bt.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr_alloc.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "driver/periph_ctrl.h"
  38. #include "soc/rtc.h"
  39. #include "soc/soc_memory_layout.h"
  40. #include "esp32/clk.h"
  41. #include "esp_coexist_internal.h"
  42. #if !CONFIG_FREERTOS_UNICORE
  43. #include "esp_ipc.h"
  44. #endif
  45. #if CONFIG_BT_ENABLED
  46. /* Macro definition
  47. ************************************************************************
  48. */
  49. #define BTDM_LOG_TAG "BTDM_INIT"
  50. #define BTDM_INIT_PERIOD (5000) /* ms */
  51. /* Bluetooth system and controller config */
  52. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  53. #define BTDM_CFG_HCI_UART (1<<1)
  54. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  55. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  56. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  57. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  58. /* Sleep mode */
  59. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  60. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  61. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  62. /* Low Power Clock Selection */
  63. #define BTDM_LPCLK_SEL_XTAL (0)
  64. #define BTDM_LPCLK_SEL_XTAL32K (1)
  65. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  66. #define BTDM_LPCLK_SEL_8M (3)
  67. /* Sleep and wakeup interval control */
  68. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  69. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  70. #define BT_DEBUG(...)
  71. #define BT_API_CALL_CHECK(info, api_call, ret) \
  72. do{\
  73. esp_err_t __err = (api_call);\
  74. if ((ret) != __err) {\
  75. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  76. return __err;\
  77. }\
  78. } while(0)
  79. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  80. #define OSI_VERSION 0x00010002
  81. #define OSI_MAGIC_VALUE 0xFADEBEAD
  82. /* SPIRAM Configuration */
  83. #if CONFIG_SPIRAM_USE_MALLOC
  84. #define BTDM_MAX_QUEUE_NUM (5)
  85. #endif
  86. /* Types definition
  87. ************************************************************************
  88. */
  89. /* VHCI function interface */
  90. typedef struct vhci_host_callback {
  91. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  92. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  93. } vhci_host_callback_t;
  94. /* Dram region */
  95. typedef struct {
  96. esp_bt_mode_t mode;
  97. intptr_t start;
  98. intptr_t end;
  99. } btdm_dram_available_region_t;
  100. /* PSRAM configuration */
  101. #if CONFIG_SPIRAM_USE_MALLOC
  102. typedef struct {
  103. QueueHandle_t handle;
  104. void *storage;
  105. void *buffer;
  106. } btdm_queue_item_t;
  107. #endif
  108. /* OSI function */
  109. struct osi_funcs_t {
  110. uint32_t _version;
  111. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  112. void (*_ints_on)(unsigned int mask);
  113. void (*_interrupt_disable)(void);
  114. void (*_interrupt_restore)(void);
  115. void (*_task_yield)(void);
  116. void (*_task_yield_from_isr)(void);
  117. void *(*_semphr_create)(uint32_t max, uint32_t init);
  118. void (*_semphr_delete)(void *semphr);
  119. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  120. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  121. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  122. int32_t (*_semphr_give)(void *semphr);
  123. void *(*_mutex_create)(void);
  124. void (*_mutex_delete)(void *mutex);
  125. int32_t (*_mutex_lock)(void *mutex);
  126. int32_t (*_mutex_unlock)(void *mutex);
  127. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  128. void (* _queue_delete)(void *queue);
  129. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  130. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  131. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  132. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  133. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  134. void (* _task_delete)(void *task_handle);
  135. bool (* _is_in_isr)(void);
  136. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  137. void *(* _malloc)(uint32_t size);
  138. void *(* _malloc_internal)(uint32_t size);
  139. void (* _free)(void *p);
  140. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  141. void (* _srand)(unsigned int seed);
  142. int (* _rand)(void);
  143. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  144. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  145. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  146. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  147. void (* _btdm_sleep_enter_phase2)(void);
  148. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  149. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  150. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  151. bool (* _coex_bt_wakeup_request)(void);
  152. void (* _coex_bt_wakeup_request_end)(void);
  153. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  154. int (* _coex_bt_release)(uint32_t event);
  155. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  156. uint32_t (* _coex_bb_reset_lock)(void);
  157. void (* _coex_bb_reset_unlock)(uint32_t restore);
  158. int (* _coex_schm_register_btdm_callback)(void *callback);
  159. void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status);
  160. void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status);
  161. uint32_t (* _coex_schm_interval_get)(void);
  162. uint8_t (* _coex_schm_curr_period_get)(void);
  163. void *(* _coex_schm_curr_phase_get)(void);
  164. int (* _coex_wifi_channel_get)(uint8_t *primary, uint8_t *secondary);
  165. int (* _coex_register_wifi_channel_change_callback)(void *cb);
  166. uint32_t _magic;
  167. };
  168. typedef void (*workitem_handler_t)(void* arg);
  169. /* External functions or values
  170. ************************************************************************
  171. */
  172. /* not for user call, so don't put to include file */
  173. /* OSI */
  174. extern int btdm_osi_funcs_register(void *osi_funcs);
  175. /* Initialise and De-initialise */
  176. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  177. extern void btdm_controller_deinit(void);
  178. extern int btdm_controller_enable(esp_bt_mode_t mode);
  179. extern void btdm_controller_disable(void);
  180. extern uint8_t btdm_controller_get_mode(void);
  181. extern const char *btdm_controller_get_compile_version(void);
  182. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  183. extern int btdm_dispatch_work_to_controller(workitem_handler_t callback, void *arg, bool blocking);
  184. /* Sleep */
  185. extern void btdm_controller_enable_sleep(bool enable);
  186. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  187. extern uint8_t btdm_controller_get_sleep_mode(void);
  188. extern bool btdm_power_state_active(void);
  189. extern void btdm_wakeup_request(void);
  190. extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);
  191. /* Low Power Clock */
  192. extern bool btdm_lpclk_select_src(uint32_t sel);
  193. extern bool btdm_lpclk_set_div(uint32_t div);
  194. /* VHCI */
  195. extern bool API_vhci_host_check_send_available(void);
  196. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  197. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  198. /* TX power */
  199. extern int ble_txpwr_set(int power_type, int power_level);
  200. extern int ble_txpwr_get(int power_type);
  201. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  202. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  203. extern void bredr_sco_datapath_set(uint8_t data_path);
  204. extern void btdm_controller_scan_duplicate_list_clear(void);
  205. /* Coexistence */
  206. extern int coex_bt_request(uint32_t event, uint32_t latency, uint32_t duration);
  207. extern int coex_bt_release(uint32_t event);
  208. extern int coex_register_bt_cb(coex_func_cb_t cb);
  209. extern uint32_t coex_bb_reset_lock(void);
  210. extern void coex_bb_reset_unlock(uint32_t restore);
  211. extern int coex_schm_register_btdm_callback(void *callback);
  212. extern void coex_schm_status_bit_clear(uint32_t type, uint32_t status);
  213. extern void coex_schm_status_bit_set(uint32_t type, uint32_t status);
  214. extern uint32_t coex_schm_interval_get(void);
  215. extern uint8_t coex_schm_curr_period_get(void);
  216. extern void * coex_schm_curr_phase_get(void);
  217. extern int coex_wifi_channel_get(uint8_t *primary, uint8_t *secondary);
  218. extern int coex_register_wifi_channel_change_callback(void *cb);
  219. extern void coex_ble_adv_priority_high_set(bool high);
  220. extern char _bss_start_btdm;
  221. extern char _bss_end_btdm;
  222. extern char _data_start_btdm;
  223. extern char _data_end_btdm;
  224. extern uint32_t _data_start_btdm_rom;
  225. extern uint32_t _data_end_btdm_rom;
  226. extern uint32_t _bt_bss_start;
  227. extern uint32_t _bt_bss_end;
  228. extern uint32_t _nimble_bss_start;
  229. extern uint32_t _nimble_bss_end;
  230. extern uint32_t _btdm_bss_start;
  231. extern uint32_t _btdm_bss_end;
  232. extern uint32_t _bt_data_start;
  233. extern uint32_t _bt_data_end;
  234. extern uint32_t _nimble_data_start;
  235. extern uint32_t _nimble_data_end;
  236. extern uint32_t _btdm_data_start;
  237. extern uint32_t _btdm_data_end;
  238. /* Local Function Declare
  239. *********************************************************************
  240. */
  241. #if CONFIG_SPIRAM_USE_MALLOC
  242. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  243. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  244. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  245. static void IRAM_ATTR interrupt_disable(void);
  246. static void IRAM_ATTR interrupt_restore(void);
  247. static void IRAM_ATTR task_yield_from_isr(void);
  248. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  249. static void semphr_delete_wrapper(void *semphr);
  250. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  251. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  252. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  253. static int32_t semphr_give_wrapper(void *semphr);
  254. static void *mutex_create_wrapper(void);
  255. static void mutex_delete_wrapper(void *mutex);
  256. static int32_t mutex_lock_wrapper(void *mutex);
  257. static int32_t mutex_unlock_wrapper(void *mutex);
  258. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  259. static void queue_delete_wrapper(void *queue);
  260. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  261. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  262. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  263. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  264. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  265. static void task_delete_wrapper(void *task_handle);
  266. static bool IRAM_ATTR is_in_isr_wrapper(void);
  267. static void IRAM_ATTR cause_sw_intr(void *arg);
  268. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  269. static void *malloc_internal_wrapper(size_t size);
  270. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  271. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  272. static int IRAM_ATTR rand_wrapper(void);
  273. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  274. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  275. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  276. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  277. static void btdm_sleep_enter_phase2_wrapper(void);
  278. static void btdm_sleep_exit_phase3_wrapper(void);
  279. static bool coex_bt_wakeup_request(void);
  280. static void coex_bt_wakeup_request_end(void);
  281. static int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  282. static int coex_bt_release_wrapper(uint32_t event);
  283. static int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  284. static uint32_t coex_bb_reset_lock_wrapper(void);
  285. static void coex_bb_reset_unlock_wrapper(uint32_t restore);
  286. static int coex_schm_register_btdm_callback_wrapper(void *callback);
  287. static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status);
  288. static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status);
  289. static uint32_t coex_schm_interval_get_wrapper(void);
  290. static uint8_t coex_schm_curr_period_get_wrapper(void);
  291. static void * coex_schm_curr_phase_get_wrapper(void);
  292. static int coex_wifi_channel_get_wrapper(uint8_t *primary, uint8_t *secondary);
  293. static int coex_register_wifi_channel_change_callback_wrapper(void *cb);
  294. /* Local variable definition
  295. ***************************************************************************
  296. */
  297. /* OSI funcs */
  298. static const struct osi_funcs_t osi_funcs_ro = {
  299. ._version = OSI_VERSION,
  300. ._set_isr = xt_set_interrupt_handler,
  301. ._ints_on = xt_ints_on,
  302. ._interrupt_disable = interrupt_disable,
  303. ._interrupt_restore = interrupt_restore,
  304. ._task_yield = vPortYield,
  305. ._task_yield_from_isr = task_yield_from_isr,
  306. ._semphr_create = semphr_create_wrapper,
  307. ._semphr_delete = semphr_delete_wrapper,
  308. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  309. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  310. ._semphr_take = semphr_take_wrapper,
  311. ._semphr_give = semphr_give_wrapper,
  312. ._mutex_create = mutex_create_wrapper,
  313. ._mutex_delete = mutex_delete_wrapper,
  314. ._mutex_lock = mutex_lock_wrapper,
  315. ._mutex_unlock = mutex_unlock_wrapper,
  316. ._queue_create = queue_create_wrapper,
  317. ._queue_delete = queue_delete_wrapper,
  318. ._queue_send = queue_send_wrapper,
  319. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  320. ._queue_recv = queue_recv_wrapper,
  321. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  322. ._task_create = task_create_wrapper,
  323. ._task_delete = task_delete_wrapper,
  324. ._is_in_isr = is_in_isr_wrapper,
  325. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  326. ._malloc = malloc,
  327. ._malloc_internal = malloc_internal_wrapper,
  328. ._free = free,
  329. ._read_efuse_mac = read_mac_wrapper,
  330. ._srand = srand_wrapper,
  331. ._rand = rand_wrapper,
  332. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  333. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  334. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  335. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  336. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  337. ._btdm_sleep_exit_phase1 = NULL,
  338. ._btdm_sleep_exit_phase2 = NULL,
  339. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  340. ._coex_bt_wakeup_request = coex_bt_wakeup_request,
  341. ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end,
  342. ._coex_bt_request = coex_bt_request_wrapper,
  343. ._coex_bt_release = coex_bt_release_wrapper,
  344. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  345. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  346. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  347. ._coex_schm_register_btdm_callback = coex_schm_register_btdm_callback_wrapper,
  348. ._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper,
  349. ._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper,
  350. ._coex_schm_interval_get = coex_schm_interval_get_wrapper,
  351. ._coex_schm_curr_period_get = coex_schm_curr_period_get_wrapper,
  352. ._coex_schm_curr_phase_get = coex_schm_curr_phase_get_wrapper,
  353. ._coex_wifi_channel_get = coex_wifi_channel_get_wrapper,
  354. ._coex_register_wifi_channel_change_callback = coex_register_wifi_channel_change_callback_wrapper,
  355. ._magic = OSI_MAGIC_VALUE,
  356. };
  357. /* the mode column will be modified by release function to indicate the available region */
  358. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  359. //following is .data
  360. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  361. //following is memory which HW will use
  362. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  363. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  364. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  365. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  366. //following is .bss
  367. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  368. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  369. };
  370. /* Reserve the full memory region used by Bluetooth Controller,
  371. * some may be released later at runtime. */
  372. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  373. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  374. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  375. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  376. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  377. static uint8_t own_bda[6];
  378. #if CONFIG_SPIRAM_USE_MALLOC
  379. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  380. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  381. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  382. /* Static variable declare */
  383. // timestamp when PHY/RF was switched on
  384. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  385. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  386. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  387. // measured average low power clock period in micro seconds
  388. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  389. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  390. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  391. // used low power clock
  392. static DRAM_ATTR uint8_t btdm_lpclk_sel;
  393. #endif /* #ifdef CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG */
  394. static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
  395. #ifdef CONFIG_PM_ENABLE
  396. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  397. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  398. static bool s_pm_lock_acquired = true;
  399. static DRAM_ATTR bool s_btdm_allow_light_sleep;
  400. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  401. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  402. static void btdm_slp_tmr_callback(void *arg);
  403. #endif /* #ifdef CONFIG_PM_ENABLE */
  404. static inline void btdm_check_and_init_bb(void)
  405. {
  406. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  407. int64_t latest_ts = esp_phy_rf_get_on_ts();
  408. if (latest_ts != s_time_phy_rf_just_enabled ||
  409. s_time_phy_rf_just_enabled == 0) {
  410. btdm_rf_bb_init_phase2();
  411. s_time_phy_rf_just_enabled = latest_ts;
  412. }
  413. }
  414. #if CONFIG_SPIRAM_USE_MALLOC
  415. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  416. {
  417. if (!btdm_queue_table_mux || !queue) {
  418. return NULL;
  419. }
  420. bool ret = false;
  421. btdm_queue_item_t *item;
  422. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  423. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  424. item = &btdm_queue_table[i];
  425. if (item->handle == NULL) {
  426. memcpy(item, queue, sizeof(btdm_queue_item_t));
  427. ret = true;
  428. break;
  429. }
  430. }
  431. xSemaphoreGive(btdm_queue_table_mux);
  432. return ret;
  433. }
  434. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  435. {
  436. if (!btdm_queue_table_mux || !queue) {
  437. return false;
  438. }
  439. bool ret = false;
  440. btdm_queue_item_t *item;
  441. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  442. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  443. item = &btdm_queue_table[i];
  444. if (item->handle == queue->handle) {
  445. memcpy(queue, item, sizeof(btdm_queue_item_t));
  446. memset(item, 0, sizeof(btdm_queue_item_t));
  447. ret = true;
  448. break;
  449. }
  450. }
  451. xSemaphoreGive(btdm_queue_table_mux);
  452. return ret;
  453. }
  454. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  455. static void IRAM_ATTR interrupt_disable(void)
  456. {
  457. if (xPortInIsrContext()) {
  458. portENTER_CRITICAL_ISR(&global_int_mux);
  459. } else {
  460. portENTER_CRITICAL(&global_int_mux);
  461. }
  462. }
  463. static void IRAM_ATTR interrupt_restore(void)
  464. {
  465. if (xPortInIsrContext()) {
  466. portEXIT_CRITICAL_ISR(&global_int_mux);
  467. } else {
  468. portEXIT_CRITICAL(&global_int_mux);
  469. }
  470. }
  471. static void IRAM_ATTR task_yield_from_isr(void)
  472. {
  473. portYIELD_FROM_ISR();
  474. }
  475. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  476. {
  477. #if !CONFIG_SPIRAM_USE_MALLOC
  478. return (void *)xSemaphoreCreateCounting(max, init);
  479. #else
  480. StaticQueue_t *queue_buffer = NULL;
  481. QueueHandle_t handle = NULL;
  482. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  483. if (!queue_buffer) {
  484. goto error;
  485. }
  486. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  487. if (!handle) {
  488. goto error;
  489. }
  490. btdm_queue_item_t item = {
  491. .handle = handle,
  492. .storage = NULL,
  493. .buffer = queue_buffer,
  494. };
  495. if (!btdm_queue_generic_register(&item)) {
  496. goto error;
  497. }
  498. return handle;
  499. error:
  500. if (handle) {
  501. vSemaphoreDelete(handle);
  502. }
  503. if (queue_buffer) {
  504. free(queue_buffer);
  505. }
  506. return NULL;
  507. #endif
  508. }
  509. static void semphr_delete_wrapper(void *semphr)
  510. {
  511. #if !CONFIG_SPIRAM_USE_MALLOC
  512. vSemaphoreDelete(semphr);
  513. #else
  514. btdm_queue_item_t item = {
  515. .handle = semphr,
  516. .storage = NULL,
  517. .buffer = NULL,
  518. };
  519. if (btdm_queue_generic_deregister(&item)) {
  520. vSemaphoreDelete(item.handle);
  521. free(item.buffer);
  522. }
  523. return;
  524. #endif
  525. }
  526. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  527. {
  528. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  529. }
  530. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  531. {
  532. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  533. }
  534. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  535. {
  536. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  537. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  538. } else {
  539. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  540. }
  541. }
  542. static int32_t semphr_give_wrapper(void *semphr)
  543. {
  544. return (int32_t)xSemaphoreGive(semphr);
  545. }
  546. static void *mutex_create_wrapper(void)
  547. {
  548. #if CONFIG_SPIRAM_USE_MALLOC
  549. StaticQueue_t *queue_buffer = NULL;
  550. QueueHandle_t handle = NULL;
  551. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  552. if (!queue_buffer) {
  553. goto error;
  554. }
  555. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  556. if (!handle) {
  557. goto error;
  558. }
  559. btdm_queue_item_t item = {
  560. .handle = handle,
  561. .storage = NULL,
  562. .buffer = queue_buffer,
  563. };
  564. if (!btdm_queue_generic_register(&item)) {
  565. goto error;
  566. }
  567. return handle;
  568. error:
  569. if (handle) {
  570. vSemaphoreDelete(handle);
  571. }
  572. if (queue_buffer) {
  573. free(queue_buffer);
  574. }
  575. return NULL;
  576. #else
  577. return (void *)xSemaphoreCreateMutex();
  578. #endif
  579. }
  580. static void mutex_delete_wrapper(void *mutex)
  581. {
  582. #if !CONFIG_SPIRAM_USE_MALLOC
  583. vSemaphoreDelete(mutex);
  584. #else
  585. btdm_queue_item_t item = {
  586. .handle = mutex,
  587. .storage = NULL,
  588. .buffer = NULL,
  589. };
  590. if (btdm_queue_generic_deregister(&item)) {
  591. vSemaphoreDelete(item.handle);
  592. free(item.buffer);
  593. }
  594. return;
  595. #endif
  596. }
  597. static int32_t mutex_lock_wrapper(void *mutex)
  598. {
  599. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  600. }
  601. static int32_t mutex_unlock_wrapper(void *mutex)
  602. {
  603. return (int32_t)xSemaphoreGive(mutex);
  604. }
  605. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  606. {
  607. #if CONFIG_SPIRAM_USE_MALLOC
  608. StaticQueue_t *queue_buffer = NULL;
  609. uint8_t *queue_storage = NULL;
  610. QueueHandle_t handle = NULL;
  611. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  612. if (!queue_buffer) {
  613. goto error;
  614. }
  615. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  616. if (!queue_storage ) {
  617. goto error;
  618. }
  619. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  620. if (!handle) {
  621. goto error;
  622. }
  623. btdm_queue_item_t item = {
  624. .handle = handle,
  625. .storage = queue_storage,
  626. .buffer = queue_buffer,
  627. };
  628. if (!btdm_queue_generic_register(&item)) {
  629. goto error;
  630. }
  631. return handle;
  632. error:
  633. if (handle) {
  634. vQueueDelete(handle);
  635. }
  636. if (queue_storage) {
  637. free(queue_storage);
  638. }
  639. if (queue_buffer) {
  640. free(queue_buffer);
  641. }
  642. return NULL;
  643. #else
  644. return (void *)xQueueCreate(queue_len, item_size);
  645. #endif
  646. }
  647. static void queue_delete_wrapper(void *queue)
  648. {
  649. #if !CONFIG_SPIRAM_USE_MALLOC
  650. vQueueDelete(queue);
  651. #else
  652. btdm_queue_item_t item = {
  653. .handle = queue,
  654. .storage = NULL,
  655. .buffer = NULL,
  656. };
  657. if (btdm_queue_generic_deregister(&item)) {
  658. vQueueDelete(item.handle);
  659. free(item.storage);
  660. free(item.buffer);
  661. }
  662. return;
  663. #endif
  664. }
  665. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  666. {
  667. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  668. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  669. } else {
  670. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  671. }
  672. }
  673. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  674. {
  675. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  676. }
  677. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  678. {
  679. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  680. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  681. } else {
  682. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  683. }
  684. }
  685. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  686. {
  687. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  688. }
  689. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  690. {
  691. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  692. }
  693. static void task_delete_wrapper(void *task_handle)
  694. {
  695. vTaskDelete(task_handle);
  696. }
  697. static bool IRAM_ATTR is_in_isr_wrapper(void)
  698. {
  699. return !xPortCanYield();
  700. }
  701. static void IRAM_ATTR cause_sw_intr(void *arg)
  702. {
  703. /* just convert void * to int, because the width is the same */
  704. uint32_t intr_no = (uint32_t)arg;
  705. XTHAL_SET_INTSET((1<<intr_no));
  706. }
  707. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  708. {
  709. esp_err_t err = ESP_OK;
  710. #if CONFIG_FREERTOS_UNICORE
  711. cause_sw_intr((void *)intr_no);
  712. #else /* CONFIG_FREERTOS_UNICORE */
  713. if (xPortGetCoreID() == core_id) {
  714. cause_sw_intr((void *)intr_no);
  715. } else {
  716. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  717. }
  718. #endif /* !CONFIG_FREERTOS_UNICORE */
  719. return err;
  720. }
  721. static void *malloc_internal_wrapper(size_t size)
  722. {
  723. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  724. }
  725. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  726. {
  727. return esp_read_mac(mac, ESP_MAC_BT);
  728. }
  729. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  730. {
  731. /* empty function */
  732. }
  733. static int IRAM_ATTR rand_wrapper(void)
  734. {
  735. return (int)esp_random();
  736. }
  737. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  738. {
  739. // The number of lp cycles should not lead to overflow. Thrs: 100s
  740. // clock measurement is conducted
  741. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  742. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  743. return (uint32_t)us;
  744. }
  745. /*
  746. * @brief Converts a duration in slots into a number of low power clock cycles.
  747. */
  748. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  749. {
  750. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  751. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  752. // clock measurement is conducted
  753. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  754. return (uint32_t)cycles;
  755. }
  756. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  757. {
  758. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  759. return false;
  760. }
  761. /* wake up in advance considering the delay in enabling PHY/RF */
  762. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  763. return true;
  764. }
  765. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  766. {
  767. #ifdef CONFIG_PM_ENABLE
  768. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  769. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  770. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  771. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  772. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  773. // and set the timer in advance
  774. uint32_t uncertainty = (us_to_sleep >> 11);
  775. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  776. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  777. }
  778. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  779. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  780. }
  781. #endif
  782. }
  783. static void btdm_sleep_enter_phase2_wrapper(void)
  784. {
  785. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  786. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  787. esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
  788. #ifdef CONFIG_PM_ENABLE
  789. if (s_pm_lock_acquired) {
  790. esp_pm_lock_release(s_pm_lock);
  791. s_pm_lock_acquired = false;
  792. }
  793. #endif
  794. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  795. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  796. // pause bluetooth baseband
  797. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  798. }
  799. }
  800. static void btdm_sleep_exit_phase3_wrapper(void)
  801. {
  802. #ifdef CONFIG_PM_ENABLE
  803. if (!s_pm_lock_acquired) {
  804. s_pm_lock_acquired = true;
  805. esp_pm_lock_acquire(s_pm_lock);
  806. }
  807. #endif
  808. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  809. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  810. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  811. btdm_check_and_init_bb();
  812. #ifdef CONFIG_PM_ENABLE
  813. esp_timer_stop(s_btdm_slp_tmr);
  814. #endif
  815. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  816. // resume bluetooth baseband
  817. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  818. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  819. }
  820. }
  821. #ifdef CONFIG_PM_ENABLE
  822. static void btdm_slp_tmr_customer_callback(void * arg)
  823. {
  824. (void)(arg);
  825. if (!s_pm_lock_acquired) {
  826. s_pm_lock_acquired = true;
  827. esp_pm_lock_acquire(s_pm_lock);
  828. }
  829. }
  830. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  831. {
  832. (void)(arg);
  833. btdm_dispatch_work_to_controller(btdm_slp_tmr_customer_callback, NULL, true);
  834. }
  835. #endif
  836. #define BTDM_ASYNC_WAKEUP_REQ_HCI 0
  837. #define BTDM_ASYNC_WAKEUP_REQ_COEX 1
  838. #define BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA 2
  839. #define BTDM_ASYNC_WAKEUP_REQMAX 3
  840. static void btdm_wakeup_request_callback(void * arg)
  841. {
  842. (void)(arg);
  843. #if CONFIG_PM_ENABLE
  844. if (!s_pm_lock_acquired) {
  845. s_pm_lock_acquired = true;
  846. esp_pm_lock_acquire(s_pm_lock);
  847. }
  848. esp_timer_stop(s_btdm_slp_tmr);
  849. #endif
  850. btdm_wakeup_request();
  851. semphr_give_wrapper(s_wakeup_req_sem);
  852. }
  853. static bool async_wakeup_request(int event)
  854. {
  855. bool do_wakeup_request = false;
  856. switch (event) {
  857. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  858. btdm_in_wakeup_requesting_set(true);
  859. // NO break
  860. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  861. if (!btdm_power_state_active()) {
  862. do_wakeup_request = true;
  863. btdm_dispatch_work_to_controller(btdm_wakeup_request_callback, NULL, true);
  864. semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
  865. }
  866. break;
  867. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  868. if (!btdm_power_state_active()) {
  869. do_wakeup_request = true;
  870. #if CONFIG_PM_ENABLE
  871. if (!s_pm_lock_acquired) {
  872. s_pm_lock_acquired = true;
  873. esp_pm_lock_acquire(s_pm_lock);
  874. }
  875. esp_timer_stop(s_btdm_slp_tmr);
  876. #endif
  877. btdm_wakeup_request();
  878. }
  879. break;
  880. default:
  881. return false;
  882. }
  883. return do_wakeup_request;
  884. }
  885. static void async_wakeup_request_end(int event)
  886. {
  887. bool request_lock = false;
  888. switch (event) {
  889. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  890. request_lock = true;
  891. break;
  892. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  893. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  894. request_lock = false;
  895. break;
  896. default:
  897. return;
  898. }
  899. if (request_lock) {
  900. btdm_in_wakeup_requesting_set(false);
  901. }
  902. return;
  903. }
  904. static bool coex_bt_wakeup_request(void)
  905. {
  906. return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX);
  907. }
  908. static void coex_bt_wakeup_request_end(void)
  909. {
  910. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX);
  911. return;
  912. }
  913. static int IRAM_ATTR coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration)
  914. {
  915. #if CONFIG_SW_COEXIST_ENABLE
  916. return coex_bt_request(event, latency, duration);
  917. #else
  918. return 0;
  919. #endif
  920. }
  921. static int IRAM_ATTR coex_bt_release_wrapper(uint32_t event)
  922. {
  923. #if CONFIG_SW_COEXIST_ENABLE
  924. return coex_bt_release(event);
  925. #else
  926. return 0;
  927. #endif
  928. }
  929. static int coex_register_bt_cb_wrapper(coex_func_cb_t cb)
  930. {
  931. #if CONFIG_SW_COEXIST_ENABLE
  932. return coex_register_bt_cb(cb);
  933. #else
  934. return 0;
  935. #endif
  936. }
  937. static uint32_t IRAM_ATTR coex_bb_reset_lock_wrapper(void)
  938. {
  939. #if CONFIG_SW_COEXIST_ENABLE
  940. return coex_bb_reset_lock();
  941. #else
  942. return 0;
  943. #endif
  944. }
  945. static void IRAM_ATTR coex_bb_reset_unlock_wrapper(uint32_t restore)
  946. {
  947. #if CONFIG_SW_COEXIST_ENABLE
  948. coex_bb_reset_unlock(restore);
  949. #endif
  950. }
  951. static int coex_schm_register_btdm_callback_wrapper(void *callback)
  952. {
  953. #if CONFIG_SW_COEXIST_ENABLE
  954. return coex_schm_register_btdm_callback(callback);
  955. #else
  956. return 0;
  957. #endif
  958. }
  959. static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status)
  960. {
  961. #if CONFIG_SW_COEXIST_ENABLE
  962. coex_schm_status_bit_clear(type, status);
  963. #endif
  964. }
  965. static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status)
  966. {
  967. #if CONFIG_SW_COEXIST_ENABLE
  968. coex_schm_status_bit_set(type, status);
  969. #endif
  970. }
  971. static uint32_t coex_schm_interval_get_wrapper(void)
  972. {
  973. #if CONFIG_SW_COEXIST_ENABLE
  974. return coex_schm_interval_get();
  975. #else
  976. return 0;
  977. #endif
  978. }
  979. static uint8_t coex_schm_curr_period_get_wrapper(void)
  980. {
  981. #if CONFIG_SW_COEXIST_ENABLE
  982. return coex_schm_curr_period_get();
  983. #else
  984. return 0;
  985. #endif
  986. }
  987. static void * coex_schm_curr_phase_get_wrapper(void)
  988. {
  989. #if CONFIG_SW_COEXIST_ENABLE
  990. return coex_schm_curr_phase_get();
  991. #else
  992. return NULL;
  993. #endif
  994. }
  995. static int coex_wifi_channel_get_wrapper(uint8_t *primary, uint8_t *secondary)
  996. {
  997. #if CONFIG_SW_COEXIST_ENABLE
  998. return coex_wifi_channel_get(primary, secondary);
  999. #else
  1000. return 0;
  1001. #endif
  1002. }
  1003. static int coex_register_wifi_channel_change_callback_wrapper(void *cb)
  1004. {
  1005. #if CONFIG_SW_COEXIST_ENABLE
  1006. return coex_register_wifi_channel_change_callback(cb);
  1007. #else
  1008. return 0;
  1009. #endif
  1010. }
  1011. bool esp_vhci_host_check_send_available(void)
  1012. {
  1013. return API_vhci_host_check_send_available();
  1014. }
  1015. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  1016. {
  1017. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI);
  1018. API_vhci_host_send_packet(data, len);
  1019. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI);
  1020. }
  1021. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  1022. {
  1023. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  1024. }
  1025. static uint32_t btdm_config_mask_load(void)
  1026. {
  1027. uint32_t mask = 0x0;
  1028. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  1029. mask |= BTDM_CFG_HCI_UART;
  1030. #endif
  1031. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  1032. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  1033. #endif
  1034. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  1035. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  1036. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  1037. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  1038. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  1039. return mask;
  1040. }
  1041. static void btdm_controller_mem_init(void)
  1042. {
  1043. /* initialise .data section */
  1044. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  1045. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  1046. //initial em, .bss section
  1047. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  1048. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  1049. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  1050. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  1051. }
  1052. }
  1053. }
  1054. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  1055. {
  1056. int ret = heap_caps_add_region(start, end);
  1057. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  1058. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  1059. * we replace it by ESP_OK
  1060. */
  1061. if (ret == ESP_ERR_INVALID_SIZE) {
  1062. return ESP_OK;
  1063. }
  1064. return ret;
  1065. }
  1066. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  1067. {
  1068. bool update = true;
  1069. intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
  1070. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1071. return ESP_ERR_INVALID_STATE;
  1072. }
  1073. //already released
  1074. if (!(mode & btdm_dram_available_region[0].mode)) {
  1075. return ESP_ERR_INVALID_STATE;
  1076. }
  1077. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  1078. //skip the share mode, idle mode and other mode
  1079. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  1080. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  1081. //clear the bit of the mode which will be released
  1082. btdm_dram_available_region[i].mode &= ~mode;
  1083. continue;
  1084. } else {
  1085. //clear the bit of the mode which will be released
  1086. btdm_dram_available_region[i].mode &= ~mode;
  1087. }
  1088. if (update) {
  1089. mem_start = btdm_dram_available_region[i].start;
  1090. mem_end = btdm_dram_available_region[i].end;
  1091. update = false;
  1092. }
  1093. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  1094. mem_end = btdm_dram_available_region[i].end;
  1095. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  1096. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  1097. && mem_end == btdm_dram_available_region[i+1].start) {
  1098. continue;
  1099. } else {
  1100. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  1101. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1102. update = true;
  1103. }
  1104. } else {
  1105. mem_end = btdm_dram_available_region[i].end;
  1106. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  1107. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1108. update = true;
  1109. }
  1110. }
  1111. if (mode == ESP_BT_MODE_BTDM) {
  1112. mem_start = (intptr_t)&_btdm_bss_start;
  1113. mem_end = (intptr_t)&_btdm_bss_end;
  1114. if (mem_start != mem_end) {
  1115. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1116. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1117. }
  1118. mem_start = (intptr_t)&_btdm_data_start;
  1119. mem_end = (intptr_t)&_btdm_data_end;
  1120. if (mem_start != mem_end) {
  1121. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1122. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1123. }
  1124. }
  1125. return ESP_OK;
  1126. }
  1127. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  1128. {
  1129. int ret;
  1130. intptr_t mem_start, mem_end;
  1131. ret = esp_bt_controller_mem_release(mode);
  1132. if (ret != ESP_OK) {
  1133. return ret;
  1134. }
  1135. if (mode == ESP_BT_MODE_BTDM) {
  1136. mem_start = (intptr_t)&_bt_bss_start;
  1137. mem_end = (intptr_t)&_bt_bss_end;
  1138. if (mem_start != mem_end) {
  1139. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1140. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1141. }
  1142. mem_start = (intptr_t)&_bt_data_start;
  1143. mem_end = (intptr_t)&_bt_data_end;
  1144. if (mem_start != mem_end) {
  1145. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1146. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1147. }
  1148. mem_start = (intptr_t)&_nimble_bss_start;
  1149. mem_end = (intptr_t)&_nimble_bss_end;
  1150. if (mem_start != mem_end) {
  1151. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1152. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1153. }
  1154. mem_start = (intptr_t)&_nimble_data_start;
  1155. mem_end = (intptr_t)&_nimble_data_end;
  1156. if (mem_start != mem_end) {
  1157. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1158. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1159. }
  1160. }
  1161. return ESP_OK;
  1162. }
  1163. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  1164. {
  1165. esp_err_t err;
  1166. uint32_t btdm_cfg_mask = 0;
  1167. //if all the bt available memory was already released, cannot initialize bluetooth controller
  1168. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  1169. return ESP_ERR_INVALID_STATE;
  1170. }
  1171. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  1172. if (osi_funcs_p == NULL) {
  1173. return ESP_ERR_NO_MEM;
  1174. }
  1175. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  1176. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  1177. return ESP_ERR_INVALID_ARG;
  1178. }
  1179. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1180. return ESP_ERR_INVALID_STATE;
  1181. }
  1182. if (cfg == NULL) {
  1183. return ESP_ERR_INVALID_ARG;
  1184. }
  1185. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  1186. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  1187. return ESP_ERR_INVALID_ARG;
  1188. }
  1189. //overwrite some parameters
  1190. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  1191. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  1192. read_mac_wrapper(own_bda);
  1193. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  1194. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  1195. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  1196. return ESP_ERR_INVALID_ARG;
  1197. }
  1198. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  1199. #if CONFIG_SPIRAM_USE_MALLOC
  1200. btdm_queue_table_mux = xSemaphoreCreateMutex();
  1201. if (btdm_queue_table_mux == NULL) {
  1202. return ESP_ERR_NO_MEM;
  1203. }
  1204. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1205. #endif
  1206. s_wakeup_req_sem = semphr_create_wrapper(1, 0);
  1207. if (s_wakeup_req_sem == NULL) {
  1208. err = ESP_ERR_NO_MEM;
  1209. goto error;
  1210. }
  1211. btdm_controller_mem_init();
  1212. periph_module_enable(PERIPH_BT_MODULE);
  1213. #ifdef CONFIG_PM_ENABLE
  1214. s_btdm_allow_light_sleep = false;
  1215. #endif
  1216. // set default sleep clock cycle and its fractional bits
  1217. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1218. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1219. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  1220. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1221. #if CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
  1222. // check whether or not EXT_CRYS is working
  1223. if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) {
  1224. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // set default value
  1225. #ifdef CONFIG_PM_ENABLE
  1226. s_btdm_allow_light_sleep = true;
  1227. #endif
  1228. } else {
  1229. ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
  1230. "light sleep mode will not be able to apply when bluetooth is enabled");
  1231. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1232. }
  1233. #else
  1234. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1235. #endif
  1236. bool select_src_ret, set_div_ret;
  1237. if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
  1238. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1239. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  1240. assert(select_src_ret && set_div_ret);
  1241. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1242. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1243. } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
  1244. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1245. set_div_ret = btdm_lpclk_set_div(0);
  1246. assert(select_src_ret && set_div_ret);
  1247. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1248. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1249. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1250. assert(btdm_lpcycle_us != 0);
  1251. }
  1252. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1253. #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
  1254. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1255. #else
  1256. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1257. #endif
  1258. #ifdef CONFIG_PM_ENABLE
  1259. if (!s_btdm_allow_light_sleep) {
  1260. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  1261. goto error;
  1262. }
  1263. }
  1264. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1265. goto error;
  1266. }
  1267. esp_timer_create_args_t create_args = {
  1268. .callback = btdm_slp_tmr_callback,
  1269. .arg = NULL,
  1270. .name = "btSlp"
  1271. };
  1272. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1273. goto error;
  1274. }
  1275. s_pm_lock_acquired = true;
  1276. #endif
  1277. btdm_cfg_mask = btdm_config_mask_load();
  1278. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1279. err = ESP_ERR_NO_MEM;
  1280. goto error;
  1281. }
  1282. #ifdef CONFIG_BTDM_COEX_BLE_ADV_HIGH_PRIORITY
  1283. coex_ble_adv_priority_high_set(true);
  1284. #else
  1285. coex_ble_adv_priority_high_set(false);
  1286. #endif
  1287. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1288. return ESP_OK;
  1289. error:
  1290. #ifdef CONFIG_PM_ENABLE
  1291. if (!s_btdm_allow_light_sleep) {
  1292. if (s_light_sleep_pm_lock != NULL) {
  1293. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1294. s_light_sleep_pm_lock = NULL;
  1295. }
  1296. }
  1297. if (s_pm_lock != NULL) {
  1298. esp_pm_lock_delete(s_pm_lock);
  1299. s_pm_lock = NULL;
  1300. }
  1301. if (s_btdm_slp_tmr != NULL) {
  1302. esp_timer_delete(s_btdm_slp_tmr);
  1303. s_btdm_slp_tmr = NULL;
  1304. }
  1305. #endif
  1306. if (s_wakeup_req_sem) {
  1307. semphr_delete_wrapper(s_wakeup_req_sem);
  1308. s_wakeup_req_sem = NULL;
  1309. }
  1310. return err;
  1311. }
  1312. esp_err_t esp_bt_controller_deinit(void)
  1313. {
  1314. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1315. return ESP_ERR_INVALID_STATE;
  1316. }
  1317. btdm_controller_deinit();
  1318. periph_module_disable(PERIPH_BT_MODULE);
  1319. #ifdef CONFIG_PM_ENABLE
  1320. if (!s_btdm_allow_light_sleep) {
  1321. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1322. s_light_sleep_pm_lock = NULL;
  1323. }
  1324. esp_timer_stop(s_btdm_slp_tmr);
  1325. esp_timer_delete(s_btdm_slp_tmr);
  1326. s_btdm_slp_tmr = NULL;
  1327. s_pm_lock_acquired = false;
  1328. #endif
  1329. semphr_delete_wrapper(s_wakeup_req_sem);
  1330. s_wakeup_req_sem = NULL;
  1331. #if CONFIG_SPIRAM_USE_MALLOC
  1332. vSemaphoreDelete(btdm_queue_table_mux);
  1333. btdm_queue_table_mux = NULL;
  1334. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1335. #endif
  1336. free(osi_funcs_p);
  1337. osi_funcs_p = NULL;
  1338. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1339. btdm_lpcycle_us = 0;
  1340. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1341. return ESP_OK;
  1342. }
  1343. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1344. {
  1345. int ret;
  1346. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1347. return ESP_ERR_INVALID_STATE;
  1348. }
  1349. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1350. if (mode != btdm_controller_get_mode()) {
  1351. return ESP_ERR_INVALID_ARG;
  1352. }
  1353. #ifdef CONFIG_PM_ENABLE
  1354. if (!s_btdm_allow_light_sleep) {
  1355. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1356. }
  1357. esp_pm_lock_acquire(s_pm_lock);
  1358. #endif
  1359. esp_phy_load_cal_and_init(PHY_BT_MODULE);
  1360. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
  1361. //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
  1362. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
  1363. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1364. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1365. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  1366. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  1367. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1368. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1369. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1370. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1371. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1372. }
  1373. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1374. btdm_controller_enable_sleep(true);
  1375. }
  1376. // inititalize bluetooth baseband
  1377. btdm_check_and_init_bb();
  1378. ret = btdm_controller_enable(mode);
  1379. if (ret) {
  1380. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1381. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1382. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1383. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1384. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1385. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1386. }
  1387. esp_phy_rf_deinit(PHY_BT_MODULE);
  1388. #ifdef CONFIG_PM_ENABLE
  1389. if (!s_btdm_allow_light_sleep) {
  1390. esp_pm_lock_release(s_light_sleep_pm_lock);
  1391. }
  1392. esp_pm_lock_release(s_pm_lock);
  1393. #endif
  1394. return ESP_ERR_INVALID_STATE;
  1395. }
  1396. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1397. return ESP_OK;
  1398. }
  1399. esp_err_t esp_bt_controller_disable(void)
  1400. {
  1401. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1402. return ESP_ERR_INVALID_STATE;
  1403. }
  1404. // disable modem sleep and wake up from sleep mode
  1405. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1406. btdm_controller_enable_sleep(false);
  1407. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA);
  1408. while (!btdm_power_state_active()) {
  1409. ets_delay_us(1000);
  1410. }
  1411. }
  1412. btdm_controller_disable();
  1413. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1414. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1415. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1416. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1417. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1418. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1419. }
  1420. esp_phy_rf_deinit(PHY_BT_MODULE);
  1421. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1422. #ifdef CONFIG_PM_ENABLE
  1423. if (!s_btdm_allow_light_sleep) {
  1424. esp_pm_lock_release(s_light_sleep_pm_lock);
  1425. }
  1426. esp_pm_lock_release(s_pm_lock);
  1427. #endif
  1428. return ESP_OK;
  1429. }
  1430. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1431. {
  1432. return btdm_controller_status;
  1433. }
  1434. uint8_t* esp_bt_get_mac(void)
  1435. {
  1436. return own_bda;
  1437. }
  1438. /* extra functions */
  1439. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1440. {
  1441. if (ble_txpwr_set(power_type, power_level) != 0) {
  1442. return ESP_ERR_INVALID_ARG;
  1443. }
  1444. return ESP_OK;
  1445. }
  1446. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1447. {
  1448. return (esp_power_level_t)ble_txpwr_get(power_type);
  1449. }
  1450. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1451. {
  1452. esp_err_t err;
  1453. int ret;
  1454. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1455. if (ret == 0) {
  1456. err = ESP_OK;
  1457. } else if (ret == -1) {
  1458. err = ESP_ERR_INVALID_ARG;
  1459. } else {
  1460. err = ESP_ERR_INVALID_STATE;
  1461. }
  1462. return err;
  1463. }
  1464. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1465. {
  1466. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1467. return ESP_ERR_INVALID_ARG;
  1468. }
  1469. return ESP_OK;
  1470. }
  1471. esp_err_t esp_bt_sleep_enable (void)
  1472. {
  1473. esp_err_t status;
  1474. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1475. return ESP_ERR_INVALID_STATE;
  1476. }
  1477. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1478. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1479. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1480. btdm_controller_enable_sleep (true);
  1481. status = ESP_OK;
  1482. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1483. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1484. btdm_controller_enable_sleep (true);
  1485. status = ESP_OK;
  1486. } else {
  1487. status = ESP_ERR_NOT_SUPPORTED;
  1488. }
  1489. return status;
  1490. }
  1491. esp_err_t esp_bt_sleep_disable (void)
  1492. {
  1493. esp_err_t status;
  1494. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1495. return ESP_ERR_INVALID_STATE;
  1496. }
  1497. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1498. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1499. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1500. btdm_controller_enable_sleep (false);
  1501. status = ESP_OK;
  1502. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1503. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1504. btdm_controller_enable_sleep (false);
  1505. status = ESP_OK;
  1506. } else {
  1507. status = ESP_ERR_NOT_SUPPORTED;
  1508. }
  1509. return status;
  1510. }
  1511. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1512. {
  1513. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1514. return ESP_ERR_INVALID_STATE;
  1515. }
  1516. bredr_sco_datapath_set(data_path);
  1517. return ESP_OK;
  1518. }
  1519. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1520. {
  1521. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1522. return ESP_ERR_INVALID_STATE;
  1523. }
  1524. btdm_controller_scan_duplicate_list_clear();
  1525. return ESP_OK;
  1526. }
  1527. #endif /* CONFIG_BT_ENABLED */