bt.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr_alloc.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "driver/periph_ctrl.h"
  38. #include "soc/rtc.h"
  39. #include "soc/soc_memory_layout.h"
  40. #include "esp32/clk.h"
  41. #include "esp_coexist_internal.h"
  42. #if !CONFIG_FREERTOS_UNICORE
  43. #include "esp_ipc.h"
  44. #endif
  45. #if CONFIG_BT_ENABLED
  46. /* Macro definition
  47. ************************************************************************
  48. */
  49. #define BTDM_LOG_TAG "BTDM_INIT"
  50. #define BTDM_INIT_PERIOD (5000) /* ms */
  51. /* Bluetooth system and controller config */
  52. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  53. #define BTDM_CFG_HCI_UART (1<<1)
  54. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  55. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  56. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  57. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  58. /* Sleep mode */
  59. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  60. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  61. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  62. /* Low Power Clock Selection */
  63. #define BTDM_LPCLK_SEL_XTAL (0)
  64. #define BTDM_LPCLK_SEL_XTAL32K (1)
  65. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  66. #define BTDM_LPCLK_SEL_8M (3)
  67. /* Sleep and wakeup interval control */
  68. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  69. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  70. #define BT_DEBUG(...)
  71. #define BT_API_CALL_CHECK(info, api_call, ret) \
  72. do{\
  73. esp_err_t __err = (api_call);\
  74. if ((ret) != __err) {\
  75. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  76. return __err;\
  77. }\
  78. } while(0)
  79. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  80. #define OSI_VERSION 0x00010002
  81. #define OSI_MAGIC_VALUE 0xFADEBEAD
  82. /* SPIRAM Configuration */
  83. #if CONFIG_SPIRAM_USE_MALLOC
  84. #define BTDM_MAX_QUEUE_NUM (5)
  85. #endif
  86. /* Types definition
  87. ************************************************************************
  88. */
  89. /* VHCI function interface */
  90. typedef struct vhci_host_callback {
  91. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  92. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  93. } vhci_host_callback_t;
  94. /* Dram region */
  95. typedef struct {
  96. esp_bt_mode_t mode;
  97. intptr_t start;
  98. intptr_t end;
  99. } btdm_dram_available_region_t;
  100. /* PSRAM configuration */
  101. #if CONFIG_SPIRAM_USE_MALLOC
  102. typedef struct {
  103. QueueHandle_t handle;
  104. void *storage;
  105. void *buffer;
  106. } btdm_queue_item_t;
  107. #endif
  108. /* OSI function */
  109. struct osi_funcs_t {
  110. uint32_t _version;
  111. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  112. void (*_ints_on)(unsigned int mask);
  113. void (*_interrupt_disable)(void);
  114. void (*_interrupt_restore)(void);
  115. void (*_task_yield)(void);
  116. void (*_task_yield_from_isr)(void);
  117. void *(*_semphr_create)(uint32_t max, uint32_t init);
  118. void (*_semphr_delete)(void *semphr);
  119. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  120. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  121. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  122. int32_t (*_semphr_give)(void *semphr);
  123. void *(*_mutex_create)(void);
  124. void (*_mutex_delete)(void *mutex);
  125. int32_t (*_mutex_lock)(void *mutex);
  126. int32_t (*_mutex_unlock)(void *mutex);
  127. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  128. void (* _queue_delete)(void *queue);
  129. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  130. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  131. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  132. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  133. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  134. void (* _task_delete)(void *task_handle);
  135. bool (* _is_in_isr)(void);
  136. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  137. void *(* _malloc)(uint32_t size);
  138. void *(* _malloc_internal)(uint32_t size);
  139. void (* _free)(void *p);
  140. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  141. void (* _srand)(unsigned int seed);
  142. int (* _rand)(void);
  143. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  144. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  145. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  146. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  147. void (* _btdm_sleep_enter_phase2)(void);
  148. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  149. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  150. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  151. bool (* _coex_bt_wakeup_request)(void);
  152. void (* _coex_bt_wakeup_request_end)(void);
  153. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  154. int (* _coex_bt_release)(uint32_t event);
  155. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  156. uint32_t (* _coex_bb_reset_lock)(void);
  157. void (* _coex_bb_reset_unlock)(uint32_t restore);
  158. uint32_t _magic;
  159. };
  160. /* External functions or values
  161. ************************************************************************
  162. */
  163. /* not for user call, so don't put to include file */
  164. /* OSI */
  165. extern int btdm_osi_funcs_register(void *osi_funcs);
  166. /* Initialise and De-initialise */
  167. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  168. extern void btdm_controller_deinit(void);
  169. extern int btdm_controller_enable(esp_bt_mode_t mode);
  170. extern void btdm_controller_disable(void);
  171. extern uint8_t btdm_controller_get_mode(void);
  172. extern const char *btdm_controller_get_compile_version(void);
  173. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  174. /* Sleep */
  175. extern void btdm_controller_enable_sleep(bool enable);
  176. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  177. extern uint8_t btdm_controller_get_sleep_mode(void);
  178. extern bool btdm_power_state_active(void);
  179. extern void btdm_wakeup_request(bool request_lock);
  180. extern void btdm_wakeup_request_end(void);
  181. /* Low Power Clock */
  182. extern bool btdm_lpclk_select_src(uint32_t sel);
  183. extern bool btdm_lpclk_set_div(uint32_t div);
  184. /* VHCI */
  185. extern bool API_vhci_host_check_send_available(void);
  186. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  187. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  188. /* TX power */
  189. extern int ble_txpwr_set(int power_type, int power_level);
  190. extern int ble_txpwr_get(int power_type);
  191. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  192. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  193. extern void bredr_sco_datapath_set(uint8_t data_path);
  194. extern void btdm_controller_scan_duplicate_list_clear(void);
  195. /* Coexistence */
  196. extern int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  197. extern int coex_bt_release_wrapper(uint32_t event);
  198. extern int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  199. extern uint32_t coex_bb_reset_lock_wrapper(void);
  200. extern void coex_bb_reset_unlock_wrapper(uint32_t restore);
  201. extern void coex_ble_adv_priority_high_set(bool high);
  202. extern char _bss_start_btdm;
  203. extern char _bss_end_btdm;
  204. extern char _data_start_btdm;
  205. extern char _data_end_btdm;
  206. extern uint32_t _data_start_btdm_rom;
  207. extern uint32_t _data_end_btdm_rom;
  208. extern uint32_t _bt_bss_start;
  209. extern uint32_t _bt_bss_end;
  210. extern uint32_t _nimble_bss_start;
  211. extern uint32_t _nimble_bss_end;
  212. extern uint32_t _btdm_bss_start;
  213. extern uint32_t _btdm_bss_end;
  214. extern uint32_t _bt_data_start;
  215. extern uint32_t _bt_data_end;
  216. extern uint32_t _nimble_data_start;
  217. extern uint32_t _nimble_data_end;
  218. extern uint32_t _btdm_data_start;
  219. extern uint32_t _btdm_data_end;
  220. /* Local Function Declare
  221. *********************************************************************
  222. */
  223. #if CONFIG_SPIRAM_USE_MALLOC
  224. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  225. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  226. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  227. static void IRAM_ATTR interrupt_disable(void);
  228. static void IRAM_ATTR interrupt_restore(void);
  229. static void IRAM_ATTR task_yield_from_isr(void);
  230. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  231. static void semphr_delete_wrapper(void *semphr);
  232. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  233. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  234. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  235. static int32_t semphr_give_wrapper(void *semphr);
  236. static void *mutex_create_wrapper(void);
  237. static void mutex_delete_wrapper(void *mutex);
  238. static int32_t mutex_lock_wrapper(void *mutex);
  239. static int32_t mutex_unlock_wrapper(void *mutex);
  240. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  241. static void queue_delete_wrapper(void *queue);
  242. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  243. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  244. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  245. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  246. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  247. static void task_delete_wrapper(void *task_handle);
  248. static bool IRAM_ATTR is_in_isr_wrapper(void);
  249. static void IRAM_ATTR cause_sw_intr(void *arg);
  250. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  251. static void *malloc_internal_wrapper(size_t size);
  252. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  253. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  254. static int IRAM_ATTR rand_wrapper(void);
  255. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  256. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  257. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  258. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  259. static void btdm_sleep_enter_phase2_wrapper(void);
  260. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void);
  261. static void btdm_sleep_exit_phase3_wrapper(void);
  262. static bool coex_bt_wakeup_request(void);
  263. static void coex_bt_wakeup_request_end(void);
  264. /* Local variable definition
  265. ***************************************************************************
  266. */
  267. /* OSI funcs */
  268. static const struct osi_funcs_t osi_funcs_ro = {
  269. ._version = OSI_VERSION,
  270. ._set_isr = xt_set_interrupt_handler,
  271. ._ints_on = xt_ints_on,
  272. ._interrupt_disable = interrupt_disable,
  273. ._interrupt_restore = interrupt_restore,
  274. ._task_yield = vPortYield,
  275. ._task_yield_from_isr = task_yield_from_isr,
  276. ._semphr_create = semphr_create_wrapper,
  277. ._semphr_delete = semphr_delete_wrapper,
  278. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  279. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  280. ._semphr_take = semphr_take_wrapper,
  281. ._semphr_give = semphr_give_wrapper,
  282. ._mutex_create = mutex_create_wrapper,
  283. ._mutex_delete = mutex_delete_wrapper,
  284. ._mutex_lock = mutex_lock_wrapper,
  285. ._mutex_unlock = mutex_unlock_wrapper,
  286. ._queue_create = queue_create_wrapper,
  287. ._queue_delete = queue_delete_wrapper,
  288. ._queue_send = queue_send_wrapper,
  289. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  290. ._queue_recv = queue_recv_wrapper,
  291. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  292. ._task_create = task_create_wrapper,
  293. ._task_delete = task_delete_wrapper,
  294. ._is_in_isr = is_in_isr_wrapper,
  295. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  296. ._malloc = malloc,
  297. ._malloc_internal = malloc_internal_wrapper,
  298. ._free = free,
  299. ._read_efuse_mac = read_mac_wrapper,
  300. ._srand = srand_wrapper,
  301. ._rand = rand_wrapper,
  302. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  303. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  304. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  305. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  306. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  307. ._btdm_sleep_exit_phase1 = btdm_sleep_exit_phase1_wrapper,
  308. ._btdm_sleep_exit_phase2 = NULL,
  309. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  310. ._coex_bt_wakeup_request = coex_bt_wakeup_request,
  311. ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end,
  312. ._coex_bt_request = coex_bt_request_wrapper,
  313. ._coex_bt_release = coex_bt_release_wrapper,
  314. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  315. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  316. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  317. ._magic = OSI_MAGIC_VALUE,
  318. };
  319. /* the mode column will be modified by release function to indicate the available region */
  320. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  321. //following is .data
  322. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  323. //following is memory which HW will use
  324. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  325. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  326. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  327. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  328. //following is .bss
  329. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  330. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  331. };
  332. /* Reserve the full memory region used by Bluetooth Controller,
  333. * some may be released later at runtime. */
  334. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  335. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  336. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  337. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  338. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  339. #if CONFIG_SPIRAM_USE_MALLOC
  340. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  341. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  342. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  343. /* Static variable declare */
  344. // timestamp when PHY/RF was switched on
  345. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  346. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  347. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  348. // measured average low power clock period in micro seconds
  349. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  350. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  351. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  352. // used low power clock
  353. static DRAM_ATTR uint8_t btdm_lpclk_sel;
  354. #endif /* #ifdef CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG */
  355. #ifdef CONFIG_PM_ENABLE
  356. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  357. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  358. static DRAM_ATTR QueueHandle_t s_pm_lock_sem = NULL;
  359. static DRAM_ATTR bool s_btdm_allow_light_sleep;
  360. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  361. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  362. static void btdm_slp_tmr_callback(void *arg);
  363. #endif /* #ifdef CONFIG_PM_ENABLE */
  364. static inline void btdm_check_and_init_bb(void)
  365. {
  366. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  367. int64_t latest_ts = esp_phy_rf_get_on_ts();
  368. if (latest_ts != s_time_phy_rf_just_enabled ||
  369. s_time_phy_rf_just_enabled == 0) {
  370. btdm_rf_bb_init_phase2();
  371. s_time_phy_rf_just_enabled = latest_ts;
  372. }
  373. }
  374. #if CONFIG_SPIRAM_USE_MALLOC
  375. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  376. {
  377. if (!btdm_queue_table_mux || !queue) {
  378. return NULL;
  379. }
  380. bool ret = false;
  381. btdm_queue_item_t *item;
  382. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  383. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  384. item = &btdm_queue_table[i];
  385. if (item->handle == NULL) {
  386. memcpy(item, queue, sizeof(btdm_queue_item_t));
  387. ret = true;
  388. break;
  389. }
  390. }
  391. xSemaphoreGive(btdm_queue_table_mux);
  392. return ret;
  393. }
  394. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  395. {
  396. if (!btdm_queue_table_mux || !queue) {
  397. return false;
  398. }
  399. bool ret = false;
  400. btdm_queue_item_t *item;
  401. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  402. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  403. item = &btdm_queue_table[i];
  404. if (item->handle == queue->handle) {
  405. memcpy(queue, item, sizeof(btdm_queue_item_t));
  406. memset(item, 0, sizeof(btdm_queue_item_t));
  407. ret = true;
  408. break;
  409. }
  410. }
  411. xSemaphoreGive(btdm_queue_table_mux);
  412. return ret;
  413. }
  414. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  415. static void IRAM_ATTR interrupt_disable(void)
  416. {
  417. if (xPortInIsrContext()) {
  418. portENTER_CRITICAL_ISR(&global_int_mux);
  419. } else {
  420. portENTER_CRITICAL(&global_int_mux);
  421. }
  422. }
  423. static void IRAM_ATTR interrupt_restore(void)
  424. {
  425. if (xPortInIsrContext()) {
  426. portEXIT_CRITICAL_ISR(&global_int_mux);
  427. } else {
  428. portEXIT_CRITICAL(&global_int_mux);
  429. }
  430. }
  431. static void IRAM_ATTR task_yield_from_isr(void)
  432. {
  433. portYIELD_FROM_ISR();
  434. }
  435. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  436. {
  437. #if !CONFIG_SPIRAM_USE_MALLOC
  438. return (void *)xSemaphoreCreateCounting(max, init);
  439. #else
  440. StaticQueue_t *queue_buffer = NULL;
  441. QueueHandle_t handle = NULL;
  442. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  443. if (!queue_buffer) {
  444. goto error;
  445. }
  446. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  447. if (!handle) {
  448. goto error;
  449. }
  450. btdm_queue_item_t item = {
  451. .handle = handle,
  452. .storage = NULL,
  453. .buffer = queue_buffer,
  454. };
  455. if (!btdm_queue_generic_register(&item)) {
  456. goto error;
  457. }
  458. return handle;
  459. error:
  460. if (handle) {
  461. vSemaphoreDelete(handle);
  462. }
  463. if (queue_buffer) {
  464. free(queue_buffer);
  465. }
  466. return NULL;
  467. #endif
  468. }
  469. static void semphr_delete_wrapper(void *semphr)
  470. {
  471. #if !CONFIG_SPIRAM_USE_MALLOC
  472. vSemaphoreDelete(semphr);
  473. #else
  474. btdm_queue_item_t item = {
  475. .handle = semphr,
  476. .storage = NULL,
  477. .buffer = NULL,
  478. };
  479. if (btdm_queue_generic_deregister(&item)) {
  480. vSemaphoreDelete(item.handle);
  481. free(item.buffer);
  482. }
  483. return;
  484. #endif
  485. }
  486. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  487. {
  488. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  489. }
  490. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  491. {
  492. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  493. }
  494. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  495. {
  496. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  497. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  498. } else {
  499. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  500. }
  501. }
  502. static int32_t semphr_give_wrapper(void *semphr)
  503. {
  504. return (int32_t)xSemaphoreGive(semphr);
  505. }
  506. static void *mutex_create_wrapper(void)
  507. {
  508. #if CONFIG_SPIRAM_USE_MALLOC
  509. StaticQueue_t *queue_buffer = NULL;
  510. QueueHandle_t handle = NULL;
  511. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  512. if (!queue_buffer) {
  513. goto error;
  514. }
  515. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  516. if (!handle) {
  517. goto error;
  518. }
  519. btdm_queue_item_t item = {
  520. .handle = handle,
  521. .storage = NULL,
  522. .buffer = queue_buffer,
  523. };
  524. if (!btdm_queue_generic_register(&item)) {
  525. goto error;
  526. }
  527. return handle;
  528. error:
  529. if (handle) {
  530. vSemaphoreDelete(handle);
  531. }
  532. if (queue_buffer) {
  533. free(queue_buffer);
  534. }
  535. return NULL;
  536. #else
  537. return (void *)xSemaphoreCreateMutex();
  538. #endif
  539. }
  540. static void mutex_delete_wrapper(void *mutex)
  541. {
  542. #if !CONFIG_SPIRAM_USE_MALLOC
  543. vSemaphoreDelete(mutex);
  544. #else
  545. btdm_queue_item_t item = {
  546. .handle = mutex,
  547. .storage = NULL,
  548. .buffer = NULL,
  549. };
  550. if (btdm_queue_generic_deregister(&item)) {
  551. vSemaphoreDelete(item.handle);
  552. free(item.buffer);
  553. }
  554. return;
  555. #endif
  556. }
  557. static int32_t mutex_lock_wrapper(void *mutex)
  558. {
  559. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  560. }
  561. static int32_t mutex_unlock_wrapper(void *mutex)
  562. {
  563. return (int32_t)xSemaphoreGive(mutex);
  564. }
  565. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  566. {
  567. #if CONFIG_SPIRAM_USE_MALLOC
  568. StaticQueue_t *queue_buffer = NULL;
  569. uint8_t *queue_storage = NULL;
  570. QueueHandle_t handle = NULL;
  571. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  572. if (!queue_buffer) {
  573. goto error;
  574. }
  575. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  576. if (!queue_storage ) {
  577. goto error;
  578. }
  579. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  580. if (!handle) {
  581. goto error;
  582. }
  583. btdm_queue_item_t item = {
  584. .handle = handle,
  585. .storage = queue_storage,
  586. .buffer = queue_buffer,
  587. };
  588. if (!btdm_queue_generic_register(&item)) {
  589. goto error;
  590. }
  591. return handle;
  592. error:
  593. if (handle) {
  594. vQueueDelete(handle);
  595. }
  596. if (queue_storage) {
  597. free(queue_storage);
  598. }
  599. if (queue_buffer) {
  600. free(queue_buffer);
  601. }
  602. return NULL;
  603. #else
  604. return (void *)xQueueCreate(queue_len, item_size);
  605. #endif
  606. }
  607. static void queue_delete_wrapper(void *queue)
  608. {
  609. #if !CONFIG_SPIRAM_USE_MALLOC
  610. vQueueDelete(queue);
  611. #else
  612. btdm_queue_item_t item = {
  613. .handle = queue,
  614. .storage = NULL,
  615. .buffer = NULL,
  616. };
  617. if (btdm_queue_generic_deregister(&item)) {
  618. vQueueDelete(item.handle);
  619. free(item.storage);
  620. free(item.buffer);
  621. }
  622. return;
  623. #endif
  624. }
  625. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  626. {
  627. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  628. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  629. } else {
  630. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  631. }
  632. }
  633. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  634. {
  635. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  636. }
  637. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  638. {
  639. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  640. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  641. } else {
  642. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  643. }
  644. }
  645. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  646. {
  647. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  648. }
  649. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  650. {
  651. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  652. }
  653. static void task_delete_wrapper(void *task_handle)
  654. {
  655. vTaskDelete(task_handle);
  656. }
  657. static bool IRAM_ATTR is_in_isr_wrapper(void)
  658. {
  659. return !xPortCanYield();
  660. }
  661. static void IRAM_ATTR cause_sw_intr(void *arg)
  662. {
  663. /* just convert void * to int, because the width is the same */
  664. uint32_t intr_no = (uint32_t)arg;
  665. XTHAL_SET_INTSET((1<<intr_no));
  666. }
  667. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  668. {
  669. esp_err_t err = ESP_OK;
  670. #if CONFIG_FREERTOS_UNICORE
  671. cause_sw_intr((void *)intr_no);
  672. #else /* CONFIG_FREERTOS_UNICORE */
  673. if (xPortGetCoreID() == core_id) {
  674. cause_sw_intr((void *)intr_no);
  675. } else {
  676. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  677. }
  678. #endif /* !CONFIG_FREERTOS_UNICORE */
  679. return err;
  680. }
  681. static void *malloc_internal_wrapper(size_t size)
  682. {
  683. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  684. }
  685. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  686. {
  687. return esp_read_mac(mac, ESP_MAC_BT);
  688. }
  689. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  690. {
  691. /* empty function */
  692. }
  693. static int IRAM_ATTR rand_wrapper(void)
  694. {
  695. return (int)esp_random();
  696. }
  697. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  698. {
  699. // The number of lp cycles should not lead to overflow. Thrs: 100s
  700. // clock measurement is conducted
  701. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  702. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  703. return (uint32_t)us;
  704. }
  705. /*
  706. * @brief Converts a duration in slots into a number of low power clock cycles.
  707. */
  708. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  709. {
  710. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  711. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  712. // clock measurement is conducted
  713. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  714. return (uint32_t)cycles;
  715. }
  716. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  717. {
  718. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  719. return false;
  720. }
  721. /* wake up in advance considering the delay in enabling PHY/RF */
  722. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  723. return true;
  724. }
  725. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  726. {
  727. #ifdef CONFIG_PM_ENABLE
  728. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  729. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  730. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  731. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  732. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  733. // and set the timer in advance
  734. uint32_t uncertainty = (us_to_sleep >> 11);
  735. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  736. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  737. }
  738. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  739. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  740. }
  741. #endif
  742. }
  743. static void btdm_sleep_enter_phase2_wrapper(void)
  744. {
  745. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  746. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  747. esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
  748. #ifdef CONFIG_PM_ENABLE
  749. esp_pm_lock_release(s_pm_lock);
  750. semphr_give_wrapper(s_pm_lock_sem);
  751. #endif
  752. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  753. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  754. // pause bluetooth baseband
  755. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  756. }
  757. }
  758. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void)
  759. {
  760. #ifdef CONFIG_PM_ENABLE
  761. if (semphr_take_from_isr_wrapper(s_pm_lock_sem, NULL) == pdTRUE) {
  762. esp_pm_lock_acquire(s_pm_lock);
  763. }
  764. #endif
  765. }
  766. static void btdm_sleep_exit_phase3_wrapper(void)
  767. {
  768. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  769. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  770. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  771. btdm_check_and_init_bb();
  772. #ifdef CONFIG_PM_ENABLE
  773. esp_timer_stop(s_btdm_slp_tmr);
  774. #endif
  775. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  776. // resume bluetooth baseband
  777. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  778. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  779. }
  780. }
  781. #ifdef CONFIG_PM_ENABLE
  782. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  783. {
  784. if (semphr_take_wrapper(s_pm_lock_sem, 0) == pdTRUE) {
  785. esp_pm_lock_acquire(s_pm_lock);
  786. }
  787. }
  788. #endif
  789. #define BTDM_ASYNC_WAKEUP_REQ_HCI 0
  790. #define BTDM_ASYNC_WAKEUP_REQ_COEX 1
  791. #define BTDM_ASYNC_WAKEUP_REQMAX 2
  792. static bool async_wakeup_request(int event)
  793. {
  794. bool request_lock = false;
  795. switch (event) {
  796. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  797. request_lock = true;
  798. break;
  799. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  800. request_lock = false;
  801. break;
  802. default:
  803. return false;
  804. }
  805. bool do_wakeup_request = false;
  806. if (!btdm_power_state_active()) {
  807. #if CONFIG_PM_ENABLE
  808. if (semphr_take_wrapper(s_pm_lock_sem, 0)) {
  809. esp_pm_lock_acquire(s_pm_lock);
  810. }
  811. esp_timer_stop(s_btdm_slp_tmr);
  812. #endif
  813. do_wakeup_request = true;
  814. btdm_wakeup_request(request_lock);
  815. }
  816. return do_wakeup_request;
  817. }
  818. static void async_wakeup_request_end(int event)
  819. {
  820. bool request_lock = false;
  821. switch (event) {
  822. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  823. request_lock = true;
  824. break;
  825. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  826. request_lock = false;
  827. break;
  828. default:
  829. return;
  830. }
  831. if (request_lock) {
  832. btdm_wakeup_request_end();
  833. }
  834. return;
  835. }
  836. static bool coex_bt_wakeup_request(void)
  837. {
  838. return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX);
  839. }
  840. static void coex_bt_wakeup_request_end(void)
  841. {
  842. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX);
  843. return;
  844. }
  845. bool esp_vhci_host_check_send_available(void)
  846. {
  847. return API_vhci_host_check_send_available();
  848. }
  849. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  850. {
  851. bool do_wakeup_request = async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI);
  852. API_vhci_host_send_packet(data, len);
  853. if (do_wakeup_request) {
  854. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI);
  855. }
  856. }
  857. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  858. {
  859. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  860. }
  861. static uint32_t btdm_config_mask_load(void)
  862. {
  863. uint32_t mask = 0x0;
  864. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  865. mask |= BTDM_CFG_HCI_UART;
  866. #endif
  867. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  868. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  869. #endif
  870. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  871. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  872. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  873. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  874. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  875. return mask;
  876. }
  877. static void btdm_controller_mem_init(void)
  878. {
  879. /* initialise .data section */
  880. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  881. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  882. //initial em, .bss section
  883. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  884. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  885. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  886. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  887. }
  888. }
  889. }
  890. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  891. {
  892. int ret = heap_caps_add_region(start, end);
  893. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  894. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  895. * we replace it by ESP_OK
  896. */
  897. if (ret == ESP_ERR_INVALID_SIZE) {
  898. return ESP_OK;
  899. }
  900. return ret;
  901. }
  902. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  903. {
  904. bool update = true;
  905. intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
  906. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  907. return ESP_ERR_INVALID_STATE;
  908. }
  909. //already released
  910. if (!(mode & btdm_dram_available_region[0].mode)) {
  911. return ESP_ERR_INVALID_STATE;
  912. }
  913. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  914. //skip the share mode, idle mode and other mode
  915. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  916. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  917. //clear the bit of the mode which will be released
  918. btdm_dram_available_region[i].mode &= ~mode;
  919. continue;
  920. } else {
  921. //clear the bit of the mode which will be released
  922. btdm_dram_available_region[i].mode &= ~mode;
  923. }
  924. if (update) {
  925. mem_start = btdm_dram_available_region[i].start;
  926. mem_end = btdm_dram_available_region[i].end;
  927. update = false;
  928. }
  929. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  930. mem_end = btdm_dram_available_region[i].end;
  931. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  932. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  933. && mem_end == btdm_dram_available_region[i+1].start) {
  934. continue;
  935. } else {
  936. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  937. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  938. update = true;
  939. }
  940. } else {
  941. mem_end = btdm_dram_available_region[i].end;
  942. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  943. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  944. update = true;
  945. }
  946. }
  947. if (mode == ESP_BT_MODE_BTDM) {
  948. mem_start = (intptr_t)&_btdm_bss_start;
  949. mem_end = (intptr_t)&_btdm_bss_end;
  950. if (mem_start != mem_end) {
  951. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  952. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  953. }
  954. mem_start = (intptr_t)&_btdm_data_start;
  955. mem_end = (intptr_t)&_btdm_data_end;
  956. if (mem_start != mem_end) {
  957. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  958. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  959. }
  960. }
  961. return ESP_OK;
  962. }
  963. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  964. {
  965. int ret;
  966. intptr_t mem_start, mem_end;
  967. ret = esp_bt_controller_mem_release(mode);
  968. if (ret != ESP_OK) {
  969. return ret;
  970. }
  971. if (mode == ESP_BT_MODE_BTDM) {
  972. mem_start = (intptr_t)&_bt_bss_start;
  973. mem_end = (intptr_t)&_bt_bss_end;
  974. if (mem_start != mem_end) {
  975. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  976. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  977. }
  978. mem_start = (intptr_t)&_bt_data_start;
  979. mem_end = (intptr_t)&_bt_data_end;
  980. if (mem_start != mem_end) {
  981. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  982. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  983. }
  984. mem_start = (intptr_t)&_nimble_bss_start;
  985. mem_end = (intptr_t)&_nimble_bss_end;
  986. if (mem_start != mem_end) {
  987. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  988. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  989. }
  990. mem_start = (intptr_t)&_nimble_data_start;
  991. mem_end = (intptr_t)&_nimble_data_end;
  992. if (mem_start != mem_end) {
  993. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  994. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  995. }
  996. }
  997. return ESP_OK;
  998. }
  999. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  1000. {
  1001. esp_err_t err;
  1002. uint32_t btdm_cfg_mask = 0;
  1003. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  1004. if (osi_funcs_p == NULL) {
  1005. return ESP_ERR_NO_MEM;
  1006. }
  1007. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  1008. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  1009. return ESP_ERR_INVALID_ARG;
  1010. }
  1011. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1012. return ESP_ERR_INVALID_STATE;
  1013. }
  1014. //if all the bt available memory was already released, cannot initialize bluetooth controller
  1015. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  1016. return ESP_ERR_INVALID_STATE;
  1017. }
  1018. if (cfg == NULL) {
  1019. return ESP_ERR_INVALID_ARG;
  1020. }
  1021. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  1022. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  1023. return ESP_ERR_INVALID_ARG;
  1024. }
  1025. //overwrite some parameters
  1026. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  1027. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  1028. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  1029. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  1030. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  1031. return ESP_ERR_INVALID_ARG;
  1032. }
  1033. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  1034. #if CONFIG_SPIRAM_USE_MALLOC
  1035. btdm_queue_table_mux = xSemaphoreCreateMutex();
  1036. if (btdm_queue_table_mux == NULL) {
  1037. return ESP_ERR_NO_MEM;
  1038. }
  1039. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1040. #endif
  1041. btdm_controller_mem_init();
  1042. periph_module_enable(PERIPH_BT_MODULE);
  1043. #ifdef CONFIG_PM_ENABLE
  1044. s_btdm_allow_light_sleep = false;
  1045. #endif
  1046. // set default sleep clock cycle and its fractional bits
  1047. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1048. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1049. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  1050. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1051. #if CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
  1052. // check whether or not EXT_CRYS is working
  1053. if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) {
  1054. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // set default value
  1055. #ifdef CONFIG_PM_ENABLE
  1056. s_btdm_allow_light_sleep = true;
  1057. #endif
  1058. } else {
  1059. ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
  1060. "light sleep mode will not be able to apply when bluetooth is enabled");
  1061. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1062. }
  1063. #else
  1064. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1065. #endif
  1066. bool select_src_ret, set_div_ret;
  1067. if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
  1068. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1069. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  1070. assert(select_src_ret && set_div_ret);
  1071. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1072. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1073. } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
  1074. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1075. set_div_ret = btdm_lpclk_set_div(0);
  1076. assert(select_src_ret && set_div_ret);
  1077. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1078. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1079. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1080. assert(btdm_lpcycle_us != 0);
  1081. }
  1082. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1083. #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
  1084. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1085. #else
  1086. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1087. #endif
  1088. #ifdef CONFIG_PM_ENABLE
  1089. if (!s_btdm_allow_light_sleep) {
  1090. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  1091. goto error;
  1092. }
  1093. }
  1094. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1095. goto error;
  1096. }
  1097. esp_timer_create_args_t create_args = {
  1098. .callback = btdm_slp_tmr_callback,
  1099. .arg = NULL,
  1100. .name = "btSlp"
  1101. };
  1102. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1103. goto error;
  1104. }
  1105. s_pm_lock_sem = semphr_create_wrapper(1, 0);
  1106. if (s_pm_lock_sem == NULL) {
  1107. err = ESP_ERR_NO_MEM;
  1108. goto error;
  1109. }
  1110. #endif
  1111. btdm_cfg_mask = btdm_config_mask_load();
  1112. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1113. err = ESP_ERR_NO_MEM;
  1114. goto error;
  1115. }
  1116. #ifdef CONFIG_BTDM_COEX_BLE_ADV_HIGH_PRIORITY
  1117. coex_ble_adv_priority_high_set(true);
  1118. #else
  1119. coex_ble_adv_priority_high_set(false);
  1120. #endif
  1121. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1122. return ESP_OK;
  1123. error:
  1124. #ifdef CONFIG_PM_ENABLE
  1125. if (!s_btdm_allow_light_sleep) {
  1126. if (s_light_sleep_pm_lock != NULL) {
  1127. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1128. s_light_sleep_pm_lock = NULL;
  1129. }
  1130. }
  1131. if (s_pm_lock != NULL) {
  1132. esp_pm_lock_delete(s_pm_lock);
  1133. s_pm_lock = NULL;
  1134. }
  1135. if (s_btdm_slp_tmr != NULL) {
  1136. esp_timer_delete(s_btdm_slp_tmr);
  1137. s_btdm_slp_tmr = NULL;
  1138. }
  1139. if (s_pm_lock_sem) {
  1140. semphr_delete_wrapper(s_pm_lock_sem);
  1141. s_pm_lock_sem = NULL;
  1142. }
  1143. #endif
  1144. return err;
  1145. }
  1146. esp_err_t esp_bt_controller_deinit(void)
  1147. {
  1148. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1149. return ESP_ERR_INVALID_STATE;
  1150. }
  1151. btdm_controller_deinit();
  1152. periph_module_disable(PERIPH_BT_MODULE);
  1153. #ifdef CONFIG_PM_ENABLE
  1154. if (!s_btdm_allow_light_sleep) {
  1155. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1156. s_light_sleep_pm_lock = NULL;
  1157. }
  1158. esp_pm_lock_delete(s_pm_lock);
  1159. s_pm_lock = NULL;
  1160. esp_timer_stop(s_btdm_slp_tmr);
  1161. esp_timer_delete(s_btdm_slp_tmr);
  1162. s_btdm_slp_tmr = NULL;
  1163. semphr_delete_wrapper(s_pm_lock_sem);
  1164. s_pm_lock_sem = NULL;
  1165. #endif
  1166. #if CONFIG_SPIRAM_USE_MALLOC
  1167. vSemaphoreDelete(btdm_queue_table_mux);
  1168. btdm_queue_table_mux = NULL;
  1169. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1170. #endif
  1171. free(osi_funcs_p);
  1172. osi_funcs_p = NULL;
  1173. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1174. btdm_lpcycle_us = 0;
  1175. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1176. return ESP_OK;
  1177. }
  1178. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1179. {
  1180. int ret;
  1181. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1182. return ESP_ERR_INVALID_STATE;
  1183. }
  1184. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1185. if (mode != btdm_controller_get_mode()) {
  1186. return ESP_ERR_INVALID_ARG;
  1187. }
  1188. #ifdef CONFIG_PM_ENABLE
  1189. if (!s_btdm_allow_light_sleep) {
  1190. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1191. }
  1192. esp_pm_lock_acquire(s_pm_lock);
  1193. #endif
  1194. esp_phy_load_cal_and_init(PHY_BT_MODULE);
  1195. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
  1196. //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
  1197. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
  1198. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1199. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1200. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  1201. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  1202. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1203. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1204. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1205. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1206. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1207. }
  1208. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1209. btdm_controller_enable_sleep(true);
  1210. }
  1211. // inititalize bluetooth baseband
  1212. btdm_check_and_init_bb();
  1213. ret = btdm_controller_enable(mode);
  1214. if (ret) {
  1215. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1216. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1217. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1218. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1219. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1220. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1221. }
  1222. esp_phy_rf_deinit(PHY_BT_MODULE);
  1223. #ifdef CONFIG_PM_ENABLE
  1224. if (!s_btdm_allow_light_sleep) {
  1225. esp_pm_lock_release(s_light_sleep_pm_lock);
  1226. }
  1227. esp_pm_lock_release(s_pm_lock);
  1228. #endif
  1229. return ESP_ERR_INVALID_STATE;
  1230. }
  1231. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1232. return ESP_OK;
  1233. }
  1234. esp_err_t esp_bt_controller_disable(void)
  1235. {
  1236. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1237. return ESP_ERR_INVALID_STATE;
  1238. }
  1239. // disable modem sleep and wake up from sleep mode
  1240. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1241. btdm_controller_enable_sleep(false);
  1242. if (!btdm_power_state_active()) {
  1243. btdm_wakeup_request(false);
  1244. }
  1245. while (!btdm_power_state_active()) {
  1246. ets_delay_us(1000);
  1247. }
  1248. }
  1249. btdm_controller_disable();
  1250. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1251. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1252. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1253. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1254. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1255. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1256. }
  1257. esp_phy_rf_deinit(PHY_BT_MODULE);
  1258. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1259. #ifdef CONFIG_PM_ENABLE
  1260. if (!s_btdm_allow_light_sleep) {
  1261. esp_pm_lock_release(s_light_sleep_pm_lock);
  1262. }
  1263. esp_pm_lock_release(s_pm_lock);
  1264. #endif
  1265. return ESP_OK;
  1266. }
  1267. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1268. {
  1269. return btdm_controller_status;
  1270. }
  1271. /* extra functions */
  1272. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1273. {
  1274. if (ble_txpwr_set(power_type, power_level) != 0) {
  1275. return ESP_ERR_INVALID_ARG;
  1276. }
  1277. return ESP_OK;
  1278. }
  1279. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1280. {
  1281. return (esp_power_level_t)ble_txpwr_get(power_type);
  1282. }
  1283. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1284. {
  1285. esp_err_t err;
  1286. int ret;
  1287. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1288. if (ret == 0) {
  1289. err = ESP_OK;
  1290. } else if (ret == -1) {
  1291. err = ESP_ERR_INVALID_ARG;
  1292. } else {
  1293. err = ESP_ERR_INVALID_STATE;
  1294. }
  1295. return err;
  1296. }
  1297. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1298. {
  1299. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1300. return ESP_ERR_INVALID_ARG;
  1301. }
  1302. return ESP_OK;
  1303. }
  1304. esp_err_t esp_bt_sleep_enable (void)
  1305. {
  1306. esp_err_t status;
  1307. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1308. return ESP_ERR_INVALID_STATE;
  1309. }
  1310. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1311. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1312. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1313. btdm_controller_enable_sleep (true);
  1314. status = ESP_OK;
  1315. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1316. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1317. btdm_controller_enable_sleep (true);
  1318. status = ESP_OK;
  1319. } else {
  1320. status = ESP_ERR_NOT_SUPPORTED;
  1321. }
  1322. return status;
  1323. }
  1324. esp_err_t esp_bt_sleep_disable (void)
  1325. {
  1326. esp_err_t status;
  1327. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1328. return ESP_ERR_INVALID_STATE;
  1329. }
  1330. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1331. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1332. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1333. btdm_controller_enable_sleep (false);
  1334. status = ESP_OK;
  1335. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1336. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1337. btdm_controller_enable_sleep (false);
  1338. status = ESP_OK;
  1339. } else {
  1340. status = ESP_ERR_NOT_SUPPORTED;
  1341. }
  1342. return status;
  1343. }
  1344. bool esp_bt_controller_is_sleeping(void)
  1345. {
  1346. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1347. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1348. return false;
  1349. }
  1350. return !btdm_power_state_active();
  1351. }
  1352. void esp_bt_controller_wakeup_request(void)
  1353. {
  1354. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1355. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1356. return;
  1357. }
  1358. btdm_wakeup_request(false);
  1359. }
  1360. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1361. {
  1362. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1363. return ESP_ERR_INVALID_STATE;
  1364. }
  1365. bredr_sco_datapath_set(data_path);
  1366. return ESP_OK;
  1367. }
  1368. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1369. {
  1370. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1371. return ESP_ERR_INVALID_STATE;
  1372. }
  1373. btdm_controller_scan_duplicate_list_clear();
  1374. return ESP_OK;
  1375. }
  1376. #endif /* CONFIG_BT_ENABLED */