uart.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/ringbuf.h"
  24. #include "hal/uart_hal.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "driver/periph_ctrl.h"
  30. #include "sdkconfig.h"
  31. #if CONFIG_IDF_TARGET_ESP32
  32. #include "esp32/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  34. #include "esp32s2beta/clk.h"
  35. #endif
  36. #ifdef CONFIG_UART_ISR_IN_IRAM
  37. #define UART_ISR_ATTR IRAM_ATTR
  38. #else
  39. #define UART_ISR_ATTR
  40. #endif
  41. #define XOFF (0x13)
  42. #define XON (0x11)
  43. static const char* UART_TAG = "uart";
  44. #define UART_CHECK(a, str, ret_val) \
  45. if (!(a)) { \
  46. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  47. return (ret_val); \
  48. }
  49. #define UART_EMPTY_THRESH_DEFAULT (10)
  50. #define UART_FULL_THRESH_DEFAULT (120)
  51. #define UART_TOUT_THRESH_DEFAULT (10)
  52. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  53. #define UART_TX_IDLE_NUM_DEFAULT (0)
  54. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  55. #define UART_MIN_WAKEUP_THRESH (SOC_UART_MIN_WAKEUP_THRESH)
  56. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  57. | (UART_INTR_RXFIFO_TOUT) \
  58. | (UART_INTR_RXFIFO_OVF) \
  59. | (UART_INTR_BRK_DET) \
  60. | (UART_INTR_PARITY_ERR))
  61. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  62. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  63. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  64. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  65. // Check actual UART mode set
  66. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  67. #define UART_CONTEX_INIT_DEF(uart_num) {\
  68. .hal.dev = UART_LL_GET_HW(uart_num),\
  69. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  70. .hw_enabled = false,\
  71. }
  72. typedef struct {
  73. uart_event_type_t type; /*!< UART TX data type */
  74. struct {
  75. int brk_len;
  76. size_t size;
  77. uint8_t data[0];
  78. } tx_data;
  79. } uart_tx_data_t;
  80. typedef struct {
  81. int wr;
  82. int rd;
  83. int len;
  84. int* data;
  85. } uart_pat_rb_t;
  86. typedef struct {
  87. uart_port_t uart_num; /*!< UART port number*/
  88. int queue_size; /*!< UART event queue size*/
  89. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  90. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  91. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  92. bool coll_det_flg; /*!< UART collision detection flag */
  93. //rx parameters
  94. int rx_buffered_len; /*!< UART cached data length */
  95. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  96. int rx_buf_size; /*!< RX ring buffer size */
  97. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  98. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  99. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  100. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  101. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  102. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  103. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  104. uart_pat_rb_t rx_pattern_pos;
  105. //tx parameters
  106. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  107. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  108. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  109. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  110. int tx_buf_size; /*!< TX ring buffer size */
  111. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  112. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  113. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  114. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  115. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  116. uint32_t tx_len_cur;
  117. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  118. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  119. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  120. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  121. } uart_obj_t;
  122. typedef struct {
  123. uart_hal_context_t hal; /*!< UART hal context*/
  124. portMUX_TYPE spinlock;
  125. bool hw_enabled;
  126. } uart_context_t;
  127. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  128. static uart_context_t uart_context[UART_NUM_MAX] = {
  129. UART_CONTEX_INIT_DEF(UART_NUM_0),
  130. UART_CONTEX_INIT_DEF(UART_NUM_1),
  131. #if UART_NUM_MAX > 2
  132. UART_CONTEX_INIT_DEF(UART_NUM_2),
  133. #endif
  134. };
  135. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  136. static void uart_module_enable(uart_port_t uart_num)
  137. {
  138. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  139. if (uart_context[uart_num].hw_enabled != true) {
  140. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  141. periph_module_reset(uart_periph_signal[uart_num].module);
  142. }
  143. periph_module_enable(uart_periph_signal[uart_num].module);
  144. uart_context[uart_num].hw_enabled = true;
  145. }
  146. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  147. }
  148. static void uart_module_disable(uart_port_t uart_num)
  149. {
  150. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  151. if (uart_context[uart_num].hw_enabled != false) {
  152. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  153. periph_module_disable(uart_periph_signal[uart_num].module);
  154. }
  155. uart_context[uart_num].hw_enabled = false;
  156. }
  157. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  158. }
  159. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  160. {
  161. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  162. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  163. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  164. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  165. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  166. return ESP_OK;
  167. }
  168. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  169. {
  170. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  171. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  172. return ESP_OK;
  173. }
  174. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  175. {
  176. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  177. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  178. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  179. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  180. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  181. return ESP_OK;
  182. }
  183. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  184. {
  185. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  186. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  187. return ESP_OK;
  188. }
  189. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  190. {
  191. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  192. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  193. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  194. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  195. return ESP_OK;
  196. }
  197. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  198. {
  199. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  200. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  201. return ESP_OK;
  202. }
  203. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  204. {
  205. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  206. uart_sclk_t source_clk = 0;
  207. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  208. uart_hal_get_sclk(&(uart_context[uart_num].hal), &source_clk);
  209. uart_hal_set_baudrate(&(uart_context[uart_num].hal), source_clk, baud_rate);
  210. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  211. return ESP_OK;
  212. }
  213. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  214. {
  215. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  216. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  217. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  218. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  219. return ESP_OK;
  220. }
  221. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  222. {
  223. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  224. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  225. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  226. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  227. return ESP_OK;
  228. }
  229. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  230. {
  231. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  232. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  233. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  234. uart_sw_flowctrl_t sw_flow_ctl = {
  235. .xon_char = XON,
  236. .xoff_char = XOFF,
  237. .xon_thrd = rx_thresh_xon,
  238. .xoff_thrd = rx_thresh_xoff,
  239. };
  240. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  241. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  242. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  243. return ESP_OK;
  244. }
  245. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  246. {
  247. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  248. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  249. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  250. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  251. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  252. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  253. return ESP_OK;
  254. }
  255. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  256. {
  257. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  258. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  259. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  260. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  261. return ESP_OK;
  262. }
  263. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  264. {
  265. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  266. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  267. return ESP_OK;
  268. }
  269. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  270. {
  271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  272. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  273. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  274. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  275. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  276. return ESP_OK;
  277. }
  278. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  279. {
  280. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  281. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  282. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  283. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  284. return ESP_OK;
  285. }
  286. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  287. {
  288. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  289. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  290. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  291. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  292. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  293. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  294. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  295. free(pdata);
  296. }
  297. return ESP_OK;
  298. }
  299. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  300. {
  301. esp_err_t ret = ESP_OK;
  302. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  303. int next = p_pos->wr + 1;
  304. if (next >= p_pos->len) {
  305. next = 0;
  306. }
  307. if (next == p_pos->rd) {
  308. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  309. ret = ESP_FAIL;
  310. } else {
  311. p_pos->data[p_pos->wr] = pos;
  312. p_pos->wr = next;
  313. ret = ESP_OK;
  314. }
  315. return ret;
  316. }
  317. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  318. {
  319. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  320. return ESP_ERR_INVALID_STATE;
  321. } else {
  322. esp_err_t ret = ESP_OK;
  323. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  324. if (p_pos->rd == p_pos->wr) {
  325. ret = ESP_FAIL;
  326. } else {
  327. p_pos->rd++;
  328. }
  329. if (p_pos->rd >= p_pos->len) {
  330. p_pos->rd = 0;
  331. }
  332. return ret;
  333. }
  334. }
  335. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  336. {
  337. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  338. int rd = p_pos->rd;
  339. while(rd != p_pos->wr) {
  340. p_pos->data[rd] -= diff_len;
  341. int rd_rec = rd;
  342. rd ++;
  343. if (rd >= p_pos->len) {
  344. rd = 0;
  345. }
  346. if (p_pos->data[rd_rec] < 0) {
  347. p_pos->rd = rd;
  348. }
  349. }
  350. return ESP_OK;
  351. }
  352. int uart_pattern_pop_pos(uart_port_t uart_num)
  353. {
  354. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  355. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  356. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  357. int pos = -1;
  358. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  359. pos = pat_pos->data[pat_pos->rd];
  360. uart_pattern_dequeue(uart_num);
  361. }
  362. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  363. return pos;
  364. }
  365. int uart_pattern_get_pos(uart_port_t uart_num)
  366. {
  367. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  368. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  369. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  370. int pos = -1;
  371. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  372. pos = pat_pos->data[pat_pos->rd];
  373. }
  374. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  375. return pos;
  376. }
  377. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  378. {
  379. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  380. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  381. int* pdata = (int*) malloc(queue_length * sizeof(int));
  382. if(pdata == NULL) {
  383. return ESP_ERR_NO_MEM;
  384. }
  385. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  386. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  387. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  388. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  389. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  390. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  391. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  392. free(ptmp);
  393. return ESP_OK;
  394. }
  395. #if CONFIG_IDF_TARGET_ESP32
  396. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  397. {
  398. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  399. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  400. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  401. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  402. uart_at_cmd_t at_cmd = {0};
  403. at_cmd.cmd_char = pattern_chr;
  404. at_cmd.char_num = chr_num;
  405. at_cmd.gap_tout = chr_tout;
  406. at_cmd.pre_idle = pre_idle;
  407. at_cmd.post_idle = post_idle;
  408. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  409. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  410. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  411. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  412. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  413. return ESP_OK;
  414. }
  415. #endif
  416. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  417. {
  418. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  419. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  420. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  421. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  422. uart_at_cmd_t at_cmd = {0};
  423. at_cmd.cmd_char = pattern_chr;
  424. at_cmd.char_num = chr_num;
  425. #if CONFIG_IDF_TARGET_ESP32
  426. int apb_clk_freq = 0;
  427. uint32_t uart_baud = 0;
  428. uint32_t uart_div = 0;
  429. uart_get_baudrate(uart_num, &uart_baud);
  430. apb_clk_freq = esp_clk_apb_freq();
  431. uart_div = apb_clk_freq / uart_baud;
  432. at_cmd.gap_tout = chr_tout * uart_div;
  433. at_cmd.pre_idle = pre_idle * uart_div;
  434. at_cmd.post_idle = post_idle * uart_div;
  435. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  436. at_cmd.gap_tout = chr_tout;
  437. at_cmd.pre_idle = pre_idle;
  438. at_cmd.post_idle = post_idle;
  439. #endif
  440. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  441. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  442. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  443. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  444. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  445. return ESP_OK;
  446. }
  447. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  448. {
  449. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  450. }
  451. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  452. {
  453. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  454. }
  455. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  456. {
  457. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  458. }
  459. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  460. {
  461. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  462. }
  463. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  464. {
  465. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  466. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  467. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  468. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  469. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  470. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  471. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  472. return ESP_OK;
  473. }
  474. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  475. {
  476. int ret;
  477. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  478. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  479. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  480. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  481. return ret;
  482. }
  483. esp_err_t uart_isr_free(uart_port_t uart_num)
  484. {
  485. esp_err_t ret;
  486. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  487. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  488. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  489. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  490. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  491. p_uart_obj[uart_num]->intr_handle=NULL;
  492. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  493. return ret;
  494. }
  495. //internal signal can be output to multiple GPIO pads
  496. //only one GPIO pad can connect with input signal
  497. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  498. {
  499. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  500. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  501. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  502. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  503. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  504. if(tx_io_num >= 0) {
  505. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  506. gpio_set_level(tx_io_num, 1);
  507. gpio_matrix_out(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  508. }
  509. if(rx_io_num >= 0) {
  510. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  511. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  512. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  513. gpio_matrix_in(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  514. }
  515. if(rts_io_num >= 0) {
  516. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  517. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  518. gpio_matrix_out(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  519. }
  520. if(cts_io_num >= 0) {
  521. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  522. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  523. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  524. gpio_matrix_in(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  525. }
  526. return ESP_OK;
  527. }
  528. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  529. {
  530. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  531. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  532. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  533. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  534. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  535. return ESP_OK;
  536. }
  537. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  538. {
  539. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  540. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  541. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  542. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  543. return ESP_OK;
  544. }
  545. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  546. {
  547. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  548. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  549. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  550. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  551. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  552. return ESP_OK;
  553. }
  554. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  555. {
  556. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  557. UART_CHECK((uart_config), "param null", ESP_FAIL);
  558. UART_CHECK((uart_config->rx_flow_ctrl_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  559. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  560. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  561. uart_module_enable(uart_num);
  562. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  563. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  564. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->source_clk, uart_config->baud_rate);
  565. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  566. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  567. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  568. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  569. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  570. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  571. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  572. return ESP_OK;
  573. }
  574. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  575. {
  576. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  577. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  578. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  579. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  580. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  581. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  582. } else {
  583. //Disable rx_tout intr
  584. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  585. }
  586. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  587. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  588. }
  589. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  590. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  591. }
  592. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  593. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  594. return ESP_OK;
  595. }
  596. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  597. {
  598. int cnt = 0;
  599. int len = length;
  600. while (len >= 0) {
  601. if (buf[len] == pat_chr) {
  602. cnt++;
  603. } else {
  604. cnt = 0;
  605. }
  606. if (cnt >= pat_num) {
  607. break;
  608. }
  609. len --;
  610. }
  611. return len;
  612. }
  613. //internal isr handler for default driver code.
  614. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  615. {
  616. uart_obj_t *p_uart = (uart_obj_t*) param;
  617. uint8_t uart_num = p_uart->uart_num;
  618. int rx_fifo_len = 0;
  619. uint32_t uart_intr_status = 0;
  620. uart_event_t uart_event;
  621. portBASE_TYPE HPTaskAwoken = 0;
  622. static uint8_t pat_flg = 0;
  623. while(1) {
  624. // The `continue statement` may cause the interrupt to loop infinitely
  625. // we exit the interrupt here
  626. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  627. //Exit form while loop
  628. if(uart_intr_status == 0){
  629. break;
  630. }
  631. uart_event.type = UART_EVENT_MAX;
  632. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  633. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  634. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  635. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  636. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  637. if(p_uart->tx_waiting_brk) {
  638. continue;
  639. }
  640. //TX semaphore will only be used when tx_buf_size is zero.
  641. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  642. p_uart->tx_waiting_fifo = false;
  643. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  644. } else {
  645. //We don't use TX ring buffer, because the size is zero.
  646. if(p_uart->tx_buf_size == 0) {
  647. continue;
  648. }
  649. bool en_tx_flg = false;
  650. int tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  651. //We need to put a loop here, in case all the buffer items are very short.
  652. //That would cause a watch_dog reset because empty interrupt happens so often.
  653. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  654. while(tx_fifo_rem) {
  655. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  656. size_t size;
  657. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  658. if(p_uart->tx_head) {
  659. //The first item is the data description
  660. //Get the first item to get the data information
  661. if(p_uart->tx_len_tot == 0) {
  662. p_uart->tx_ptr = NULL;
  663. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  664. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  665. p_uart->tx_brk_flg = 1;
  666. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  667. }
  668. //We have saved the data description from the 1st item, return buffer.
  669. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  670. } else if(p_uart->tx_ptr == NULL) {
  671. //Update the TX item pointer, we will need this to return item to buffer.
  672. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  673. en_tx_flg = true;
  674. p_uart->tx_len_cur = size;
  675. }
  676. } else {
  677. //Can not get data from ring buffer, return;
  678. break;
  679. }
  680. }
  681. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  682. //To fill the TX FIFO.
  683. uint32_t send_len = 0;
  684. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  685. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  686. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  687. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  688. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  689. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  690. }
  691. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  692. (const uint8_t *)p_uart->tx_ptr,
  693. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  694. &send_len);
  695. p_uart->tx_ptr += send_len;
  696. p_uart->tx_len_tot -= send_len;
  697. p_uart->tx_len_cur -= send_len;
  698. tx_fifo_rem -= send_len;
  699. if (p_uart->tx_len_cur == 0) {
  700. //Return item to ring buffer.
  701. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  702. p_uart->tx_head = NULL;
  703. p_uart->tx_ptr = NULL;
  704. //Sending item done, now we need to send break if there is a record.
  705. //Set TX break signal after FIFO is empty
  706. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  707. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  708. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  709. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  710. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  711. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  712. p_uart->tx_waiting_brk = 1;
  713. //do not enable TX empty interrupt
  714. en_tx_flg = false;
  715. } else {
  716. //enable TX empty interrupt
  717. en_tx_flg = true;
  718. }
  719. } else {
  720. //enable TX empty interrupt
  721. en_tx_flg = true;
  722. }
  723. }
  724. }
  725. if (en_tx_flg) {
  726. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  727. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  728. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  729. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  730. }
  731. }
  732. }
  733. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  734. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  735. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  736. ) {
  737. if(pat_flg == 1) {
  738. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  739. pat_flg = 0;
  740. }
  741. if (p_uart->rx_buffer_full_flg == false) {
  742. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  743. uint8_t pat_chr = 0;
  744. uint8_t pat_num = 0;
  745. int pat_idx = -1;
  746. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  747. //Get the buffer from the FIFO
  748. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  749. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  750. uart_event.type = UART_PATTERN_DET;
  751. uart_event.size = rx_fifo_len;
  752. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  753. } else {
  754. //After Copying the Data From FIFO ,Clear intr_status
  755. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  756. uart_event.type = UART_DATA;
  757. uart_event.size = rx_fifo_len;
  758. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  759. if (p_uart->uart_select_notif_callback) {
  760. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  761. }
  762. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  763. }
  764. p_uart->rx_stash_len = rx_fifo_len;
  765. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  766. //Mainly for applications that uses flow control or small ring buffer.
  767. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  768. p_uart->rx_buffer_full_flg = true;
  769. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  770. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  771. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  772. if (uart_event.type == UART_PATTERN_DET) {
  773. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  774. if (rx_fifo_len < pat_num) {
  775. //some of the characters are read out in last interrupt
  776. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  777. } else {
  778. uart_pattern_enqueue(uart_num,
  779. pat_idx <= -1 ?
  780. //can not find the pattern in buffer,
  781. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  782. // find the pattern in buffer
  783. p_uart->rx_buffered_len + pat_idx);
  784. }
  785. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  786. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  787. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  788. }
  789. }
  790. uart_event.type = UART_BUFFER_FULL;
  791. } else {
  792. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  793. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  794. if (rx_fifo_len < pat_num) {
  795. //some of the characters are read out in last interrupt
  796. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  797. } else if(pat_idx >= 0) {
  798. // find the pattern in stash buffer.
  799. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  800. }
  801. }
  802. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  803. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  804. }
  805. } else {
  806. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  807. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  808. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  809. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  810. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  811. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  812. uart_event.type = UART_PATTERN_DET;
  813. uart_event.size = rx_fifo_len;
  814. pat_flg = 1;
  815. }
  816. }
  817. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  818. // When fifo overflows, we reset the fifo.
  819. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  820. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  821. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  822. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  823. if (p_uart->uart_select_notif_callback) {
  824. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  825. }
  826. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  827. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  828. uart_event.type = UART_FIFO_OVF;
  829. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  830. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  831. uart_event.type = UART_BREAK;
  832. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  833. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  834. if (p_uart->uart_select_notif_callback) {
  835. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  836. }
  837. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  838. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  839. uart_event.type = UART_FRAME_ERR;
  840. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  841. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  842. if (p_uart->uart_select_notif_callback) {
  843. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  844. }
  845. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  846. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  847. uart_event.type = UART_PARITY_ERR;
  848. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  849. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  850. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  851. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  852. if(p_uart->tx_brk_flg == 1) {
  853. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  854. }
  855. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  856. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  857. if(p_uart->tx_brk_flg == 1) {
  858. p_uart->tx_brk_flg = 0;
  859. p_uart->tx_waiting_brk = 0;
  860. } else {
  861. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  862. }
  863. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  864. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  865. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  866. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  867. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  868. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  869. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  870. uart_event.type = UART_PATTERN_DET;
  871. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  872. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  873. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  874. // RS485 collision or frame error interrupt triggered
  875. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  876. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  877. // Set collision detection flag
  878. p_uart_obj[uart_num]->coll_det_flg = true;
  879. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  880. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  881. uart_event.type = UART_EVENT_MAX;
  882. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  883. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  884. // The TX_DONE interrupt is triggered but transmit is active
  885. // then postpone interrupt processing for next interrupt
  886. uart_event.type = UART_EVENT_MAX;
  887. } else {
  888. // Workaround for RS485: If the RS485 half duplex mode is active
  889. // and transmitter is in idle state then reset received buffer and reset RTS pin
  890. // skip this behavior for other UART modes
  891. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  892. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  893. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  894. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  895. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  896. }
  897. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  898. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  899. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  900. }
  901. } else {
  902. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  903. uart_event.type = UART_EVENT_MAX;
  904. }
  905. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  906. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  907. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  908. }
  909. }
  910. }
  911. if(HPTaskAwoken == pdTRUE) {
  912. portYIELD_FROM_ISR();
  913. }
  914. }
  915. /**************************************************************/
  916. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  917. {
  918. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  919. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  920. BaseType_t res;
  921. portTickType ticks_start = xTaskGetTickCount();
  922. //Take tx_mux
  923. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  924. if(res == pdFALSE) {
  925. return ESP_ERR_TIMEOUT;
  926. }
  927. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  928. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  929. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  930. return ESP_OK;
  931. }
  932. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  933. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  934. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  935. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  936. TickType_t ticks_end = xTaskGetTickCount();
  937. if (ticks_end - ticks_start > ticks_to_wait) {
  938. ticks_to_wait = 0;
  939. } else {
  940. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  941. }
  942. //take 2nd tx_done_sem, wait given from ISR
  943. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  944. if(res == pdFALSE) {
  945. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  946. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  947. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  948. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  949. return ESP_ERR_TIMEOUT;
  950. }
  951. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  952. return ESP_OK;
  953. }
  954. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  955. {
  956. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  957. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  958. UART_CHECK(buffer, "buffer null", (-1));
  959. if(len == 0) {
  960. return 0;
  961. }
  962. int tx_len = 0;
  963. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  964. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  965. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  966. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  967. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  968. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  969. }
  970. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  971. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  972. return tx_len;
  973. }
  974. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  975. {
  976. if(size == 0) {
  977. return 0;
  978. }
  979. size_t original_size = size;
  980. //lock for uart_tx
  981. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  982. p_uart_obj[uart_num]->coll_det_flg = false;
  983. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  984. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  985. int offset = 0;
  986. uart_tx_data_t evt;
  987. evt.tx_data.size = size;
  988. evt.tx_data.brk_len = brk_len;
  989. if(brk_en) {
  990. evt.type = UART_DATA_BREAK;
  991. } else {
  992. evt.type = UART_DATA;
  993. }
  994. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  995. while(size > 0) {
  996. int send_size = size > max_size / 2 ? max_size / 2 : size;
  997. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  998. size -= send_size;
  999. offset += send_size;
  1000. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1001. }
  1002. } else {
  1003. while(size) {
  1004. //semaphore for tx_fifo available
  1005. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1006. uint32_t sent = 0;
  1007. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1008. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1009. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1010. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1011. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1012. }
  1013. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1014. if(sent < size) {
  1015. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1016. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1017. }
  1018. size -= sent;
  1019. src += sent;
  1020. }
  1021. }
  1022. if(brk_en) {
  1023. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1024. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1025. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1026. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1027. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1028. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1029. }
  1030. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1031. }
  1032. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1033. return original_size;
  1034. }
  1035. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1036. {
  1037. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1038. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1039. UART_CHECK(src, "buffer null", (-1));
  1040. return uart_tx_all(uart_num, src, size, 0, 0);
  1041. }
  1042. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1043. {
  1044. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1045. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1046. UART_CHECK((size > 0), "uart size error", (-1));
  1047. UART_CHECK((src), "uart data null", (-1));
  1048. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1049. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1050. }
  1051. static bool uart_check_buf_full(uart_port_t uart_num)
  1052. {
  1053. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1054. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1055. if(res == pdTRUE) {
  1056. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1057. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1058. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1059. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1060. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1061. return true;
  1062. }
  1063. }
  1064. return false;
  1065. }
  1066. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1067. {
  1068. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1069. UART_CHECK((buf), "uart data null", (-1));
  1070. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1071. uint8_t* data = NULL;
  1072. size_t size;
  1073. size_t copy_len = 0;
  1074. int len_tmp;
  1075. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1076. return -1;
  1077. }
  1078. while(length) {
  1079. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1080. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1081. if(data) {
  1082. p_uart_obj[uart_num]->rx_head_ptr = data;
  1083. p_uart_obj[uart_num]->rx_ptr = data;
  1084. p_uart_obj[uart_num]->rx_cur_remain = size;
  1085. } else {
  1086. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1087. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1088. //to solve the possible asynchronous issues.
  1089. if(uart_check_buf_full(uart_num)) {
  1090. //This condition will never be true if `uart_read_bytes`
  1091. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1092. continue;
  1093. } else {
  1094. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1095. return copy_len;
  1096. }
  1097. }
  1098. }
  1099. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1100. len_tmp = length;
  1101. } else {
  1102. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1103. }
  1104. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1105. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1106. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1107. uart_pattern_queue_update(uart_num, len_tmp);
  1108. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1109. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1110. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1111. copy_len += len_tmp;
  1112. length -= len_tmp;
  1113. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1114. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1115. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1116. p_uart_obj[uart_num]->rx_ptr = NULL;
  1117. uart_check_buf_full(uart_num);
  1118. }
  1119. }
  1120. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1121. return copy_len;
  1122. }
  1123. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1124. {
  1125. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1126. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1127. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1128. return ESP_OK;
  1129. }
  1130. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1131. esp_err_t uart_flush_input(uart_port_t uart_num)
  1132. {
  1133. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1134. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1135. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1136. uint8_t* data;
  1137. size_t size;
  1138. //rx sem protect the ring buffer read related functions
  1139. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1140. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1141. while(true) {
  1142. if(p_uart->rx_head_ptr) {
  1143. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1144. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1145. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1146. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1147. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1148. p_uart->rx_ptr = NULL;
  1149. p_uart->rx_cur_remain = 0;
  1150. p_uart->rx_head_ptr = NULL;
  1151. }
  1152. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1153. if(data == NULL) {
  1154. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1155. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1156. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1157. }
  1158. //We also need to clear the `rx_buffer_full_flg` here.
  1159. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1160. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1161. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1162. break;
  1163. }
  1164. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1165. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1166. uart_pattern_queue_update(uart_num, size);
  1167. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1168. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1169. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1170. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1171. if(res == pdTRUE) {
  1172. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1173. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1174. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1175. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1176. }
  1177. }
  1178. }
  1179. p_uart->rx_ptr = NULL;
  1180. p_uart->rx_cur_remain = 0;
  1181. p_uart->rx_head_ptr = NULL;
  1182. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1183. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1184. xSemaphoreGive(p_uart->rx_mux);
  1185. return ESP_OK;
  1186. }
  1187. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1188. {
  1189. esp_err_t r;
  1190. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1191. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1192. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1193. #if CONFIG_UART_ISR_IN_IRAM
  1194. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1195. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1196. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1197. }
  1198. #else
  1199. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1200. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1201. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1202. }
  1203. #endif
  1204. if(p_uart_obj[uart_num] == NULL) {
  1205. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1206. if(p_uart_obj[uart_num] == NULL) {
  1207. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1208. return ESP_FAIL;
  1209. }
  1210. p_uart_obj[uart_num]->uart_num = uart_num;
  1211. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1212. p_uart_obj[uart_num]->coll_det_flg = false;
  1213. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1214. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1215. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1216. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1217. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1218. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1219. p_uart_obj[uart_num]->queue_size = queue_size;
  1220. p_uart_obj[uart_num]->tx_ptr = NULL;
  1221. p_uart_obj[uart_num]->tx_head = NULL;
  1222. p_uart_obj[uart_num]->tx_len_tot = 0;
  1223. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1224. p_uart_obj[uart_num]->tx_brk_len = 0;
  1225. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1226. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1227. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1228. if(uart_queue) {
  1229. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1230. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1231. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1232. } else {
  1233. p_uart_obj[uart_num]->xQueueUart = NULL;
  1234. }
  1235. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1236. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1237. p_uart_obj[uart_num]->rx_ptr = NULL;
  1238. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1239. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1240. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1241. if(tx_buffer_size > 0) {
  1242. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1243. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1244. } else {
  1245. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1246. p_uart_obj[uart_num]->tx_buf_size = 0;
  1247. }
  1248. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1249. } else {
  1250. ESP_LOGE(UART_TAG, "UART driver already installed");
  1251. return ESP_FAIL;
  1252. }
  1253. uart_intr_config_t uart_intr = {
  1254. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1255. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1256. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1257. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1258. };
  1259. uart_module_enable(uart_num);
  1260. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1261. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1262. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1263. if (r!=ESP_OK) goto err;
  1264. r=uart_intr_config(uart_num, &uart_intr);
  1265. if (r!=ESP_OK) goto err;
  1266. return r;
  1267. err:
  1268. uart_driver_delete(uart_num);
  1269. return r;
  1270. }
  1271. //Make sure no other tasks are still using UART before you call this function
  1272. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1273. {
  1274. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1275. if(p_uart_obj[uart_num] == NULL) {
  1276. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1277. return ESP_OK;
  1278. }
  1279. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1280. uart_disable_rx_intr(uart_num);
  1281. uart_disable_tx_intr(uart_num);
  1282. uart_pattern_link_free(uart_num);
  1283. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1284. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1285. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1286. }
  1287. if(p_uart_obj[uart_num]->tx_done_sem) {
  1288. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1289. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1290. }
  1291. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1292. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1293. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1294. }
  1295. if(p_uart_obj[uart_num]->tx_mux) {
  1296. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1297. p_uart_obj[uart_num]->tx_mux = NULL;
  1298. }
  1299. if(p_uart_obj[uart_num]->rx_mux) {
  1300. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1301. p_uart_obj[uart_num]->rx_mux = NULL;
  1302. }
  1303. if(p_uart_obj[uart_num]->xQueueUart) {
  1304. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1305. p_uart_obj[uart_num]->xQueueUart = NULL;
  1306. }
  1307. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1308. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1309. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1310. }
  1311. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1312. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1313. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1314. }
  1315. heap_caps_free(p_uart_obj[uart_num]);
  1316. p_uart_obj[uart_num] = NULL;
  1317. uart_module_disable(uart_num);
  1318. return ESP_OK;
  1319. }
  1320. bool uart_is_driver_installed(uart_port_t uart_num)
  1321. {
  1322. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1323. }
  1324. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1325. {
  1326. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1327. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1328. }
  1329. }
  1330. portMUX_TYPE *uart_get_selectlock(void)
  1331. {
  1332. return &uart_selectlock;
  1333. }
  1334. // Set UART mode
  1335. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1336. {
  1337. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1338. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1339. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1340. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1341. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1342. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1343. }
  1344. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1345. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1346. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1347. // This mode allows read while transmitting that allows collision detection
  1348. p_uart_obj[uart_num]->coll_det_flg = false;
  1349. // Enable collision detection interrupts
  1350. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1351. | UART_INTR_RXFIFO_FULL
  1352. | UART_INTR_RS485_CLASH
  1353. | UART_INTR_RS485_FRM_ERR
  1354. | UART_INTR_RS485_PARITY_ERR);
  1355. }
  1356. p_uart_obj[uart_num]->uart_mode = mode;
  1357. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1358. return ESP_OK;
  1359. }
  1360. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1361. {
  1362. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1363. UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
  1364. "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
  1365. if (p_uart_obj[uart_num] == NULL) {
  1366. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1367. return ESP_ERR_INVALID_STATE;
  1368. }
  1369. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1370. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1371. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1372. }
  1373. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1374. return ESP_OK;
  1375. }
  1376. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1377. {
  1378. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1379. UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
  1380. "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
  1381. if (p_uart_obj[uart_num] == NULL) {
  1382. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1383. return ESP_ERR_INVALID_STATE;
  1384. }
  1385. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1386. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1387. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1388. }
  1389. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1390. return ESP_OK;
  1391. }
  1392. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1393. {
  1394. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1395. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1396. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1397. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1398. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1399. return ESP_OK;
  1400. }
  1401. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1402. {
  1403. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1404. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1405. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1406. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1407. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1408. "wrong mode", ESP_ERR_INVALID_ARG);
  1409. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1410. return ESP_OK;
  1411. }
  1412. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1413. {
  1414. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1415. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1416. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1417. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1418. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1419. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1420. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1421. return ESP_OK;
  1422. }
  1423. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1424. {
  1425. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1426. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1427. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1428. return ESP_OK;
  1429. }
  1430. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1431. {
  1432. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1433. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1434. return ESP_OK;
  1435. }
  1436. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1437. {
  1438. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1439. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1440. return ESP_OK;
  1441. }