_ESP32S2
  438. at_cmd.gap_tout = chr_tout;
  439. at_cmd.pre_idle = pre_idle;
  440. at_cmd.post_idle = post_idle;
  441. #endif
  442. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  443. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  444. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  445. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  446. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  447. return ESP_OK;
  448. }
  449. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  450. {
  451. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  452. }
  453. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  454. {
  455. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  456. }
  457. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  458. {
  459. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  460. }
  461. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  462. {
  463. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  464. }
  465. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  466. {
  467. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  468. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  469. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  470. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  471. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  472. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  473. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  474. return ESP_OK;
  475. }
  476. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  477. {
  478. int ret;
  479. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  480. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  481. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  482. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  483. return ret;
  484. }
  485. esp_err_t uart_isr_free(uart_port_t uart_num)
  486. {
  487. esp_err_t ret;
  488. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  489. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  490. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  491. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  492. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  493. p_uart_obj[uart_num]->intr_handle=NULL;
  494. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  495. return ret;
  496. }
  497. //internal signal can be output to multiple GPIO pads
  498. //only one GPIO pad can connect with input signal
  499. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  500. {
  501. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  502. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  503. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  504. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  505. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  506. if(tx_io_num >= 0) {
  507. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  508. gpio_set_level(tx_io_num, 1);
  509. esp_rom_gpio_connect_out_signal(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  510. }
  511. if(rx_io_num >= 0) {
  512. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  513. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  514. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  515. esp_rom_gpio_connect_in_signal(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  516. }
  517. if(rts_io_num >= 0) {
  518. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  519. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  520. esp_rom_gpio_connect_out_signal(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  521. }
  522. if(cts_io_num >= 0) {
  523. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  524. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  525. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  526. esp_rom_gpio_connect_in_signal(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  527. }
  528. return ESP_OK;
  529. }
  530. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  531. {
  532. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  533. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  534. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  535. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  536. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  537. return ESP_OK;
  538. }
  539. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  540. {
  541. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  542. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  543. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  544. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  545. return ESP_OK;
  546. }
  547. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  548. {
  549. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  550. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  551. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  552. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  553. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  554. return ESP_OK;
  555. }
  556. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  557. {
  558. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  559. UART_CHECK((uart_config), "param null", ESP_FAIL);
  560. UART_CHECK((uart_config->rx_flow_ctrl_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  561. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  562. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  563. uart_module_enable(uart_num);
  564. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  565. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  566. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->source_clk, uart_config->baud_rate);
  567. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  568. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  569. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  570. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  571. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  572. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  573. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  574. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  575. return ESP_OK;
  576. }
  577. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  578. {
  579. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  580. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  581. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  582. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  583. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  584. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  585. } else {
  586. //Disable rx_tout intr
  587. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  588. }
  589. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  590. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  591. }
  592. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  593. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  594. }
  595. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  596. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  597. return ESP_OK;
  598. }
  599. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  600. {
  601. int cnt = 0;
  602. int len = length;
  603. while (len >= 0) {
  604. if (buf[len] == pat_chr) {
  605. cnt++;
  606. } else {
  607. cnt = 0;
  608. }
  609. if (cnt >= pat_num) {
  610. break;
  611. }
  612. len --;
  613. }
  614. return len;
  615. }
  616. //internal isr handler for default driver code.
  617. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  618. {
  619. uart_obj_t *p_uart = (uart_obj_t*) param;
  620. uint8_t uart_num = p_uart->uart_num;
  621. int rx_fifo_len = 0;
  622. uint32_t uart_intr_status = 0;
  623. uart_event_t uart_event;
  624. portBASE_TYPE HPTaskAwoken = 0;
  625. static uint8_t pat_flg = 0;
  626. while(1) {
  627. // The `continue statement` may cause the interrupt to loop infinitely
  628. // we exit the interrupt here
  629. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  630. //Exit form while loop
  631. if(uart_intr_status == 0){
  632. break;
  633. }
  634. uart_event.type = UART_EVENT_MAX;
  635. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  636. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  637. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  638. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  639. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  640. if(p_uart->tx_waiting_brk) {
  641. continue;
  642. }
  643. //TX semaphore will only be used when tx_buf_size is zero.
  644. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  645. p_uart->tx_waiting_fifo = false;
  646. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  647. } else {
  648. //We don't use TX ring buffer, because the size is zero.
  649. if(p_uart->tx_buf_size == 0) {
  650. continue;
  651. }
  652. bool en_tx_flg = false;
  653. int tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  654. //We need to put a loop here, in case all the buffer items are very short.
  655. //That would cause a watch_dog reset because empty interrupt happens so often.
  656. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  657. while(tx_fifo_rem) {
  658. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  659. size_t size;
  660. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  661. if(p_uart->tx_head) {
  662. //The first item is the data description
  663. //Get the first item to get the data information
  664. if(p_uart->tx_len_tot == 0) {
  665. p_uart->tx_ptr = NULL;
  666. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  667. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  668. p_uart->tx_brk_flg = 1;
  669. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  670. }
  671. //We have saved the data description from the 1st item, return buffer.
  672. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  673. } else if(p_uart->tx_ptr == NULL) {
  674. //Update the TX item pointer, we will need this to return item to buffer.
  675. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  676. en_tx_flg = true;
  677. p_uart->tx_len_cur = size;
  678. }
  679. } else {
  680. //Can not get data from ring buffer, return;
  681. break;
  682. }
  683. }
  684. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  685. //To fill the TX FIFO.
  686. uint32_t send_len = 0;
  687. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  688. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  689. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  690. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  691. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  692. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  693. }
  694. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  695. (const uint8_t *)p_uart->tx_ptr,
  696. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  697. &send_len);
  698. p_uart->tx_ptr += send_len;
  699. p_uart->tx_len_tot -= send_len;
  700. p_uart->tx_len_cur -= send_len;
  701. tx_fifo_rem -= send_len;
  702. if (p_uart->tx_len_cur == 0) {
  703. //Return item to ring buffer.
  704. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  705. p_uart->tx_head = NULL;
  706. p_uart->tx_ptr = NULL;
  707. //Sending item done, now we need to send break if there is a record.
  708. //Set TX break signal after FIFO is empty
  709. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  710. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  711. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  712. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  713. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  714. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  715. p_uart->tx_waiting_brk = 1;
  716. //do not enable TX empty interrupt
  717. en_tx_flg = false;
  718. } else {
  719. //enable TX empty interrupt
  720. en_tx_flg = true;
  721. }
  722. } else {
  723. //enable TX empty interrupt
  724. en_tx_flg = true;
  725. }
  726. }
  727. }
  728. if (en_tx_flg) {
  729. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  730. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  731. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  732. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  733. }
  734. }
  735. }
  736. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  737. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  738. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  739. ) {
  740. if(pat_flg == 1) {
  741. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  742. pat_flg = 0;
  743. }
  744. if (p_uart->rx_buffer_full_flg == false) {
  745. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  746. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  747. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  748. }
  749. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  750. uint8_t pat_chr = 0;
  751. uint8_t pat_num = 0;
  752. int pat_idx = -1;
  753. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  754. //Get the buffer from the FIFO
  755. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  756. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  757. uart_event.type = UART_PATTERN_DET;
  758. uart_event.size = rx_fifo_len;
  759. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  760. } else {
  761. //After Copying the Data From FIFO ,Clear intr_status
  762. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  763. uart_event.type = UART_DATA;
  764. uart_event.size = rx_fifo_len;
  765. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  766. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  767. if (p_uart->uart_select_notif_callback) {
  768. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  769. }
  770. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  771. }
  772. p_uart->rx_stash_len = rx_fifo_len;
  773. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  774. //Mainly for applications that uses flow control or small ring buffer.
  775. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  776. p_uart->rx_buffer_full_flg = true;
  777. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  778. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  779. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  780. if (uart_event.type == UART_PATTERN_DET) {
  781. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  782. if (rx_fifo_len < pat_num) {
  783. //some of the characters are read out in last interrupt
  784. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  785. } else {
  786. uart_pattern_enqueue(uart_num,
  787. pat_idx <= -1 ?
  788. //can not find the pattern in buffer,
  789. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  790. // find the pattern in buffer
  791. p_uart->rx_buffered_len + pat_idx);
  792. }
  793. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  794. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  795. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  796. }
  797. }
  798. uart_event.type = UART_BUFFER_FULL;
  799. } else {
  800. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  801. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  802. if (rx_fifo_len < pat_num) {
  803. //some of the characters are read out in last interrupt
  804. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  805. } else if(pat_idx >= 0) {
  806. // find the pattern in stash buffer.
  807. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  808. }
  809. }
  810. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  811. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  812. }
  813. } else {
  814. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  815. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  816. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  817. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  818. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  819. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  820. uart_event.type = UART_PATTERN_DET;
  821. uart_event.size = rx_fifo_len;
  822. pat_flg = 1;
  823. }
  824. }
  825. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  826. // When fifo overflows, we reset the fifo.
  827. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  828. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  829. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  830. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  831. if (p_uart->uart_select_notif_callback) {
  832. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  833. }
  834. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  835. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  836. uart_event.type = UART_FIFO_OVF;
  837. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  838. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  839. uart_event.type = UART_BREAK;
  840. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  841. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  842. if (p_uart->uart_select_notif_callback) {
  843. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  844. }
  845. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  846. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  847. uart_event.type = UART_FRAME_ERR;
  848. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  849. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  850. if (p_uart->uart_select_notif_callback) {
  851. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  852. }
  853. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  854. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  855. uart_event.type = UART_PARITY_ERR;
  856. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  857. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  858. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  859. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  860. if(p_uart->tx_brk_flg == 1) {
  861. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  862. }
  863. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  864. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  865. if(p_uart->tx_brk_flg == 1) {
  866. p_uart->tx_brk_flg = 0;
  867. p_uart->tx_waiting_brk = 0;
  868. } else {
  869. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  870. }
  871. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  872. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  873. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  874. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  875. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  876. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  877. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  878. uart_event.type = UART_PATTERN_DET;
  879. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  880. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  881. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  882. // RS485 collision or frame error interrupt triggered
  883. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  884. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  885. // Set collision detection flag
  886. p_uart_obj[uart_num]->coll_det_flg = true;
  887. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  888. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  889. uart_event.type = UART_EVENT_MAX;
  890. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  891. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  892. // The TX_DONE interrupt is triggered but transmit is active
  893. // then postpone interrupt processing for next interrupt
  894. uart_event.type = UART_EVENT_MAX;
  895. } else {
  896. // Workaround for RS485: If the RS485 half duplex mode is active
  897. // and transmitter is in idle state then reset received buffer and reset RTS pin
  898. // skip this behavior for other UART modes
  899. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  900. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  901. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  902. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  903. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  904. }
  905. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  906. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  907. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  908. }
  909. } else {
  910. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  911. uart_event.type = UART_EVENT_MAX;
  912. }
  913. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  914. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  915. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  916. }
  917. }
  918. }
  919. if(HPTaskAwoken == pdTRUE) {
  920. portYIELD_FROM_ISR();
  921. }
  922. }
  923. /**************************************************************/
  924. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  925. {
  926. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  927. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  928. BaseType_t res;
  929. portTickType ticks_start = xTaskGetTickCount();
  930. //Take tx_mux
  931. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  932. if(res == pdFALSE) {
  933. return ESP_ERR_TIMEOUT;
  934. }
  935. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  936. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  937. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  938. return ESP_OK;
  939. }
  940. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  941. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  942. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  943. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  944. TickType_t ticks_end = xTaskGetTickCount();
  945. if (ticks_end - ticks_start > ticks_to_wait) {
  946. ticks_to_wait = 0;
  947. } else {
  948. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  949. }
  950. //take 2nd tx_done_sem, wait given from ISR
  951. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  952. if(res == pdFALSE) {
  953. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  954. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  955. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  956. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  957. }
  958. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  959. return ESP_OK;
  960. }
  961. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  962. {
  963. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  964. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  965. UART_CHECK(buffer, "buffer null", (-1));
  966. if(len == 0) {
  967. return 0;
  968. }
  969. int tx_len = 0;
  970. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  971. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  972. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  973. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  974. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  975. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  976. }
  977. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  978. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  979. return tx_len;
  980. }
  981. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  982. {
  983. if(size == 0) {
  984. return 0;
  985. }
  986. size_t original_size = size;
  987. //lock for uart_tx
  988. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  989. p_uart_obj[uart_num]->coll_det_flg = false;
  990. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  991. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  992. int offset = 0;
  993. uart_tx_data_t evt;
  994. evt.tx_data.size = size;
  995. evt.tx_data.brk_len = brk_len;
  996. if(brk_en) {
  997. evt.type = UART_DATA_BREAK;
  998. } else {
  999. evt.type = UART_DATA;
  1000. }
  1001. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1002. while(size > 0) {
  1003. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1004. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1005. size -= send_size;
  1006. offset += send_size;
  1007. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1008. }
  1009. } else {
  1010. while(size) {
  1011. //semaphore for tx_fifo available
  1012. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1013. uint32_t sent = 0;
  1014. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1015. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1016. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1017. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1018. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1019. }
  1020. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1021. if(sent < size) {
  1022. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1023. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1024. }
  1025. size -= sent;
  1026. src += sent;
  1027. }
  1028. }
  1029. if(brk_en) {
  1030. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1031. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1032. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1033. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1034. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1035. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1036. }
  1037. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1038. }
  1039. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1040. return original_size;
  1041. }
  1042. int uart_write_bytes(uart_port_t uart_num, const void* src, size_t size)
  1043. {
  1044. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1045. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1046. UART_CHECK(src, "buffer null", (-1));
  1047. return uart_tx_all(uart_num, src, size, 0, 0);
  1048. }
  1049. int uart_write_bytes_with_break(uart_port_t uart_num, const void* src, size_t size, int brk_len)
  1050. {
  1051. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1052. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1053. UART_CHECK((size > 0), "uart size error", (-1));
  1054. UART_CHECK((src), "uart data null", (-1));
  1055. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1056. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1057. }
  1058. static bool uart_check_buf_full(uart_port_t uart_num)
  1059. {
  1060. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1061. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1062. if(res == pdTRUE) {
  1063. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1064. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1065. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1066. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1067. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1068. return true;
  1069. }
  1070. }
  1071. return false;
  1072. }
  1073. int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t ticks_to_wait)
  1074. {
  1075. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1076. UART_CHECK((buf), "uart data null", (-1));
  1077. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1078. uint8_t* data = NULL;
  1079. size_t size;
  1080. size_t copy_len = 0;
  1081. int len_tmp;
  1082. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1083. return -1;
  1084. }
  1085. while(length) {
  1086. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1087. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1088. if(data) {
  1089. p_uart_obj[uart_num]->rx_head_ptr = data;
  1090. p_uart_obj[uart_num]->rx_ptr = data;
  1091. p_uart_obj[uart_num]->rx_cur_remain = size;
  1092. } else {
  1093. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1094. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1095. //to solve the possible asynchronous issues.
  1096. if(uart_check_buf_full(uart_num)) {
  1097. //This condition will never be true if `uart_read_bytes`
  1098. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1099. continue;
  1100. } else {
  1101. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1102. return copy_len;
  1103. }
  1104. }
  1105. }
  1106. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1107. len_tmp = length;
  1108. } else {
  1109. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1110. }
  1111. memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1112. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1113. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1114. uart_pattern_queue_update(uart_num, len_tmp);
  1115. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1116. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1117. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1118. copy_len += len_tmp;
  1119. length -= len_tmp;
  1120. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1121. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1122. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1123. p_uart_obj[uart_num]->rx_ptr = NULL;
  1124. uart_check_buf_full(uart_num);
  1125. }
  1126. }
  1127. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1128. return copy_len;
  1129. }
  1130. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1131. {
  1132. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1133. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1134. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1135. return ESP_OK;
  1136. }
  1137. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1138. esp_err_t uart_flush_input(uart_port_t uart_num)
  1139. {
  1140. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1141. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1142. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1143. uint8_t* data;
  1144. size_t size;
  1145. //rx sem protect the ring buffer read related functions
  1146. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1147. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1148. while(true) {
  1149. if(p_uart->rx_head_ptr) {
  1150. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1151. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1152. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1153. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1154. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1155. p_uart->rx_ptr = NULL;
  1156. p_uart->rx_cur_remain = 0;
  1157. p_uart->rx_head_ptr = NULL;
  1158. }
  1159. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1160. if(data == NULL) {
  1161. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1162. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1163. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1164. }
  1165. //We also need to clear the `rx_buffer_full_flg` here.
  1166. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1167. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1168. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1169. break;
  1170. }
  1171. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1172. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1173. uart_pattern_queue_update(uart_num, size);
  1174. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1175. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1176. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1177. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1178. if(res == pdTRUE) {
  1179. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1180. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1181. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1182. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1183. }
  1184. }
  1185. }
  1186. p_uart->rx_ptr = NULL;
  1187. p_uart->rx_cur_remain = 0;
  1188. p_uart->rx_head_ptr = NULL;
  1189. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1190. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1191. xSemaphoreGive(p_uart->rx_mux);
  1192. return ESP_OK;
  1193. }
  1194. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1195. {
  1196. esp_err_t r;
  1197. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1198. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error", ESP_FAIL);
  1199. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error", ESP_FAIL);
  1200. #if CONFIG_UART_ISR_IN_IRAM
  1201. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1202. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1203. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1204. }
  1205. #else
  1206. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1207. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1208. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1209. }
  1210. #endif
  1211. if(p_uart_obj[uart_num] == NULL) {
  1212. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1213. if(p_uart_obj[uart_num] == NULL) {
  1214. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1215. return ESP_FAIL;
  1216. }
  1217. p_uart_obj[uart_num]->uart_num = uart_num;
  1218. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1219. p_uart_obj[uart_num]->coll_det_flg = false;
  1220. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1221. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1222. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1223. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1224. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1225. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1226. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1227. p_uart_obj[uart_num]->queue_size = queue_size;
  1228. p_uart_obj[uart_num]->tx_ptr = NULL;
  1229. p_uart_obj[uart_num]->tx_head = NULL;
  1230. p_uart_obj[uart_num]->tx_len_tot = 0;
  1231. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1232. p_uart_obj[uart_num]->tx_brk_len = 0;
  1233. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1234. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1235. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1236. if(uart_queue) {
  1237. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1238. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1239. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1240. } else {
  1241. p_uart_obj[uart_num]->xQueueUart = NULL;
  1242. }
  1243. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1244. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1245. p_uart_obj[uart_num]->rx_ptr = NULL;
  1246. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1247. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1248. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1249. if(tx_buffer_size > 0) {
  1250. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1251. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1252. } else {
  1253. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1254. p_uart_obj[uart_num]->tx_buf_size = 0;
  1255. }
  1256. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1257. } else {
  1258. ESP_LOGE(UART_TAG, "UART driver already installed");
  1259. return ESP_FAIL;
  1260. }
  1261. uart_intr_config_t uart_intr = {
  1262. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1263. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1264. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1265. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1266. };
  1267. uart_module_enable(uart_num);
  1268. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1269. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1270. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1271. if (r!=ESP_OK) goto err;
  1272. r=uart_intr_config(uart_num, &uart_intr);
  1273. if (r!=ESP_OK) goto err;
  1274. return r;
  1275. err:
  1276. uart_driver_delete(uart_num);
  1277. return r;
  1278. }
  1279. //Make sure no other tasks are still using UART before you call this function
  1280. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1281. {
  1282. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1283. if(p_uart_obj[uart_num] == NULL) {
  1284. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1285. return ESP_OK;
  1286. }
  1287. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1288. uart_disable_rx_intr(uart_num);
  1289. uart_disable_tx_intr(uart_num);
  1290. uart_pattern_link_free(uart_num);
  1291. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1292. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1293. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1294. }
  1295. if(p_uart_obj[uart_num]->tx_done_sem) {
  1296. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1297. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1298. }
  1299. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1300. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1301. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1302. }
  1303. if(p_uart_obj[uart_num]->tx_mux) {
  1304. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1305. p_uart_obj[uart_num]->tx_mux = NULL;
  1306. }
  1307. if(p_uart_obj[uart_num]->rx_mux) {
  1308. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1309. p_uart_obj[uart_num]->rx_mux = NULL;
  1310. }
  1311. if(p_uart_obj[uart_num]->xQueueUart) {
  1312. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1313. p_uart_obj[uart_num]->xQueueUart = NULL;
  1314. }
  1315. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1316. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1317. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1318. }
  1319. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1320. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1321. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1322. }
  1323. heap_caps_free(p_uart_obj[uart_num]);
  1324. p_uart_obj[uart_num] = NULL;
  1325. uart_module_disable(uart_num);
  1326. return ESP_OK;
  1327. }
  1328. bool uart_is_driver_installed(uart_port_t uart_num)
  1329. {
  1330. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1331. }
  1332. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1333. {
  1334. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1335. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1336. }
  1337. }
  1338. portMUX_TYPE *uart_get_selectlock(void)
  1339. {
  1340. return &uart_selectlock;
  1341. }
  1342. // Set UART mode
  1343. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1344. {
  1345. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1346. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1347. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1348. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1349. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1350. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1351. }
  1352. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1353. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1354. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1355. // This mode allows read while transmitting that allows collision detection
  1356. p_uart_obj[uart_num]->coll_det_flg = false;
  1357. // Enable collision detection interrupts
  1358. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1359. | UART_INTR_RXFIFO_FULL
  1360. | UART_INTR_RS485_CLASH
  1361. | UART_INTR_RS485_FRM_ERR
  1362. | UART_INTR_RS485_PARITY_ERR);
  1363. }
  1364. p_uart_obj[uart_num]->uart_mode = mode;
  1365. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1366. return ESP_OK;
  1367. }
  1368. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1369. {
  1370. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1371. UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
  1372. "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
  1373. if (p_uart_obj[uart_num] == NULL) {
  1374. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1375. return ESP_ERR_INVALID_STATE;
  1376. }
  1377. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1378. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1379. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1380. }
  1381. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1382. return ESP_OK;
  1383. }
  1384. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1385. {
  1386. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1387. UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
  1388. "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
  1389. if (p_uart_obj[uart_num] == NULL) {
  1390. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1391. return ESP_ERR_INVALID_STATE;
  1392. }
  1393. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1394. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1395. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1396. }
  1397. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1398. return ESP_OK;
  1399. }
  1400. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1401. {
  1402. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1403. // get maximum timeout threshold
  1404. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1405. if (tout_thresh > tout_max_thresh) {
  1406. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1407. return ESP_ERR_INVALID_ARG;
  1408. }
  1409. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1410. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1411. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1412. return ESP_OK;
  1413. }
  1414. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1415. {
  1416. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1417. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1418. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1419. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1420. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1421. "wrong mode", ESP_ERR_INVALID_ARG);
  1422. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1423. return ESP_OK;
  1424. }
  1425. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1426. {
  1427. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1428. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1429. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1430. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1431. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1432. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1433. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1434. return ESP_OK;
  1435. }
  1436. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1437. {
  1438. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1439. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1440. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1441. return ESP_OK;
  1442. }
  1443. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1444. {
  1445. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1446. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1447. return ESP_OK;
  1448. }
  1449. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1450. {
  1451. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1452. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1453. return ESP_OK;
  1454. }
  1455. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1456. {
  1457. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1458. if (rx_tout) {
  1459. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1460. } else {
  1461. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1462. }
  1463. }