rtc_tempsensor.c 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. /*
  2. * SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <esp_types.h>
  7. #include <stdlib.h>
  8. #include <ctype.h>
  9. #include <math.h>
  10. #include "freertos/FreeRTOS.h"
  11. #include "freertos/semphr.h"
  12. #include "esp_log.h"
  13. #include "hal/adc_ll.h"
  14. #include "soc/rtc_cntl_reg.h"
  15. #include "soc/apb_saradc_struct.h"
  16. #include "soc/apb_saradc_reg.h"
  17. #include "soc/system_reg.h"
  18. #include "driver/temp_sensor.h"
  19. #include "regi2c_ctrl.h"
  20. #include "esp32c3/rom/ets_sys.h"
  21. #include "esp_efuse_rtc_calib.h"
  22. static const char *TAG = "tsens";
  23. #define TSENS_CHECK(res, ret_val) ({ \
  24. if (!(res)) { \
  25. ESP_LOGE(TAG, "%s(%d)", __FUNCTION__, __LINE__); \
  26. return (ret_val); \
  27. } \
  28. })
  29. #define TSENS_XPD_WAIT_DEFAULT 0xFF /* Set wait cycle time(8MHz) from power up to reset enable. */
  30. #define TSENS_ADC_FACTOR (0.4386)
  31. #define TSENS_DAC_FACTOR (27.88)
  32. #define TSENS_SYS_OFFSET (20.52)
  33. typedef struct {
  34. int index;
  35. int offset;
  36. int set_val;
  37. int range_min;
  38. int range_max;
  39. int error_max;
  40. } tsens_dac_offset_t;
  41. static const tsens_dac_offset_t dac_offset[TSENS_DAC_MAX] = {
  42. /* DAC Offset reg_val min max error */
  43. {TSENS_DAC_L0, -2, 5, 50, 125, 3},
  44. {TSENS_DAC_L1, -1, 7, 20, 100, 2},
  45. {TSENS_DAC_L2, 0, 15, -10, 80, 1},
  46. {TSENS_DAC_L3, 1, 11, -30, 50, 2},
  47. {TSENS_DAC_L4, 2, 10, -40, 20, 3},
  48. };
  49. static float s_deltaT = NAN; // unused number
  50. esp_err_t temp_sensor_set_config(temp_sensor_config_t tsens)
  51. {
  52. REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_TSENS_CLK_EN);
  53. CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, ANA_I2C_SAR_FORCE_PD);
  54. SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_I2C_SAR_FORCE_PU);
  55. REGI2C_WRITE_MASK(I2C_SAR_ADC, I2C_SARADC_TSENS_DAC, dac_offset[tsens.dac_offset].set_val);
  56. APB_SARADC.apb_tsens_ctrl.tsens_clk_div = tsens.clk_div;
  57. APB_SARADC.apb_tsens_ctrl2.tsens_xpd_wait = TSENS_XPD_WAIT_DEFAULT;
  58. APB_SARADC.apb_tsens_ctrl2.tsens_xpd_force = 1;
  59. ESP_LOGD(TAG, "Config temperature range [%d°C ~ %d°C], error < %d°C",
  60. dac_offset[tsens.dac_offset].range_min,
  61. dac_offset[tsens.dac_offset].range_max,
  62. dac_offset[tsens.dac_offset].error_max);
  63. return ESP_OK;
  64. }
  65. esp_err_t temp_sensor_get_config(temp_sensor_config_t *tsens)
  66. {
  67. TSENS_CHECK(tsens != NULL, ESP_ERR_INVALID_ARG);
  68. CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, ANA_I2C_SAR_FORCE_PD);
  69. SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_I2C_SAR_FORCE_PU);
  70. tsens->dac_offset = REGI2C_READ_MASK(I2C_SAR_ADC, I2C_SARADC_TSENS_DAC);
  71. for (int i = TSENS_DAC_L0; i < TSENS_DAC_MAX; i++) {
  72. if (tsens->dac_offset == dac_offset[i].set_val) {
  73. tsens->dac_offset = dac_offset[i].index;
  74. break;
  75. }
  76. }
  77. tsens->clk_div = APB_SARADC.apb_tsens_ctrl.tsens_clk_div;
  78. return ESP_OK;
  79. }
  80. esp_err_t temp_sensor_start(void)
  81. {
  82. REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_TSENS_CLK_EN);
  83. APB_SARADC.apb_tsens_ctrl2.tsens_clk_sel = 1;
  84. APB_SARADC.apb_tsens_ctrl.tsens_pu = 1;
  85. return ESP_OK;
  86. }
  87. esp_err_t temp_sensor_stop(void)
  88. {
  89. APB_SARADC.apb_tsens_ctrl.tsens_pu = 0;
  90. APB_SARADC.apb_tsens_ctrl2.tsens_clk_sel = 0;
  91. return ESP_OK;
  92. }
  93. esp_err_t temp_sensor_read_raw(uint32_t *tsens_out)
  94. {
  95. TSENS_CHECK(tsens_out != NULL, ESP_ERR_INVALID_ARG);
  96. *tsens_out = APB_SARADC.apb_tsens_ctrl.tsens_out;
  97. return ESP_OK;
  98. }
  99. static void read_delta_t_from_efuse(void)
  100. {
  101. uint32_t version = esp_efuse_rtc_calib_get_ver();
  102. if (version == 1) {
  103. // fetch calibration value for temp sensor from eFuse
  104. s_deltaT = esp_efuse_rtc_calib_get_cal_temp(version);
  105. } else {
  106. // no value to fetch, use 0.
  107. s_deltaT = 0;
  108. }
  109. ESP_LOGD(TAG, "s_deltaT = %f", s_deltaT);
  110. }
  111. static float parse_temp_sensor_raw_value(uint32_t tsens_raw, const int dac_offset)
  112. {
  113. if (isnan(s_deltaT)) { //suggests that the value is not initialized
  114. read_delta_t_from_efuse();
  115. }
  116. float result = (TSENS_ADC_FACTOR * (float)tsens_raw - TSENS_DAC_FACTOR * dac_offset - TSENS_SYS_OFFSET) - s_deltaT / 10.0;
  117. return result;
  118. }
  119. esp_err_t temp_sensor_read_celsius(float *celsius)
  120. {
  121. TSENS_CHECK(celsius != NULL, ESP_ERR_INVALID_ARG);
  122. temp_sensor_config_t tsens;
  123. uint32_t tsens_out = 0;
  124. esp_err_t ret = temp_sensor_get_config(&tsens);
  125. if (ret == ESP_OK) {
  126. ret = temp_sensor_read_raw(&tsens_out);
  127. printf("tsens_out %d\r\n", tsens_out);
  128. TSENS_CHECK(ret == ESP_OK, ret);
  129. const tsens_dac_offset_t *dac = &dac_offset[tsens.dac_offset];
  130. *celsius = parse_temp_sensor_raw_value(tsens_out, dac->offset);
  131. if (*celsius < dac->range_min || *celsius > dac->range_max) {
  132. ESP_LOGW(TAG, "Exceeding the temperature range!");
  133. ret = ESP_ERR_INVALID_STATE;
  134. }
  135. }
  136. return ret;
  137. }