spi_common.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "sdkconfig.h"
  8. #include "driver/spi_master.h"
  9. #include "soc/spi_periph.h"
  10. #include "esp_types.h"
  11. #include "esp_attr.h"
  12. #include "esp_log.h"
  13. #include "esp_err.h"
  14. #include "soc/soc.h"
  15. #include "soc/soc_caps.h"
  16. #include "soc/lldesc.h"
  17. #include "driver/gpio.h"
  18. #include "driver/periph_ctrl.h"
  19. #include "esp_heap_caps.h"
  20. #include "driver/spi_common_internal.h"
  21. #include "stdatomic.h"
  22. #include "hal/spi_hal.h"
  23. #include "hal/gpio_hal.h"
  24. #include "esp_rom_gpio.h"
  25. #if CONFIG_IDF_TARGET_ESP32
  26. #include "soc/dport_reg.h"
  27. #endif
  28. #if SOC_GDMA_SUPPORTED
  29. #include "esp_private/gdma.h"
  30. #endif
  31. static const char *SPI_TAG = "spi";
  32. #define SPI_CHECK(a, str, ret_val) do { \
  33. if (!(a)) { \
  34. ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  35. return (ret_val); \
  36. } \
  37. } while(0)
  38. #define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \
  39. SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  40. } else { \
  41. SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  42. }
  43. #define SPI_MAIN_BUS_DEFAULT() { \
  44. .host_id = 0, \
  45. .bus_attr = { \
  46. .tx_dma_chan = 0, \
  47. .rx_dma_chan = 0, \
  48. .max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE, \
  49. .dma_desc_num= 0, \
  50. }, \
  51. }
  52. #define FUNC_GPIO PIN_FUNC_GPIO
  53. typedef struct {
  54. int host_id;
  55. spi_destroy_func_t destroy_func;
  56. void* destroy_arg;
  57. spi_bus_attr_t bus_attr;
  58. #if SOC_GDMA_SUPPORTED
  59. gdma_channel_handle_t tx_channel;
  60. gdma_channel_handle_t rx_channel;
  61. #endif
  62. } spicommon_bus_context_t;
  63. //Periph 1 is 'claimed' by SPI flash code.
  64. static atomic_bool spi_periph_claimed[SOC_SPI_PERIPH_NUM] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false),
  65. #if (SOC_SPI_PERIPH_NUM >= 3)
  66. ATOMIC_VAR_INIT(false),
  67. #endif
  68. #if (SOC_SPI_PERIPH_NUM >= 4)
  69. ATOMIC_VAR_INIT(false),
  70. #endif
  71. };
  72. static const char* spi_claiming_func[3] = {NULL, NULL, NULL};
  73. static spicommon_bus_context_t s_mainbus = SPI_MAIN_BUS_DEFAULT();
  74. static spicommon_bus_context_t* bus_ctx[SOC_SPI_PERIPH_NUM] = {&s_mainbus};
  75. #if !SOC_GDMA_SUPPORTED
  76. //Each bit stands for 1 dma channel, BIT(0) should be used for SPI1
  77. static uint8_t spi_dma_chan_enabled = 0;
  78. static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
  79. #endif //#if !SOC_GDMA_SUPPORTED
  80. static inline bool is_valid_host(spi_host_device_t host)
  81. {
  82. #if (SOC_SPI_PERIPH_NUM == 2)
  83. return host >= SPI1_HOST && host <= SPI2_HOST;
  84. #elif (SOC_SPI_PERIPH_NUM == 3)
  85. return host >= SPI1_HOST && host <= SPI3_HOST;
  86. #endif
  87. }
  88. //----------------------------------------------------------alloc spi periph-------------------------------------------------------//
  89. //Returns true if this peripheral is successfully claimed, false if otherwise.
  90. bool spicommon_periph_claim(spi_host_device_t host, const char* source)
  91. {
  92. bool false_var = false;
  93. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true);
  94. if (ret) {
  95. spi_claiming_func[host] = source;
  96. periph_module_enable(spi_periph_signal[host].module);
  97. } else {
  98. ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]);
  99. }
  100. return ret;
  101. }
  102. bool spicommon_periph_in_use(spi_host_device_t host)
  103. {
  104. return atomic_load(&spi_periph_claimed[host]);
  105. }
  106. //Returns true if this peripheral is successfully freed, false if otherwise.
  107. bool spicommon_periph_free(spi_host_device_t host)
  108. {
  109. bool true_var = true;
  110. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false);
  111. if (ret) periph_module_disable(spi_periph_signal[host].module);
  112. return ret;
  113. }
  114. int spicommon_irqsource_for_host(spi_host_device_t host)
  115. {
  116. return spi_periph_signal[host].irq;
  117. }
  118. int spicommon_irqdma_source_for_host(spi_host_device_t host)
  119. {
  120. return spi_periph_signal[host].irq_dma;
  121. }
  122. //----------------------------------------------------------alloc dma periph-------------------------------------------------------//
  123. #if !SOC_GDMA_SUPPORTED
  124. static inline periph_module_t get_dma_periph(int dma_chan)
  125. {
  126. assert(dma_chan >= 1 && dma_chan <= SOC_SPI_DMA_CHAN_NUM);
  127. #if CONFIG_IDF_TARGET_ESP32S2
  128. if (dma_chan == 1) {
  129. return PERIPH_SPI2_DMA_MODULE;
  130. } else if (dma_chan == 2) {
  131. return PERIPH_SPI3_DMA_MODULE;
  132. } else {
  133. abort();
  134. }
  135. #elif CONFIG_IDF_TARGET_ESP32
  136. return PERIPH_SPI_DMA_MODULE;
  137. #endif
  138. }
  139. static bool spicommon_dma_chan_claim(int dma_chan, uint32_t *out_actual_dma_chan)
  140. {
  141. bool ret = false;
  142. portENTER_CRITICAL(&spi_dma_spinlock);
  143. bool is_used = (BIT(dma_chan) & spi_dma_chan_enabled);
  144. if (!is_used) {
  145. spi_dma_chan_enabled |= BIT(dma_chan);
  146. periph_module_enable(get_dma_periph(dma_chan));
  147. *out_actual_dma_chan = dma_chan;
  148. ret = true;
  149. }
  150. portEXIT_CRITICAL(&spi_dma_spinlock);
  151. return ret;
  152. }
  153. static void spicommon_connect_spi_and_dma(spi_host_device_t host, int dma_chan)
  154. {
  155. #if CONFIG_IDF_TARGET_ESP32
  156. DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
  157. #elif CONFIG_IDF_TARGET_ESP32S2
  158. //On ESP32S2, each SPI controller has its own DMA channel. So there is no need to connect them.
  159. #endif
  160. }
  161. static esp_err_t spicommon_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
  162. {
  163. assert(is_valid_host(host_id));
  164. #if CONFIG_IDF_TARGET_ESP32
  165. assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO);
  166. #elif CONFIG_IDF_TARGET_ESP32S2
  167. assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO);
  168. #endif
  169. esp_err_t ret = ESP_OK;
  170. bool success = false;
  171. uint32_t actual_dma_chan = 0;
  172. if (dma_chan == SPI_DMA_CH_AUTO) {
  173. #if CONFIG_IDF_TARGET_ESP32
  174. for (int i = 1; i < SOC_SPI_DMA_CHAN_NUM+1; i++) {
  175. success = spicommon_dma_chan_claim(i, &actual_dma_chan);
  176. if (success) {
  177. break;
  178. }
  179. }
  180. #elif CONFIG_IDF_TARGET_ESP32S2
  181. //On ESP32S2, each SPI controller has its own DMA channel
  182. success = spicommon_dma_chan_claim(host_id, &actual_dma_chan);
  183. #endif //#if CONFIG_IDF_TARGET_XXX
  184. } else {
  185. success = spicommon_dma_chan_claim((int)dma_chan, &actual_dma_chan);
  186. }
  187. //On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
  188. *out_actual_tx_dma_chan = actual_dma_chan;
  189. *out_actual_rx_dma_chan = actual_dma_chan;
  190. if (!success) {
  191. SPI_CHECK(false, "no available dma channel", ESP_ERR_NOT_FOUND);
  192. }
  193. spicommon_connect_spi_and_dma(host_id, *out_actual_tx_dma_chan);
  194. return ret;
  195. }
  196. #else //SOC_GDMA_SUPPORTED
  197. static esp_err_t spicommon_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
  198. {
  199. assert(is_valid_host(host_id));
  200. assert(dma_chan == SPI_DMA_CH_AUTO);
  201. esp_err_t ret = ESP_OK;
  202. spicommon_bus_context_t *ctx = bus_ctx[host_id];
  203. if (dma_chan == SPI_DMA_CH_AUTO) {
  204. gdma_channel_alloc_config_t tx_alloc_config = {
  205. .flags.reserve_sibling = 1,
  206. .direction = GDMA_CHANNEL_DIRECTION_TX,
  207. };
  208. ret = gdma_new_channel(&tx_alloc_config, &ctx->tx_channel);
  209. if (ret != ESP_OK) {
  210. return ret;
  211. }
  212. gdma_channel_alloc_config_t rx_alloc_config = {
  213. .direction = GDMA_CHANNEL_DIRECTION_RX,
  214. .sibling_chan = ctx->tx_channel,
  215. };
  216. ret = gdma_new_channel(&rx_alloc_config, &ctx->rx_channel);
  217. if (ret != ESP_OK) {
  218. return ret;
  219. }
  220. if (host_id == SPI2_HOST) {
  221. gdma_connect(ctx->rx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2));
  222. gdma_connect(ctx->tx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2));
  223. }
  224. #if (SOC_SPI_PERIPH_NUM >= 3)
  225. else if (host_id == SPI3_HOST) {
  226. gdma_connect(ctx->rx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3));
  227. gdma_connect(ctx->tx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3));
  228. }
  229. #endif
  230. gdma_get_channel_id(ctx->tx_channel, (int *)out_actual_tx_dma_chan);
  231. gdma_get_channel_id(ctx->rx_channel, (int *)out_actual_rx_dma_chan);
  232. }
  233. return ret;
  234. }
  235. #endif //#if !SOC_GDMA_SUPPORTED
  236. esp_err_t spicommon_slave_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
  237. {
  238. assert(is_valid_host(host_id));
  239. #if CONFIG_IDF_TARGET_ESP32
  240. assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO);
  241. #elif CONFIG_IDF_TARGET_ESP32S2
  242. assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO);
  243. #endif
  244. esp_err_t ret = ESP_OK;
  245. uint32_t actual_tx_dma_chan = 0;
  246. uint32_t actual_rx_dma_chan = 0;
  247. spicommon_bus_context_t *ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t));
  248. if (!ctx) {
  249. ret = ESP_ERR_NO_MEM;
  250. goto cleanup;
  251. }
  252. bus_ctx[host_id] = ctx;
  253. ctx->host_id = host_id;
  254. ret = spicommon_dma_chan_alloc(host_id, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan);
  255. if (ret != ESP_OK) {
  256. goto cleanup;
  257. }
  258. ctx->bus_attr.tx_dma_chan = actual_tx_dma_chan;
  259. ctx->bus_attr.rx_dma_chan = actual_rx_dma_chan;
  260. *out_actual_tx_dma_chan = actual_tx_dma_chan;
  261. *out_actual_rx_dma_chan = actual_rx_dma_chan;
  262. return ret;
  263. cleanup:
  264. free(ctx);
  265. ctx = NULL;
  266. return ret;
  267. }
  268. //----------------------------------------------------------free dma periph-------------------------------------------------------//
  269. static esp_err_t spicommon_dma_chan_free(spi_host_device_t host_id)
  270. {
  271. assert(is_valid_host(host_id));
  272. spicommon_bus_context_t *ctx = bus_ctx[host_id];
  273. #if !SOC_GDMA_SUPPORTED
  274. //On ESP32S2, each SPI controller has its own DMA channel
  275. int dma_chan = ctx->bus_attr.tx_dma_chan;
  276. assert(spi_dma_chan_enabled & BIT(dma_chan));
  277. portENTER_CRITICAL(&spi_dma_spinlock);
  278. spi_dma_chan_enabled &= ~BIT(dma_chan);
  279. periph_module_disable(get_dma_periph(dma_chan));
  280. portEXIT_CRITICAL(&spi_dma_spinlock);
  281. #else //SOC_GDMA_SUPPORTED
  282. if (ctx->rx_channel) {
  283. gdma_disconnect(ctx->rx_channel);
  284. gdma_del_channel(ctx->rx_channel);
  285. }
  286. if (ctx->tx_channel) {
  287. gdma_disconnect(ctx->tx_channel);
  288. gdma_del_channel(ctx->tx_channel);
  289. }
  290. #endif
  291. return ESP_OK;
  292. }
  293. esp_err_t spicommon_slave_free_dma(spi_host_device_t host_id)
  294. {
  295. assert(is_valid_host(host_id));
  296. esp_err_t ret = spicommon_dma_chan_free(host_id);
  297. free(bus_ctx[host_id]);
  298. bus_ctx[host_id] = NULL;
  299. return ret;
  300. }
  301. //----------------------------------------------------------IO general-------------------------------------------------------//
  302. static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
  303. {
  304. if (bus_config->sclk_io_num>=0 &&
  305. bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) {
  306. return false;
  307. }
  308. if (bus_config->quadwp_io_num>=0 &&
  309. bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) {
  310. return false;
  311. }
  312. if (bus_config->quadhd_io_num>=0 &&
  313. bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) {
  314. return false;
  315. }
  316. if (bus_config->mosi_io_num >= 0 &&
  317. bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) {
  318. return false;
  319. }
  320. if (bus_config->miso_io_num>=0 &&
  321. bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) {
  322. return false;
  323. }
  324. return true;
  325. }
  326. /*
  327. Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
  328. bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
  329. it should be able to be initialized.
  330. */
  331. esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, uint32_t flags, uint32_t* flags_o)
  332. {
  333. uint32_t temp_flag = 0;
  334. bool miso_need_output;
  335. bool mosi_need_output;
  336. bool sclk_need_output;
  337. if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) {
  338. //initial for master
  339. miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  340. mosi_need_output = true;
  341. sclk_need_output = true;
  342. } else {
  343. //initial for slave
  344. miso_need_output = true;
  345. mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  346. sclk_need_output = false;
  347. }
  348. const bool wp_need_output = true;
  349. const bool hd_need_output = true;
  350. //check pin capabilities
  351. if (bus_config->sclk_io_num>=0) {
  352. temp_flag |= SPICOMMON_BUSFLAG_SCLK;
  353. SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output);
  354. }
  355. if (bus_config->quadwp_io_num>=0) {
  356. SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output);
  357. }
  358. if (bus_config->quadhd_io_num>=0) {
  359. SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output);
  360. }
  361. //set flags for QUAD mode according to the existence of wp and hd
  362. if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD;
  363. if (bus_config->mosi_io_num >= 0) {
  364. temp_flag |= SPICOMMON_BUSFLAG_MOSI;
  365. SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output);
  366. }
  367. if (bus_config->miso_io_num>=0) {
  368. temp_flag |= SPICOMMON_BUSFLAG_MISO;
  369. SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output);
  370. }
  371. //set flags for DUAL mode according to output-capability of MOSI and MISO pins.
  372. if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) &&
  373. (bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) {
  374. temp_flag |= SPICOMMON_BUSFLAG_DUAL;
  375. }
  376. //check if the selected pins correspond to the iomux pins of the peripheral
  377. bool use_iomux = !(flags & SPICOMMON_BUSFLAG_GPIO_PINS) && bus_uses_iomux_pins(host, bus_config);
  378. if (use_iomux) {
  379. temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
  380. } else {
  381. temp_flag |= SPICOMMON_BUSFLAG_GPIO_PINS;
  382. }
  383. uint32_t missing_flag = flags & ~temp_flag;
  384. missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag
  385. if (missing_flag != 0) {
  386. //check pins existence
  387. if (missing_flag & SPICOMMON_BUSFLAG_SCLK) ESP_LOGE(SPI_TAG, "sclk pin required.");
  388. if (missing_flag & SPICOMMON_BUSFLAG_MOSI) ESP_LOGE(SPI_TAG, "mosi pin required.");
  389. if (missing_flag & SPICOMMON_BUSFLAG_MISO) ESP_LOGE(SPI_TAG, "miso pin required.");
  390. if (missing_flag & SPICOMMON_BUSFLAG_DUAL) ESP_LOGE(SPI_TAG, "not both mosi and miso output capable");
  391. if (missing_flag & SPICOMMON_BUSFLAG_WPHD) ESP_LOGE(SPI_TAG, "both wp and hd required.");
  392. if (missing_flag & SPICOMMON_BUSFLAG_IOMUX_PINS) ESP_LOGE(SPI_TAG, "not using iomux pins");
  393. SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG);
  394. }
  395. if (use_iomux) {
  396. //All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure
  397. //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
  398. ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1);
  399. if (bus_config->mosi_io_num >= 0) {
  400. gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in);
  401. gpio_iomux_out(bus_config->mosi_io_num, spi_periph_signal[host].func, false);
  402. }
  403. if (bus_config->miso_io_num >= 0) {
  404. gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in);
  405. gpio_iomux_out(bus_config->miso_io_num, spi_periph_signal[host].func, false);
  406. }
  407. if (bus_config->quadwp_io_num >= 0) {
  408. gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in);
  409. gpio_iomux_out(bus_config->quadwp_io_num, spi_periph_signal[host].func, false);
  410. }
  411. if (bus_config->quadhd_io_num >= 0) {
  412. gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in);
  413. gpio_iomux_out(bus_config->quadhd_io_num, spi_periph_signal[host].func, false);
  414. }
  415. if (bus_config->sclk_io_num >= 0) {
  416. gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in);
  417. gpio_iomux_out(bus_config->sclk_io_num, spi_periph_signal[host].func, false);
  418. }
  419. temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
  420. } else {
  421. //Use GPIO matrix
  422. ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1);
  423. if (bus_config->mosi_io_num >= 0) {
  424. if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  425. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
  426. esp_rom_gpio_connect_out_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false);
  427. } else {
  428. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT);
  429. }
  430. esp_rom_gpio_connect_in_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false);
  431. #if CONFIG_IDF_TARGET_ESP32S2
  432. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->mosi_io_num]);
  433. #endif
  434. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO);
  435. }
  436. if (bus_config->miso_io_num >= 0) {
  437. if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  438. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
  439. esp_rom_gpio_connect_out_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false);
  440. } else {
  441. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
  442. }
  443. esp_rom_gpio_connect_in_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false);
  444. #if CONFIG_IDF_TARGET_ESP32S2
  445. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->miso_io_num]);
  446. #endif
  447. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO);
  448. }
  449. if (bus_config->quadwp_io_num >= 0) {
  450. gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
  451. esp_rom_gpio_connect_out_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false);
  452. esp_rom_gpio_connect_in_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false);
  453. #if CONFIG_IDF_TARGET_ESP32S2
  454. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num]);
  455. #endif
  456. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO);
  457. }
  458. if (bus_config->quadhd_io_num >= 0) {
  459. gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
  460. esp_rom_gpio_connect_out_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false);
  461. esp_rom_gpio_connect_in_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false);
  462. #if CONFIG_IDF_TARGET_ESP32S2
  463. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num]);
  464. #endif
  465. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO);
  466. }
  467. if (bus_config->sclk_io_num >= 0) {
  468. if (sclk_need_output) {
  469. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
  470. esp_rom_gpio_connect_out_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false);
  471. } else {
  472. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT);
  473. }
  474. esp_rom_gpio_connect_in_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false);
  475. #if CONFIG_IDF_TARGET_ESP32S2
  476. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->sclk_io_num]);
  477. #endif
  478. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO);
  479. }
  480. }
  481. if (flags_o) *flags_o = temp_flag;
  482. return ESP_OK;
  483. }
  484. esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg)
  485. {
  486. int pin_array[] = {
  487. bus_cfg->mosi_io_num,
  488. bus_cfg->miso_io_num,
  489. bus_cfg->sclk_io_num,
  490. bus_cfg->quadwp_io_num,
  491. bus_cfg->quadhd_io_num,
  492. };
  493. for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) {
  494. const int io = pin_array[i];
  495. if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io);
  496. }
  497. return ESP_OK;
  498. }
  499. void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
  500. {
  501. if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) {
  502. //The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
  503. gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in);
  504. gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false);
  505. } else {
  506. //Use GPIO matrix
  507. if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) {
  508. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT);
  509. esp_rom_gpio_connect_out_signal(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false);
  510. } else {
  511. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT);
  512. }
  513. if (cs_num == 0) esp_rom_gpio_connect_in_signal(cs_io_num, spi_periph_signal[host].spics_in, false);
  514. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[cs_io_num]);
  515. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO);
  516. }
  517. }
  518. void spicommon_cs_free_io(int cs_gpio_num)
  519. {
  520. assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num));
  521. gpio_reset_pin(cs_gpio_num);
  522. }
  523. bool spicommon_bus_using_iomux(spi_host_device_t host)
  524. {
  525. #define CHECK_IOMUX_PIN(HOST, PIN_NAME) if (GPIO.func_in_sel_cfg[spi_periph_signal[(HOST)].PIN_NAME##_in].sig_in_sel) return false
  526. CHECK_IOMUX_PIN(host, spid);
  527. CHECK_IOMUX_PIN(host, spiq);
  528. CHECK_IOMUX_PIN(host, spiwp);
  529. CHECK_IOMUX_PIN(host, spihd);
  530. return true;
  531. }
  532. void spi_bus_main_set_lock(spi_bus_lock_handle_t lock)
  533. {
  534. bus_ctx[0]->bus_attr.lock = lock;
  535. }
  536. spi_bus_lock_handle_t spi_bus_lock_get_by_id(spi_host_device_t host_id)
  537. {
  538. return bus_ctx[host_id]->bus_attr.lock;
  539. }
  540. //----------------------------------------------------------master bus init-------------------------------------------------------//
  541. esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *bus_config, spi_dma_chan_t dma_chan)
  542. {
  543. esp_err_t err = ESP_OK;
  544. spicommon_bus_context_t *ctx = NULL;
  545. spi_bus_attr_t *bus_attr = NULL;
  546. uint32_t actual_tx_dma_chan = 0;
  547. uint32_t actual_rx_dma_chan = 0;
  548. SPI_CHECK(is_valid_host(host_id), "invalid host_id", ESP_ERR_INVALID_ARG);
  549. SPI_CHECK(bus_ctx[host_id] == NULL, "SPI bus already initialized.", ESP_ERR_INVALID_STATE);
  550. #ifdef CONFIG_IDF_TARGET_ESP32
  551. SPI_CHECK(dma_chan >= SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG );
  552. #elif CONFIG_IDF_TARGET_ESP32S2
  553. SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG );
  554. #elif SOC_GDMA_SUPPORTED
  555. SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG );
  556. #endif
  557. SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG);
  558. #ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM
  559. SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM)==0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_MASTER_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG);
  560. #endif
  561. bool spi_chan_claimed = spicommon_periph_claim(host_id, "spi master");
  562. SPI_CHECK(spi_chan_claimed, "host_id already in use", ESP_ERR_INVALID_STATE);
  563. //clean and initialize the context
  564. ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t));
  565. if (!ctx) {
  566. err = ESP_ERR_NO_MEM;
  567. goto cleanup;
  568. }
  569. bus_ctx[host_id] = ctx;
  570. ctx->host_id = host_id;
  571. bus_attr = &ctx->bus_attr;
  572. bus_attr->bus_cfg = *bus_config;
  573. if (dma_chan != SPI_DMA_DISABLED) {
  574. bus_attr->dma_enabled = 1;
  575. err = spicommon_dma_chan_alloc(host_id, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan);
  576. if (err != ESP_OK) {
  577. goto cleanup;
  578. }
  579. bus_attr->tx_dma_chan = actual_tx_dma_chan;
  580. bus_attr->rx_dma_chan = actual_rx_dma_chan;
  581. int dma_desc_ct = lldesc_get_required_num(bus_config->max_transfer_sz);
  582. if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given
  583. bus_attr->max_transfer_sz = dma_desc_ct * LLDESC_MAX_NUM_PER_DESC;
  584. bus_attr->dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
  585. bus_attr->dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
  586. if (bus_attr->dmadesc_tx == NULL || bus_attr->dmadesc_rx == NULL) {
  587. err = ESP_ERR_NO_MEM;
  588. goto cleanup;
  589. }
  590. bus_attr->dma_desc_num = dma_desc_ct;
  591. } else {
  592. bus_attr->dma_enabled = 0;
  593. bus_attr->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE;
  594. bus_attr->dma_desc_num = 0;
  595. }
  596. spi_bus_lock_config_t lock_config = {
  597. .host_id = host_id,
  598. .cs_num = SOC_SPI_PERIPH_CS_NUM(host_id),
  599. };
  600. err = spi_bus_init_lock(&bus_attr->lock, &lock_config);
  601. if (err != ESP_OK) {
  602. goto cleanup;
  603. }
  604. #ifdef CONFIG_PM_ENABLE
  605. err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master",
  606. &bus_attr->pm_lock);
  607. if (err != ESP_OK) {
  608. goto cleanup;
  609. }
  610. #endif //CONFIG_PM_ENABLE
  611. err = spicommon_bus_initialize_io(host_id, bus_config, SPICOMMON_BUSFLAG_MASTER | bus_config->flags, &bus_attr->flags);
  612. if (err != ESP_OK) {
  613. goto cleanup;
  614. }
  615. return ESP_OK;
  616. cleanup:
  617. if (bus_attr) {
  618. #ifdef CONFIG_PM_ENABLE
  619. esp_pm_lock_delete(bus_attr->pm_lock);
  620. #endif
  621. if (bus_attr->lock) {
  622. spi_bus_deinit_lock(bus_attr->lock);
  623. }
  624. free(bus_attr->dmadesc_tx);
  625. free(bus_attr->dmadesc_rx);
  626. bus_attr->dmadesc_tx = NULL;
  627. bus_attr->dmadesc_rx = NULL;
  628. if (bus_attr->dma_enabled) {
  629. spicommon_dma_chan_free(host_id);
  630. }
  631. }
  632. spicommon_periph_free(host_id);
  633. free(bus_ctx[host_id]);
  634. bus_ctx[host_id] = NULL;
  635. return err;
  636. }
  637. const spi_bus_attr_t* spi_bus_get_attr(spi_host_device_t host_id)
  638. {
  639. if (bus_ctx[host_id] == NULL) return NULL;
  640. return &bus_ctx[host_id]->bus_attr;
  641. }
  642. esp_err_t spi_bus_free(spi_host_device_t host_id)
  643. {
  644. esp_err_t err = ESP_OK;
  645. spicommon_bus_context_t* ctx = bus_ctx[host_id];
  646. spi_bus_attr_t* bus_attr = &ctx->bus_attr;
  647. if (ctx->destroy_func) {
  648. err = ctx->destroy_func(ctx->destroy_arg);
  649. }
  650. spicommon_bus_free_io_cfg(&bus_attr->bus_cfg);
  651. #ifdef CONFIG_PM_ENABLE
  652. esp_pm_lock_delete(bus_attr->pm_lock);
  653. #endif
  654. spi_bus_deinit_lock(bus_attr->lock);
  655. free(bus_attr->dmadesc_rx);
  656. free(bus_attr->dmadesc_tx);
  657. bus_attr->dmadesc_tx = NULL;
  658. bus_attr->dmadesc_rx = NULL;
  659. if (bus_attr->dma_enabled > 0) {
  660. spicommon_dma_chan_free(host_id);
  661. }
  662. spicommon_periph_free(host_id);
  663. free(ctx);
  664. bus_ctx[host_id] = NULL;
  665. return err;
  666. }
  667. esp_err_t spi_bus_register_destroy_func(spi_host_device_t host_id,
  668. spi_destroy_func_t f, void *arg)
  669. {
  670. bus_ctx[host_id]->destroy_func = f;
  671. bus_ctx[host_id]->destroy_arg = arg;
  672. return ESP_OK;
  673. }
  674. /*
  675. Code for workaround for DMA issue in ESP32 v0/v1 silicon
  676. */
  677. #if CONFIG_IDF_TARGET_ESP32
  678. static volatile int dmaworkaround_channels_busy[2] = {0, 0};
  679. static dmaworkaround_cb_t dmaworkaround_cb;
  680. static void *dmaworkaround_cb_arg;
  681. static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
  682. static int dmaworkaround_waiting_for_chan = 0;
  683. #endif
  684. bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
  685. {
  686. #if CONFIG_IDF_TARGET_ESP32
  687. int otherchan = (dmachan == 1) ? 2 : 1;
  688. bool ret;
  689. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  690. if (dmaworkaround_channels_busy[otherchan-1]) {
  691. //Other channel is busy. Call back when it's done.
  692. dmaworkaround_cb = cb;
  693. dmaworkaround_cb_arg = arg;
  694. dmaworkaround_waiting_for_chan = otherchan;
  695. ret = false;
  696. } else {
  697. //Reset DMA
  698. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  699. ret = true;
  700. }
  701. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  702. return ret;
  703. #else
  704. //no need to reset
  705. return true;
  706. #endif
  707. }
  708. bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress(void)
  709. {
  710. #if CONFIG_IDF_TARGET_ESP32
  711. return (dmaworkaround_waiting_for_chan != 0);
  712. #else
  713. return false;
  714. #endif
  715. }
  716. void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
  717. {
  718. #if CONFIG_IDF_TARGET_ESP32
  719. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  720. dmaworkaround_channels_busy[dmachan-1] = 0;
  721. if (dmaworkaround_waiting_for_chan == dmachan) {
  722. //Reset DMA
  723. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  724. dmaworkaround_waiting_for_chan = 0;
  725. //Call callback
  726. dmaworkaround_cb(dmaworkaround_cb_arg);
  727. }
  728. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  729. #endif
  730. }
  731. void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
  732. {
  733. #if CONFIG_IDF_TARGET_ESP32
  734. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  735. dmaworkaround_channels_busy[dmachan-1] = 1;
  736. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  737. #endif
  738. }