uart.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #define XOFF (char)0x13
  33. #define XON (char)0x11
  34. static const char* UART_TAG = "uart";
  35. #define UART_CHECK(a, str, ret_val) \
  36. if (!(a)) { \
  37. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  38. return (ret_val); \
  39. }
  40. #define UART_EMPTY_THRESH_DEFAULT (10)
  41. #define UART_FULL_THRESH_DEFAULT (120)
  42. #define UART_TOUT_THRESH_DEFAULT (10)
  43. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  44. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  45. #define UART_TX_IDLE_NUM_DEFAULT (0)
  46. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  47. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  48. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  49. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  50. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  51. // Check actual UART mode set
  52. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  53. typedef struct {
  54. uart_event_type_t type; /*!< UART TX data type */
  55. struct {
  56. int brk_len;
  57. size_t size;
  58. uint8_t data[0];
  59. } tx_data;
  60. } uart_tx_data_t;
  61. typedef struct {
  62. int wr;
  63. int rd;
  64. int len;
  65. int* data;
  66. } uart_pat_rb_t;
  67. typedef struct {
  68. uart_port_t uart_num; /*!< UART port number*/
  69. int queue_size; /*!< UART event queue size*/
  70. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  71. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  72. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  73. bool coll_det_flg; /*!< UART collision detection flag */
  74. //rx parameters
  75. int rx_buffered_len; /*!< UART cached data length */
  76. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  77. int rx_buf_size; /*!< RX ring buffer size */
  78. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  79. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  80. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  81. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  82. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  83. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  84. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  85. uart_pat_rb_t rx_pattern_pos;
  86. //tx parameters
  87. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  88. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  89. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  90. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  91. int tx_buf_size; /*!< TX ring buffer size */
  92. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  93. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  94. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  95. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  96. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  97. uint32_t tx_len_cur;
  98. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  99. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  100. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  101. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  102. } uart_obj_t;
  103. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  104. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  105. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  106. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  107. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  108. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  109. {
  110. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  111. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  112. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  113. UART[uart_num]->conf0.bit_num = data_bit;
  114. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  115. return ESP_OK;
  116. }
  117. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  118. {
  119. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  120. *(data_bit) = UART[uart_num]->conf0.bit_num;
  121. return ESP_OK;
  122. }
  123. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  124. {
  125. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  126. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  127. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  128. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  129. if (stop_bit == UART_STOP_BITS_2) {
  130. stop_bit = UART_STOP_BITS_1;
  131. UART[uart_num]->rs485_conf.dl1_en = 1;
  132. } else {
  133. UART[uart_num]->rs485_conf.dl1_en = 0;
  134. }
  135. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  136. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  137. return ESP_OK;
  138. }
  139. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  140. {
  141. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  142. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  143. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  144. (*stop_bit) = UART_STOP_BITS_2;
  145. } else {
  146. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  147. }
  148. return ESP_OK;
  149. }
  150. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  151. {
  152. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  153. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  154. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  155. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  156. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  157. return ESP_OK;
  158. }
  159. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  160. {
  161. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  162. int val = UART[uart_num]->conf0.val;
  163. if(val & UART_PARITY_EN_M) {
  164. if(val & UART_PARITY_M) {
  165. (*parity_mode) = UART_PARITY_ODD;
  166. } else {
  167. (*parity_mode) = UART_PARITY_EVEN;
  168. }
  169. } else {
  170. (*parity_mode) = UART_PARITY_DISABLE;
  171. }
  172. return ESP_OK;
  173. }
  174. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  175. {
  176. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  177. esp_err_t ret = ESP_OK;
  178. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  179. int uart_clk_freq;
  180. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  181. /* this UART has been configured to use REF_TICK */
  182. uart_clk_freq = REF_CLK_FREQ;
  183. } else {
  184. uart_clk_freq = esp_clk_apb_freq();
  185. }
  186. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  187. if (clk_div < 16) {
  188. /* baud rate is too high for this clock frequency */
  189. ret = ESP_ERR_INVALID_ARG;
  190. } else {
  191. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  192. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  193. }
  194. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  195. return ret;
  196. }
  197. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  198. {
  199. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  200. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  201. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  202. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  203. uint32_t uart_clk_freq = esp_clk_apb_freq();
  204. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  205. uart_clk_freq = REF_CLK_FREQ;
  206. }
  207. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  208. return ESP_OK;
  209. }
  210. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  211. {
  212. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  213. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  214. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  215. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  216. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  217. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  218. return ESP_OK;
  219. }
  220. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  221. {
  222. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  223. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  224. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  225. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  226. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  227. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  228. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  229. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  230. UART[uart_num]->swfc_conf.xon_char = XON;
  231. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  232. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  233. return ESP_OK;
  234. }
  235. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  236. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  237. {
  238. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  239. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  240. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  241. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  242. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  243. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  244. UART[uart_num]->conf1.rx_flow_en = 1;
  245. } else {
  246. UART[uart_num]->conf1.rx_flow_en = 0;
  247. }
  248. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  249. UART[uart_num]->conf0.tx_flow_en = 1;
  250. } else {
  251. UART[uart_num]->conf0.tx_flow_en = 0;
  252. }
  253. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  254. return ESP_OK;
  255. }
  256. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  257. {
  258. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  259. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  260. if(UART[uart_num]->conf1.rx_flow_en) {
  261. val |= UART_HW_FLOWCTRL_RTS;
  262. }
  263. if(UART[uart_num]->conf0.tx_flow_en) {
  264. val |= UART_HW_FLOWCTRL_CTS;
  265. }
  266. (*flow_ctrl) = val;
  267. return ESP_OK;
  268. }
  269. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  270. {
  271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  272. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  273. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  274. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  275. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  276. READ_PERI_REG(UART_FIFO_REG(uart_num));
  277. }
  278. return ESP_OK;
  279. }
  280. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  281. {
  282. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  283. //intr_clr register is write-only
  284. UART[uart_num]->int_clr.val = clr_mask;
  285. return ESP_OK;
  286. }
  287. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  288. {
  289. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  290. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  291. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  292. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  293. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  294. return ESP_OK;
  295. }
  296. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  297. {
  298. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  299. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  300. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  301. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  302. return ESP_OK;
  303. }
  304. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  305. {
  306. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  307. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  308. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  309. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  310. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  311. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  312. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  313. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  314. free(pdata);
  315. }
  316. return ESP_OK;
  317. }
  318. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  319. {
  320. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  321. esp_err_t ret = ESP_OK;
  322. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  323. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  324. int next = p_pos->wr + 1;
  325. if (next >= p_pos->len) {
  326. next = 0;
  327. }
  328. if (next == p_pos->rd) {
  329. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  330. ret = ESP_FAIL;
  331. } else {
  332. p_pos->data[p_pos->wr] = pos;
  333. p_pos->wr = next;
  334. ret = ESP_OK;
  335. }
  336. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  337. return ret;
  338. }
  339. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  340. {
  341. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  342. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  343. return ESP_ERR_INVALID_STATE;
  344. } else {
  345. esp_err_t ret = ESP_OK;
  346. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  347. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  348. if (p_pos->rd == p_pos->wr) {
  349. ret = ESP_FAIL;
  350. } else {
  351. p_pos->rd++;
  352. }
  353. if (p_pos->rd >= p_pos->len) {
  354. p_pos->rd = 0;
  355. }
  356. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  357. return ret;
  358. }
  359. }
  360. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  361. {
  362. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  363. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  364. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  365. int rd = p_pos->rd;
  366. while(rd != p_pos->wr) {
  367. p_pos->data[rd] -= diff_len;
  368. int rd_rec = rd;
  369. rd ++;
  370. if (rd >= p_pos->len) {
  371. rd = 0;
  372. }
  373. if (p_pos->data[rd_rec] < 0) {
  374. p_pos->rd = rd;
  375. }
  376. }
  377. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  378. return ESP_OK;
  379. }
  380. int uart_pattern_pop_pos(uart_port_t uart_num)
  381. {
  382. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  383. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  384. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  385. int pos = -1;
  386. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  387. pos = pat_pos->data[pat_pos->rd];
  388. uart_pattern_dequeue(uart_num);
  389. }
  390. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  391. return pos;
  392. }
  393. int uart_pattern_get_pos(uart_port_t uart_num)
  394. {
  395. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  396. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  397. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  398. int pos = -1;
  399. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  400. pos = pat_pos->data[pat_pos->rd];
  401. }
  402. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  403. return pos;
  404. }
  405. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  406. {
  407. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  408. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  409. int* pdata = (int*) malloc(queue_length * sizeof(int));
  410. if(pdata == NULL) {
  411. return ESP_ERR_NO_MEM;
  412. }
  413. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  414. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  415. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  416. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  417. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  418. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  419. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  420. free(ptmp);
  421. return ESP_OK;
  422. }
  423. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  424. {
  425. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  426. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  427. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  428. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  429. UART[uart_num]->at_cmd_char.data = pattern_chr;
  430. UART[uart_num]->at_cmd_char.char_num = chr_num;
  431. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  432. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  433. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  434. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  435. }
  436. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  437. {
  438. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  439. }
  440. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  441. {
  442. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  443. }
  444. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  445. {
  446. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  447. }
  448. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  449. {
  450. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  451. }
  452. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  453. {
  454. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  455. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  456. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  457. UART[uart_num]->int_clr.txfifo_empty = 1;
  458. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  459. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  460. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  461. return ESP_OK;
  462. }
  463. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  464. {
  465. int ret;
  466. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  467. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  468. switch(uart_num) {
  469. case UART_NUM_1:
  470. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  471. break;
  472. case UART_NUM_2:
  473. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  474. break;
  475. case UART_NUM_0:
  476. default:
  477. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  478. break;
  479. }
  480. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  481. return ret;
  482. }
  483. esp_err_t uart_isr_free(uart_port_t uart_num)
  484. {
  485. esp_err_t ret;
  486. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  487. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  488. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  489. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  490. p_uart_obj[uart_num]->intr_handle=NULL;
  491. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  492. return ret;
  493. }
  494. //internal signal can be output to multiple GPIO pads
  495. //only one GPIO pad can connect with input signal
  496. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  497. {
  498. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  499. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  500. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  501. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  502. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  503. int tx_sig, rx_sig, rts_sig, cts_sig;
  504. switch(uart_num) {
  505. case UART_NUM_0:
  506. tx_sig = U0TXD_OUT_IDX;
  507. rx_sig = U0RXD_IN_IDX;
  508. rts_sig = U0RTS_OUT_IDX;
  509. cts_sig = U0CTS_IN_IDX;
  510. break;
  511. case UART_NUM_1:
  512. tx_sig = U1TXD_OUT_IDX;
  513. rx_sig = U1RXD_IN_IDX;
  514. rts_sig = U1RTS_OUT_IDX;
  515. cts_sig = U1CTS_IN_IDX;
  516. break;
  517. case UART_NUM_2:
  518. tx_sig = U2TXD_OUT_IDX;
  519. rx_sig = U2RXD_IN_IDX;
  520. rts_sig = U2RTS_OUT_IDX;
  521. cts_sig = U2CTS_IN_IDX;
  522. break;
  523. case UART_NUM_MAX:
  524. default:
  525. tx_sig = U0TXD_OUT_IDX;
  526. rx_sig = U0RXD_IN_IDX;
  527. rts_sig = U0RTS_OUT_IDX;
  528. cts_sig = U0CTS_IN_IDX;
  529. break;
  530. }
  531. if(tx_io_num >= 0) {
  532. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  533. gpio_set_level(tx_io_num, 1);
  534. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  535. }
  536. if(rx_io_num >= 0) {
  537. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  538. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  539. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  540. gpio_matrix_in(rx_io_num, rx_sig, 0);
  541. }
  542. if(rts_io_num >= 0) {
  543. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  544. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  545. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  546. }
  547. if(cts_io_num >= 0) {
  548. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  549. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  550. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  551. gpio_matrix_in(cts_io_num, cts_sig, 0);
  552. }
  553. return ESP_OK;
  554. }
  555. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  556. {
  557. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  558. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  559. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  560. UART[uart_num]->conf0.sw_rts = level & 0x1;
  561. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  562. return ESP_OK;
  563. }
  564. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  565. {
  566. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  567. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  568. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  569. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  570. return ESP_OK;
  571. }
  572. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  573. {
  574. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  575. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  576. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  577. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  578. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  579. return ESP_OK;
  580. }
  581. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  582. {
  583. esp_err_t r;
  584. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  585. UART_CHECK((uart_config), "param null", ESP_FAIL);
  586. if(uart_num == UART_NUM_0) {
  587. periph_module_enable(PERIPH_UART0_MODULE);
  588. } else if(uart_num == UART_NUM_1) {
  589. periph_module_enable(PERIPH_UART1_MODULE);
  590. } else if(uart_num == UART_NUM_2) {
  591. periph_module_enable(PERIPH_UART2_MODULE);
  592. }
  593. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  594. if (r != ESP_OK) return r;
  595. UART[uart_num]->conf0.val =
  596. (uart_config->parity << UART_PARITY_S)
  597. | (uart_config->data_bits << UART_BIT_NUM_S)
  598. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  599. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  600. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  601. if (r != ESP_OK) return r;
  602. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  603. if (r != ESP_OK) return r;
  604. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  605. //A hardware reset does not reset the fifo,
  606. //so we need to reset the fifo manually.
  607. uart_reset_rx_fifo(uart_num);
  608. return r;
  609. }
  610. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  611. {
  612. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  613. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  614. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  615. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  616. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  617. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  618. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  619. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  620. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  621. } else {
  622. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  623. }
  624. UART[uart_num]->conf1.rx_tout_en = 1;
  625. } else {
  626. UART[uart_num]->conf1.rx_tout_en = 0;
  627. }
  628. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  629. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  630. }
  631. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  632. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  633. }
  634. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  635. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  636. return ESP_OK;
  637. }
  638. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  639. {
  640. int cnt = 0;
  641. int len = length;
  642. while (len >= 0) {
  643. if (buf[len] == pat_chr) {
  644. cnt++;
  645. } else {
  646. cnt = 0;
  647. }
  648. if (cnt >= pat_num) {
  649. break;
  650. }
  651. len --;
  652. }
  653. return len;
  654. }
  655. //internal isr handler for default driver code.
  656. static void uart_rx_intr_handler_default(void *param)
  657. {
  658. uart_obj_t *p_uart = (uart_obj_t*) param;
  659. uint8_t uart_num = p_uart->uart_num;
  660. uart_dev_t* uart_reg = UART[uart_num];
  661. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  662. uint8_t buf_idx = 0;
  663. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  664. uart_event_t uart_event;
  665. portBASE_TYPE HPTaskAwoken = 0;
  666. static uint8_t pat_flg = 0;
  667. while(uart_intr_status != 0x0) {
  668. buf_idx = 0;
  669. uart_event.type = UART_EVENT_MAX;
  670. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  671. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  672. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  673. if(p_uart->tx_waiting_brk) {
  674. continue;
  675. }
  676. //TX semaphore will only be used when tx_buf_size is zero.
  677. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  678. p_uart->tx_waiting_fifo = false;
  679. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  680. if(HPTaskAwoken == pdTRUE) {
  681. portYIELD_FROM_ISR();
  682. }
  683. } else {
  684. //We don't use TX ring buffer, because the size is zero.
  685. if(p_uart->tx_buf_size == 0) {
  686. continue;
  687. }
  688. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  689. bool en_tx_flg = false;
  690. //We need to put a loop here, in case all the buffer items are very short.
  691. //That would cause a watch_dog reset because empty interrupt happens so often.
  692. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  693. while(tx_fifo_rem) {
  694. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  695. size_t size;
  696. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  697. if(p_uart->tx_head) {
  698. //The first item is the data description
  699. //Get the first item to get the data information
  700. if(p_uart->tx_len_tot == 0) {
  701. p_uart->tx_ptr = NULL;
  702. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  703. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  704. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  705. p_uart->tx_brk_flg = 1;
  706. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  707. }
  708. //We have saved the data description from the 1st item, return buffer.
  709. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  710. if(HPTaskAwoken == pdTRUE) {
  711. portYIELD_FROM_ISR();
  712. }
  713. }else if(p_uart->tx_ptr == NULL) {
  714. //Update the TX item pointer, we will need this to return item to buffer.
  715. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  716. en_tx_flg = true;
  717. p_uart->tx_len_cur = size;
  718. }
  719. }
  720. else {
  721. //Can not get data from ring buffer, return;
  722. break;
  723. }
  724. }
  725. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  726. //To fill the TX FIFO.
  727. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  728. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  729. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  730. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  731. uart_reg->conf0.sw_rts = 0;
  732. uart_reg->int_ena.tx_done = 1;
  733. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  734. }
  735. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  736. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  737. *(p_uart->tx_ptr++) & 0xff);
  738. }
  739. p_uart->tx_len_tot -= send_len;
  740. p_uart->tx_len_cur -= send_len;
  741. tx_fifo_rem -= send_len;
  742. if (p_uart->tx_len_cur == 0) {
  743. //Return item to ring buffer.
  744. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  745. if(HPTaskAwoken == pdTRUE) {
  746. portYIELD_FROM_ISR();
  747. }
  748. p_uart->tx_head = NULL;
  749. p_uart->tx_ptr = NULL;
  750. //Sending item done, now we need to send break if there is a record.
  751. //Set TX break signal after FIFO is empty
  752. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  753. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  754. uart_reg->int_ena.tx_brk_done = 0;
  755. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  756. uart_reg->conf0.txd_brk = 1;
  757. uart_reg->int_clr.tx_brk_done = 1;
  758. uart_reg->int_ena.tx_brk_done = 1;
  759. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  760. p_uart->tx_waiting_brk = 1;
  761. } else {
  762. //enable TX empty interrupt
  763. en_tx_flg = true;
  764. }
  765. } else {
  766. //enable TX empty interrupt
  767. en_tx_flg = true;
  768. }
  769. }
  770. }
  771. if (en_tx_flg) {
  772. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  773. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  774. }
  775. }
  776. }
  777. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  778. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  779. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  780. ) {
  781. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  782. if(pat_flg == 1) {
  783. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  784. pat_flg = 0;
  785. }
  786. if (p_uart->rx_buffer_full_flg == false) {
  787. //We have to read out all data in RX FIFO to clear the interrupt signal
  788. while (buf_idx < rx_fifo_len) {
  789. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  790. }
  791. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  792. int pat_num = uart_reg->at_cmd_char.char_num;
  793. int pat_idx = -1;
  794. //Get the buffer from the FIFO
  795. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  796. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  797. uart_event.type = UART_PATTERN_DET;
  798. uart_event.size = rx_fifo_len;
  799. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  800. } else {
  801. //After Copying the Data From FIFO ,Clear intr_status
  802. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  803. uart_event.type = UART_DATA;
  804. uart_event.size = rx_fifo_len;
  805. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  806. if (p_uart->uart_select_notif_callback) {
  807. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  808. }
  809. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  810. }
  811. p_uart->rx_stash_len = rx_fifo_len;
  812. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  813. //Mainly for applications that uses flow control or small ring buffer.
  814. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  815. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  816. if (uart_event.type == UART_PATTERN_DET) {
  817. if (rx_fifo_len < pat_num) {
  818. //some of the characters are read out in last interrupt
  819. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  820. } else {
  821. uart_pattern_enqueue(uart_num,
  822. pat_idx <= -1 ?
  823. //can not find the pattern in buffer,
  824. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  825. // find the pattern in buffer
  826. p_uart->rx_buffered_len + pat_idx);
  827. }
  828. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  829. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  830. }
  831. }
  832. uart_event.type = UART_BUFFER_FULL;
  833. p_uart->rx_buffer_full_flg = true;
  834. } else {
  835. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  836. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  837. if (rx_fifo_len < pat_num) {
  838. //some of the characters are read out in last interrupt
  839. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  840. } else if(pat_idx >= 0) {
  841. // find pattern in statsh buffer.
  842. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  843. }
  844. }
  845. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  846. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  847. }
  848. if(HPTaskAwoken == pdTRUE) {
  849. portYIELD_FROM_ISR();
  850. }
  851. } else {
  852. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  853. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  854. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  855. uart_reg->int_clr.at_cmd_char_det = 1;
  856. uart_event.type = UART_PATTERN_DET;
  857. uart_event.size = rx_fifo_len;
  858. pat_flg = 1;
  859. }
  860. }
  861. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  862. // When fifo overflows, we reset the fifo.
  863. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  864. uart_reset_rx_fifo(uart_num);
  865. uart_reg->int_clr.rxfifo_ovf = 1;
  866. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  867. uart_event.type = UART_FIFO_OVF;
  868. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  869. if (p_uart->uart_select_notif_callback) {
  870. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  871. }
  872. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  873. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  874. uart_reg->int_clr.brk_det = 1;
  875. uart_event.type = UART_BREAK;
  876. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  877. uart_reg->int_clr.frm_err = 1;
  878. uart_event.type = UART_FRAME_ERR;
  879. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  880. if (p_uart->uart_select_notif_callback) {
  881. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  882. }
  883. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  884. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  885. uart_reg->int_clr.parity_err = 1;
  886. uart_event.type = UART_PARITY_ERR;
  887. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  888. if (p_uart->uart_select_notif_callback) {
  889. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  890. }
  891. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  892. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  893. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  894. uart_reg->conf0.txd_brk = 0;
  895. uart_reg->int_ena.tx_brk_done = 0;
  896. uart_reg->int_clr.tx_brk_done = 1;
  897. if(p_uart->tx_brk_flg == 1) {
  898. uart_reg->int_ena.txfifo_empty = 1;
  899. }
  900. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  901. if(p_uart->tx_brk_flg == 1) {
  902. p_uart->tx_brk_flg = 0;
  903. p_uart->tx_waiting_brk = 0;
  904. } else {
  905. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  906. if(HPTaskAwoken == pdTRUE) {
  907. portYIELD_FROM_ISR();
  908. }
  909. }
  910. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  911. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  912. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  913. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  914. uart_reg->int_clr.at_cmd_char_det = 1;
  915. uart_event.type = UART_PATTERN_DET;
  916. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  917. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  918. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  919. // RS485 collision or frame error interrupt triggered
  920. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  921. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  922. uart_reset_rx_fifo(uart_num);
  923. // Set collision detection flag
  924. p_uart_obj[uart_num]->coll_det_flg = true;
  925. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  926. uart_event.type = UART_EVENT_MAX;
  927. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  928. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  929. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  930. // If RS485 half duplex mode is enable then reset FIFO and
  931. // reset RTS pin to start receiver driver
  932. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  933. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  934. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  935. uart_reg->conf0.sw_rts = 1;
  936. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  937. }
  938. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  939. if (HPTaskAwoken == pdTRUE) {
  940. portYIELD_FROM_ISR();
  941. }
  942. } else {
  943. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  944. uart_event.type = UART_EVENT_MAX;
  945. }
  946. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  947. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  948. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  949. }
  950. if(HPTaskAwoken == pdTRUE) {
  951. portYIELD_FROM_ISR();
  952. }
  953. }
  954. uart_intr_status = uart_reg->int_st.val;
  955. }
  956. }
  957. /**************************************************************/
  958. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  959. {
  960. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  961. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  962. BaseType_t res;
  963. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  964. //Take tx_mux
  965. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  966. if(res == pdFALSE) {
  967. return ESP_ERR_TIMEOUT;
  968. }
  969. ticks_to_wait = ticks_end - xTaskGetTickCount();
  970. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  971. ticks_to_wait = ticks_end - xTaskGetTickCount();
  972. if(UART[uart_num]->status.txfifo_cnt == 0) {
  973. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  974. return ESP_OK;
  975. }
  976. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  977. //take 2nd tx_done_sem, wait given from ISR
  978. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  979. if(res == pdFALSE) {
  980. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  981. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  982. return ESP_ERR_TIMEOUT;
  983. }
  984. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  985. return ESP_OK;
  986. }
  987. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  988. {
  989. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  990. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  991. UART[uart_num]->conf0.txd_brk = 1;
  992. UART[uart_num]->int_clr.tx_brk_done = 1;
  993. UART[uart_num]->int_ena.tx_brk_done = 1;
  994. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  995. return ESP_OK;
  996. }
  997. //Fill UART tx_fifo and return a number,
  998. //This function by itself is not thread-safe, always call from within a muxed section.
  999. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1000. {
  1001. uint8_t i = 0;
  1002. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1003. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1004. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1005. // Set the RTS pin if RS485 mode is enabled
  1006. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1007. UART[uart_num]->conf0.sw_rts = 0;
  1008. UART[uart_num]->int_ena.tx_done = 1;
  1009. }
  1010. for (i = 0; i < copy_cnt; i++) {
  1011. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1012. }
  1013. return copy_cnt;
  1014. }
  1015. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1016. {
  1017. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1018. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1019. UART_CHECK(buffer, "buffer null", (-1));
  1020. if(len == 0) {
  1021. return 0;
  1022. }
  1023. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1024. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1025. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1026. return tx_len;
  1027. }
  1028. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1029. {
  1030. if(size == 0) {
  1031. return 0;
  1032. }
  1033. size_t original_size = size;
  1034. //lock for uart_tx
  1035. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1036. p_uart_obj[uart_num]->coll_det_flg = false;
  1037. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1038. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1039. int offset = 0;
  1040. uart_tx_data_t evt;
  1041. evt.tx_data.size = size;
  1042. evt.tx_data.brk_len = brk_len;
  1043. if(brk_en) {
  1044. evt.type = UART_DATA_BREAK;
  1045. } else {
  1046. evt.type = UART_DATA;
  1047. }
  1048. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1049. while(size > 0) {
  1050. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1051. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1052. size -= send_size;
  1053. offset += send_size;
  1054. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1055. }
  1056. } else {
  1057. while(size) {
  1058. //semaphore for tx_fifo available
  1059. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1060. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1061. if(sent < size) {
  1062. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1063. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1064. }
  1065. size -= sent;
  1066. src += sent;
  1067. }
  1068. }
  1069. if(brk_en) {
  1070. uart_set_break(uart_num, brk_len);
  1071. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1072. }
  1073. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1074. }
  1075. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1076. return original_size;
  1077. }
  1078. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1079. {
  1080. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1081. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1082. UART_CHECK(src, "buffer null", (-1));
  1083. return uart_tx_all(uart_num, src, size, 0, 0);
  1084. }
  1085. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1086. {
  1087. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1088. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1089. UART_CHECK((size > 0), "uart size error", (-1));
  1090. UART_CHECK((src), "uart data null", (-1));
  1091. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1092. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1093. }
  1094. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1095. {
  1096. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1097. UART_CHECK((buf), "uart data null", (-1));
  1098. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1099. uint8_t* data = NULL;
  1100. size_t size;
  1101. size_t copy_len = 0;
  1102. int len_tmp;
  1103. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1104. return -1;
  1105. }
  1106. while(length) {
  1107. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1108. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1109. if(data) {
  1110. p_uart_obj[uart_num]->rx_head_ptr = data;
  1111. p_uart_obj[uart_num]->rx_ptr = data;
  1112. p_uart_obj[uart_num]->rx_cur_remain = size;
  1113. } else {
  1114. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1115. return copy_len;
  1116. }
  1117. }
  1118. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1119. len_tmp = length;
  1120. } else {
  1121. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1122. }
  1123. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1124. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1125. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1126. uart_pattern_queue_update(uart_num, len_tmp);
  1127. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1128. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1129. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1130. copy_len += len_tmp;
  1131. length -= len_tmp;
  1132. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1133. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1134. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1135. p_uart_obj[uart_num]->rx_ptr = NULL;
  1136. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1137. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1138. if(res == pdTRUE) {
  1139. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1140. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1141. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1142. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1143. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1144. }
  1145. }
  1146. }
  1147. }
  1148. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1149. return copy_len;
  1150. }
  1151. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1152. {
  1153. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1154. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1155. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1156. return ESP_OK;
  1157. }
  1158. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1159. esp_err_t uart_flush_input(uart_port_t uart_num)
  1160. {
  1161. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1162. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1163. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1164. uint8_t* data;
  1165. size_t size;
  1166. //rx sem protect the ring buffer read related functions
  1167. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1168. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1169. while(true) {
  1170. if(p_uart->rx_head_ptr) {
  1171. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1172. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1173. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1174. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1175. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1176. p_uart->rx_ptr = NULL;
  1177. p_uart->rx_cur_remain = 0;
  1178. p_uart->rx_head_ptr = NULL;
  1179. }
  1180. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1181. if(data == NULL) {
  1182. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1183. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1184. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1185. }
  1186. //We also need to clear the `rx_buffer_full_flg` here.
  1187. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1188. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1189. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1190. break;
  1191. }
  1192. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1193. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1194. uart_pattern_queue_update(uart_num, size);
  1195. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1196. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1197. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1198. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1199. if(res == pdTRUE) {
  1200. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1201. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1202. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1203. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1204. }
  1205. }
  1206. }
  1207. p_uart->rx_ptr = NULL;
  1208. p_uart->rx_cur_remain = 0;
  1209. p_uart->rx_head_ptr = NULL;
  1210. uart_reset_rx_fifo(uart_num);
  1211. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1212. xSemaphoreGive(p_uart->rx_mux);
  1213. return ESP_OK;
  1214. }
  1215. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1216. {
  1217. esp_err_t r;
  1218. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1219. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1220. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1221. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1222. if(p_uart_obj[uart_num] == NULL) {
  1223. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1224. if(p_uart_obj[uart_num] == NULL) {
  1225. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1226. return ESP_FAIL;
  1227. }
  1228. p_uart_obj[uart_num]->uart_num = uart_num;
  1229. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1230. p_uart_obj[uart_num]->coll_det_flg = false;
  1231. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1232. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1233. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1234. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1235. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1236. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1237. p_uart_obj[uart_num]->queue_size = queue_size;
  1238. p_uart_obj[uart_num]->tx_ptr = NULL;
  1239. p_uart_obj[uart_num]->tx_head = NULL;
  1240. p_uart_obj[uart_num]->tx_len_tot = 0;
  1241. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1242. p_uart_obj[uart_num]->tx_brk_len = 0;
  1243. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1244. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1245. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1246. if(uart_queue) {
  1247. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1248. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1249. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1250. } else {
  1251. p_uart_obj[uart_num]->xQueueUart = NULL;
  1252. }
  1253. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1254. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1255. p_uart_obj[uart_num]->rx_ptr = NULL;
  1256. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1257. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1258. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1259. if(tx_buffer_size > 0) {
  1260. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1261. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1262. } else {
  1263. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1264. p_uart_obj[uart_num]->tx_buf_size = 0;
  1265. }
  1266. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1267. } else {
  1268. ESP_LOGE(UART_TAG, "UART driver already installed");
  1269. return ESP_FAIL;
  1270. }
  1271. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1272. if (r!=ESP_OK) goto err;
  1273. uart_intr_config_t uart_intr = {
  1274. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1275. | UART_RXFIFO_TOUT_INT_ENA_M
  1276. | UART_FRM_ERR_INT_ENA_M
  1277. | UART_RXFIFO_OVF_INT_ENA_M
  1278. | UART_BRK_DET_INT_ENA_M
  1279. | UART_PARITY_ERR_INT_ENA_M,
  1280. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1281. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1282. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1283. };
  1284. r=uart_intr_config(uart_num, &uart_intr);
  1285. if (r!=ESP_OK) goto err;
  1286. return r;
  1287. err:
  1288. uart_driver_delete(uart_num);
  1289. return r;
  1290. }
  1291. //Make sure no other tasks are still using UART before you call this function
  1292. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1293. {
  1294. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1295. if(p_uart_obj[uart_num] == NULL) {
  1296. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1297. return ESP_OK;
  1298. }
  1299. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1300. uart_disable_rx_intr(uart_num);
  1301. uart_disable_tx_intr(uart_num);
  1302. uart_pattern_link_free(uart_num);
  1303. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1304. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1305. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1306. }
  1307. if(p_uart_obj[uart_num]->tx_done_sem) {
  1308. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1309. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1310. }
  1311. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1312. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1313. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1314. }
  1315. if(p_uart_obj[uart_num]->tx_mux) {
  1316. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1317. p_uart_obj[uart_num]->tx_mux = NULL;
  1318. }
  1319. if(p_uart_obj[uart_num]->rx_mux) {
  1320. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1321. p_uart_obj[uart_num]->rx_mux = NULL;
  1322. }
  1323. if(p_uart_obj[uart_num]->xQueueUart) {
  1324. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1325. p_uart_obj[uart_num]->xQueueUart = NULL;
  1326. }
  1327. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1328. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1329. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1330. }
  1331. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1332. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1333. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1334. }
  1335. free(p_uart_obj[uart_num]);
  1336. p_uart_obj[uart_num] = NULL;
  1337. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1338. if(uart_num == UART_NUM_0) {
  1339. periph_module_disable(PERIPH_UART0_MODULE);
  1340. } else if(uart_num == UART_NUM_1) {
  1341. periph_module_disable(PERIPH_UART1_MODULE);
  1342. } else if(uart_num == UART_NUM_2) {
  1343. periph_module_disable(PERIPH_UART2_MODULE);
  1344. }
  1345. }
  1346. return ESP_OK;
  1347. }
  1348. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1349. {
  1350. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1351. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1352. }
  1353. }
  1354. portMUX_TYPE *uart_get_selectlock()
  1355. {
  1356. return &uart_selectlock;
  1357. }
  1358. // Set UART mode
  1359. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1360. {
  1361. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1362. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1363. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1364. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1365. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1366. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1367. }
  1368. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1369. UART[uart_num]->rs485_conf.en = 0;
  1370. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1371. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1372. UART[uart_num]->conf0.irda_en = 0;
  1373. UART[uart_num]->conf0.sw_rts = 0;
  1374. switch (mode) {
  1375. case UART_MODE_UART:
  1376. break;
  1377. case UART_MODE_RS485_COLLISION_DETECT:
  1378. // This mode allows read while transmitting that allows collision detection
  1379. p_uart_obj[uart_num]->coll_det_flg = false;
  1380. // Transmitter’s output signal loop back to the receiver’s input signal
  1381. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1382. // Transmitter should send data when its receiver is busy
  1383. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1384. UART[uart_num]->rs485_conf.en = 1;
  1385. // Enable collision detection interrupts
  1386. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1387. | UART_RXFIFO_FULL_INT_ENA
  1388. | UART_RS485_CLASH_INT_ENA
  1389. | UART_RS485_FRM_ERR_INT_ENA
  1390. | UART_RS485_PARITY_ERR_INT_ENA);
  1391. break;
  1392. case UART_MODE_RS485_APP_CTRL:
  1393. // Application software control, remove echo
  1394. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1395. UART[uart_num]->rs485_conf.en = 1;
  1396. break;
  1397. case UART_MODE_RS485_HALF_DUPLEX:
  1398. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1399. UART[uart_num]->conf0.sw_rts = 1;
  1400. UART[uart_num]->rs485_conf.en = 1;
  1401. // Must be set to 0 to automatically remove echo
  1402. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1403. // This is to void collision
  1404. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1405. break;
  1406. case UART_MODE_IRDA:
  1407. UART[uart_num]->conf0.irda_en = 1;
  1408. break;
  1409. default:
  1410. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1411. break;
  1412. }
  1413. p_uart_obj[uart_num]->uart_mode = mode;
  1414. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1415. return ESP_OK;
  1416. }
  1417. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1418. {
  1419. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1420. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1421. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1422. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1423. // transmission time of one symbol (~11 bit) on current baudrate
  1424. if (tout_thresh > 0) {
  1425. UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V);
  1426. UART[uart_num]->conf1.rx_tout_en = 1;
  1427. } else {
  1428. UART[uart_num]->conf1.rx_tout_en = 0;
  1429. }
  1430. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1431. return ESP_OK;
  1432. }
  1433. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1434. {
  1435. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1436. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1437. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1438. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1439. "wrong mode", ESP_ERR_INVALID_ARG);
  1440. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1441. return ESP_OK;
  1442. }