adc_hal.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. // Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <sys/param.h>
  15. #include "soc/soc_caps.h"
  16. #include "hal/adc_hal.h"
  17. #include "hal/adc_hal_conf.h"
  18. #include "hal/assert.h"
  19. #include "sdkconfig.h"
  20. #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
  21. #include "soc/gdma_channel.h"
  22. #include "soc/soc.h"
  23. #include "esp_rom_sys.h"
  24. typedef enum {
  25. ADC_EVENT_ADC1_DONE = BIT(0),
  26. ADC_EVENT_ADC2_DONE = BIT(1),
  27. } adc_hal_event_t;
  28. #endif
  29. void adc_hal_init(void)
  30. {
  31. // Set internal FSM wait time, fixed value.
  32. adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
  33. SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
  34. adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
  35. adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
  36. adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
  37. adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
  38. adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
  39. }
  40. /*---------------------------------------------------------------
  41. ADC calibration setting
  42. ---------------------------------------------------------------*/
  43. #if SOC_ADC_HW_CALIBRATION_V1
  44. // ESP32-S2 and C3 support HW offset calibration.
  45. void adc_hal_calibration_init(adc_ll_num_t adc_n)
  46. {
  47. adc_ll_calibration_init(adc_n);
  48. }
  49. static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
  50. void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
  51. {
  52. if (param != s_previous_init_code[adc_n]) {
  53. adc_ll_set_calibration_param(adc_n, param);
  54. s_previous_init_code[adc_n] = param;
  55. }
  56. }
  57. #if CONFIG_IDF_TARGET_ESP32S2
  58. static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
  59. {
  60. adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller
  61. /* Enable/disable internal connect GND (for calibration). */
  62. if (internal_gnd) {
  63. adc_ll_rtc_disable_channel(adc_n);
  64. adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
  65. } else {
  66. adc_ll_rtc_enable_channel(adc_n, channel);
  67. adc_ll_set_atten(adc_n, channel, atten);
  68. }
  69. }
  70. static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
  71. {
  72. adc_ll_rtc_start_convert(adc_n, channel);
  73. while (adc_ll_rtc_convert_is_done(adc_n) != true);
  74. return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
  75. }
  76. #elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
  77. static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
  78. {
  79. adc_ll_onetime_sample_enable(ADC_NUM_1, false);
  80. adc_ll_onetime_sample_enable(ADC_NUM_2, false);
  81. /* Enable/disable internal connect GND (for calibration). */
  82. if (internal_gnd) {
  83. const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1;
  84. adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
  85. } else {
  86. adc_ll_onetime_set_channel(adc_n, channel);
  87. }
  88. adc_ll_onetime_set_atten(atten);
  89. adc_ll_onetime_sample_enable(adc_n, true);
  90. }
  91. static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
  92. {
  93. adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
  94. adc_ll_onetime_start(false);
  95. esp_rom_delay_us(5);
  96. adc_ll_onetime_start(true);
  97. while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
  98. uint32_t read_val = -1;
  99. if (adc_n == ADC_NUM_1) {
  100. read_val = adc_ll_adc1_read();
  101. } else if (adc_n == ADC_NUM_2) {
  102. read_val = adc_ll_adc2_read();
  103. if (adc_ll_analysis_raw_data(adc_n, read_val)) {
  104. return -1;
  105. }
  106. }
  107. return read_val;
  108. }
  109. #endif //CONFIG_IDF_TARGET_*
  110. #define ADC_HAL_CAL_TIMES (10)
  111. #define ADC_HAL_CAL_OFFSET_RANGE (4096)
  112. uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
  113. {
  114. if (adc_n == ADC_NUM_2) {
  115. adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
  116. adc_hal_arbiter_config(&config);
  117. }
  118. cal_setup(adc_n, channel, atten, internal_gnd);
  119. adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
  120. uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
  121. uint32_t code_sum = 0;
  122. uint32_t code_h = 0;
  123. uint32_t code_l = 0;
  124. uint32_t chk_code = 0;
  125. for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
  126. code_h = ADC_HAL_CAL_OFFSET_RANGE;
  127. code_l = 0;
  128. chk_code = (code_h + code_l) / 2;
  129. adc_ll_set_calibration_param(adc_n, chk_code);
  130. uint32_t self_cal = read_cal_channel(adc_n, channel);
  131. while (code_h - code_l > 1) {
  132. if (self_cal == 0) {
  133. code_h = chk_code;
  134. } else {
  135. code_l = chk_code;
  136. }
  137. chk_code = (code_h + code_l) / 2;
  138. adc_ll_set_calibration_param(adc_n, chk_code);
  139. self_cal = read_cal_channel(adc_n, channel);
  140. if ((code_h - code_l == 1)) {
  141. chk_code += 1;
  142. adc_ll_set_calibration_param(adc_n, chk_code);
  143. self_cal = read_cal_channel(adc_n, channel);
  144. }
  145. }
  146. code_list[rpt] = chk_code;
  147. code_sum += chk_code;
  148. }
  149. code_l = code_list[0];
  150. code_h = code_list[0];
  151. for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
  152. code_l = MIN(code_l, code_list[i]);
  153. code_h = MAX(code_h, code_list[i]);
  154. }
  155. chk_code = code_h + code_l;
  156. uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
  157. ? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
  158. : (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
  159. adc_ll_calibration_finish(adc_n);
  160. return ret;
  161. }
  162. #endif //SOC_ADC_HW_CALIBRATION_V1
  163. #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
  164. //This feature is currently supported on ESP32C3, will be supported on other chips soon
  165. /*---------------------------------------------------------------
  166. DMA setting
  167. ---------------------------------------------------------------*/
  168. void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
  169. {
  170. hal->dev = &GDMA;
  171. hal->desc_dummy_head.next = hal->rx_desc;
  172. hal->desc_max_num = config->desc_max_num;
  173. hal->dma_chan = config->dma_chan;
  174. hal->eof_num = config->eof_num;
  175. }
  176. void adc_hal_digi_init(adc_hal_context_t *hal)
  177. {
  178. gdma_ll_rx_clear_interrupt_status(hal->dev, hal->dma_chan, UINT32_MAX);
  179. gdma_ll_rx_enable_interrupt(hal->dev, hal->dma_chan, GDMA_LL_EVENT_RX_SUC_EOF, true);
  180. adc_ll_digi_dma_set_eof_num(hal->eof_num);
  181. adc_ll_onetime_sample_enable(ADC_NUM_1, false);
  182. adc_ll_onetime_sample_enable(ADC_NUM_2, false);
  183. }
  184. void adc_hal_fifo_reset(adc_hal_context_t *hal)
  185. {
  186. adc_ll_digi_reset();
  187. gdma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
  188. }
  189. static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
  190. {
  191. HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
  192. HAL_ASSERT((size % 4) == 0);
  193. uint32_t n = 0;
  194. while (num--) {
  195. desc[n].dw0.size = size;
  196. desc[n].dw0.suc_eof = 0;
  197. desc[n].dw0.owner = 1;
  198. desc[n].buffer = data_buf;
  199. desc[n].next = &desc[n+1];
  200. data_buf += size;
  201. n++;
  202. }
  203. desc[n-1].next = NULL;
  204. }
  205. void adc_hal_digi_rxdma_start(adc_hal_context_t *hal, uint8_t *data_buf)
  206. {
  207. //reset the current descriptor address
  208. hal->cur_desc_ptr = &hal->desc_dummy_head;
  209. adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num);
  210. gdma_ll_rx_set_desc_addr(hal->dev, hal->dma_chan, (uint32_t)hal->rx_desc);
  211. gdma_ll_rx_start(hal->dev, hal->dma_chan);
  212. }
  213. void adc_hal_digi_start(adc_hal_context_t *hal)
  214. {
  215. //the ADC data will be sent to the DMA
  216. adc_ll_digi_dma_enable();
  217. //enable sar adc timer
  218. adc_ll_digi_trigger_enable();
  219. }
  220. adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
  221. {
  222. HAL_ASSERT(hal->cur_desc_ptr);
  223. if (!hal->cur_desc_ptr->next) {
  224. return ADC_HAL_DMA_DESC_NULL;
  225. }
  226. if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
  227. return ADC_HAL_DMA_DESC_WAITING;
  228. }
  229. hal->cur_desc_ptr = hal->cur_desc_ptr->next;
  230. *cur_desc = hal->cur_desc_ptr;
  231. return ADC_HAL_DMA_DESC_VALID;
  232. }
  233. void adc_hal_digi_rxdma_stop(adc_hal_context_t *hal)
  234. {
  235. gdma_ll_rx_stop(hal->dev, hal->dma_chan);
  236. }
  237. void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
  238. {
  239. gdma_ll_rx_clear_interrupt_status(hal->dev, hal->dma_chan, mask);
  240. }
  241. void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
  242. {
  243. gdma_ll_rx_enable_interrupt(hal->dev, hal->dma_chan, mask, false);
  244. }
  245. void adc_hal_digi_stop(adc_hal_context_t *hal)
  246. {
  247. //Set to 0: the ADC data won't be sent to the DMA
  248. adc_ll_digi_dma_disable();
  249. //disable sar adc timer
  250. adc_ll_digi_trigger_disable();
  251. }
  252. /*---------------------------------------------------------------
  253. Single Read
  254. ---------------------------------------------------------------*/
  255. //--------------------INTR-------------------------------//
  256. static adc_ll_intr_t get_event_intr(adc_hal_event_t event)
  257. {
  258. adc_ll_intr_t intr_mask = 0;
  259. if (event & ADC_EVENT_ADC1_DONE) {
  260. intr_mask |= ADC_LL_INTR_ADC1_DONE;
  261. }
  262. if (event & ADC_EVENT_ADC2_DONE) {
  263. intr_mask |= ADC_LL_INTR_ADC2_DONE;
  264. }
  265. return intr_mask;
  266. }
  267. static void adc_hal_intr_clear(adc_hal_event_t event)
  268. {
  269. adc_ll_intr_clear(get_event_intr(event));
  270. }
  271. static bool adc_hal_intr_get_raw(adc_hal_event_t event)
  272. {
  273. return adc_ll_intr_get_raw(get_event_intr(event));
  274. }
  275. //--------------------Single Read-------------------------------//
  276. static void adc_hal_onetime_start(void)
  277. {
  278. /**
  279. * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
  280. * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
  281. * clock cycle.
  282. *
  283. * This limitation will be removed in hardware future versions.
  284. *
  285. */
  286. uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
  287. //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
  288. uint32_t delay = (1000 * 1000) / digi_clk + 1;
  289. //3 ADC digital controller clock cycle
  290. delay = delay * 3;
  291. //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
  292. if (digi_clk >= APB_CLK_FREQ/8) {
  293. delay = 0;
  294. }
  295. adc_ll_onetime_start(false);
  296. esp_rom_delay_us(delay);
  297. adc_ll_onetime_start(true);
  298. //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
  299. }
  300. static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
  301. {
  302. if (adc_n == ADC_NUM_1) {
  303. *out_raw = adc_ll_adc1_read();
  304. } else if (adc_n == ADC_NUM_2) {
  305. *out_raw = adc_ll_adc2_read();
  306. if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
  307. return ESP_ERR_INVALID_STATE;
  308. }
  309. }
  310. return ESP_OK;
  311. }
  312. esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
  313. {
  314. esp_err_t ret;
  315. adc_hal_event_t event;
  316. if (adc_n == ADC_NUM_1) {
  317. event = ADC_EVENT_ADC1_DONE;
  318. } else {
  319. event = ADC_EVENT_ADC2_DONE;
  320. }
  321. adc_hal_intr_clear(event);
  322. adc_ll_onetime_sample_enable(ADC_NUM_1, false);
  323. adc_ll_onetime_sample_enable(ADC_NUM_2, false);
  324. adc_ll_onetime_sample_enable(adc_n, true);
  325. adc_ll_onetime_set_channel(adc_n, channel);
  326. //Trigger single read.
  327. adc_hal_onetime_start();
  328. while (!adc_hal_intr_get_raw(event));
  329. ret = adc_hal_single_read(adc_n, out_raw);
  330. //HW workaround: when enabling periph clock, this should be false
  331. adc_ll_onetime_sample_enable(adc_n, false);
  332. return ret;
  333. }
  334. #else // !CONFIG_IDF_TARGET_ESP32C3 && !CONFIG_IDF_TARGET_ESP32H2
  335. esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
  336. {
  337. adc_ll_rtc_enable_channel(adc_n, channel);
  338. adc_ll_rtc_start_convert(adc_n, channel);
  339. while (adc_ll_rtc_convert_is_done(adc_n) != true);
  340. *out_raw = adc_ll_rtc_get_convert_value(adc_n);
  341. if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) {
  342. return ESP_ERR_INVALID_STATE;
  343. }
  344. return ESP_OK;
  345. }
  346. #endif //#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C3