uart.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #define XOFF (char)0x13
  33. #define XON (char)0x11
  34. static const char* UART_TAG = "uart";
  35. #define UART_CHECK(a, str, ret_val) \
  36. if (!(a)) { \
  37. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  38. return (ret_val); \
  39. }
  40. #define UART_EMPTY_THRESH_DEFAULT (10)
  41. #define UART_FULL_THRESH_DEFAULT (120)
  42. #define UART_TOUT_THRESH_DEFAULT (10)
  43. #define UART_TX_IDLE_NUM_DEFAULT (0)
  44. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  45. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  46. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  47. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  48. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  49. typedef struct {
  50. uart_event_type_t type; /*!< UART TX data type */
  51. struct {
  52. int brk_len;
  53. size_t size;
  54. uint8_t data[0];
  55. } tx_data;
  56. } uart_tx_data_t;
  57. typedef struct {
  58. int wr;
  59. int rd;
  60. int len;
  61. int* data;
  62. } uart_pat_rb_t;
  63. typedef struct {
  64. uart_port_t uart_num; /*!< UART port number*/
  65. int queue_size; /*!< UART event queue size*/
  66. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  67. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  68. //rx parameters
  69. int rx_buffered_len; /*!< UART cached data length */
  70. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  71. int rx_buf_size; /*!< RX ring buffer size */
  72. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  73. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  74. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  75. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  76. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  77. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  78. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  79. uart_pat_rb_t rx_pattern_pos;
  80. //tx parameters
  81. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  82. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  83. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  84. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  85. int tx_buf_size; /*!< TX ring buffer size */
  86. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  87. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  88. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  89. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  90. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  91. uint32_t tx_len_cur;
  92. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  93. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  94. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  95. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  96. } uart_obj_t;
  97. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  98. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  99. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  100. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  101. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  102. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  103. {
  104. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  105. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  106. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  107. UART[uart_num]->conf0.bit_num = data_bit;
  108. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  109. return ESP_OK;
  110. }
  111. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  112. {
  113. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  114. *(data_bit) = UART[uart_num]->conf0.bit_num;
  115. return ESP_OK;
  116. }
  117. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  118. {
  119. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  120. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  121. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  122. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  123. if (stop_bit == UART_STOP_BITS_2) {
  124. stop_bit = UART_STOP_BITS_1;
  125. UART[uart_num]->rs485_conf.dl1_en = 1;
  126. } else {
  127. UART[uart_num]->rs485_conf.dl1_en = 0;
  128. }
  129. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  130. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  131. return ESP_OK;
  132. }
  133. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  134. {
  135. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  136. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  137. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  138. (*stop_bit) = UART_STOP_BITS_2;
  139. } else {
  140. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  141. }
  142. return ESP_OK;
  143. }
  144. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  145. {
  146. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  147. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  148. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  149. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  150. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  151. return ESP_OK;
  152. }
  153. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  154. {
  155. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  156. int val = UART[uart_num]->conf0.val;
  157. if(val & UART_PARITY_EN_M) {
  158. if(val & UART_PARITY_M) {
  159. (*parity_mode) = UART_PARITY_ODD;
  160. } else {
  161. (*parity_mode) = UART_PARITY_EVEN;
  162. }
  163. } else {
  164. (*parity_mode) = UART_PARITY_DISABLE;
  165. }
  166. return ESP_OK;
  167. }
  168. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  169. {
  170. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  171. esp_err_t ret = ESP_OK;
  172. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  173. int uart_clk_freq;
  174. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  175. /* this UART has been configured to use REF_TICK */
  176. uart_clk_freq = REF_CLK_FREQ;
  177. } else {
  178. uart_clk_freq = esp_clk_apb_freq();
  179. }
  180. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  181. if (clk_div < 16) {
  182. /* baud rate is too high for this clock frequency */
  183. ret = ESP_ERR_INVALID_ARG;
  184. } else {
  185. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  186. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  187. }
  188. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  189. return ret;
  190. }
  191. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  192. {
  193. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  194. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  195. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  196. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  197. uint32_t uart_clk_freq = esp_clk_apb_freq();
  198. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  199. uart_clk_freq = REF_CLK_FREQ;
  200. }
  201. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  202. return ESP_OK;
  203. }
  204. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  205. {
  206. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  207. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  208. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  209. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  210. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  211. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  212. return ESP_OK;
  213. }
  214. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  215. {
  216. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  217. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  218. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  219. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  220. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  221. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  222. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  223. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  224. UART[uart_num]->swfc_conf.xon_char = XON;
  225. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  226. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  227. return ESP_OK;
  228. }
  229. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  230. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  231. {
  232. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  233. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  234. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  235. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  236. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  237. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  238. UART[uart_num]->conf1.rx_flow_en = 1;
  239. } else {
  240. UART[uart_num]->conf1.rx_flow_en = 0;
  241. }
  242. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  243. UART[uart_num]->conf0.tx_flow_en = 1;
  244. } else {
  245. UART[uart_num]->conf0.tx_flow_en = 0;
  246. }
  247. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  248. return ESP_OK;
  249. }
  250. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  251. {
  252. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  253. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  254. if(UART[uart_num]->conf1.rx_flow_en) {
  255. val |= UART_HW_FLOWCTRL_RTS;
  256. }
  257. if(UART[uart_num]->conf0.tx_flow_en) {
  258. val |= UART_HW_FLOWCTRL_CTS;
  259. }
  260. (*flow_ctrl) = val;
  261. return ESP_OK;
  262. }
  263. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  264. {
  265. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  266. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  267. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  268. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  269. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  270. READ_PERI_REG(UART_FIFO_REG(uart_num));
  271. }
  272. return ESP_OK;
  273. }
  274. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  275. {
  276. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  277. //intr_clr register is write-only
  278. UART[uart_num]->int_clr.val = clr_mask;
  279. return ESP_OK;
  280. }
  281. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  285. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  286. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  287. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  288. return ESP_OK;
  289. }
  290. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  291. {
  292. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  293. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  294. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  295. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  296. return ESP_OK;
  297. }
  298. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  299. {
  300. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  301. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  302. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  303. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  304. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  305. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  306. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  307. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  308. free(pdata);
  309. }
  310. return ESP_OK;
  311. }
  312. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  313. {
  314. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  315. esp_err_t ret = ESP_OK;
  316. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  317. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  318. int next = p_pos->wr + 1;
  319. if (next >= p_pos->len) {
  320. next = 0;
  321. }
  322. if (next == p_pos->rd) {
  323. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  324. ret = ESP_FAIL;
  325. } else {
  326. p_pos->data[p_pos->wr] = pos;
  327. p_pos->wr = next;
  328. ret = ESP_OK;
  329. }
  330. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  331. return ret;
  332. }
  333. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  334. {
  335. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  336. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  337. return ESP_ERR_INVALID_STATE;
  338. } else {
  339. esp_err_t ret = ESP_OK;
  340. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  341. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  342. if (p_pos->rd == p_pos->wr) {
  343. ret = ESP_FAIL;
  344. } else {
  345. p_pos->rd++;
  346. }
  347. if (p_pos->rd >= p_pos->len) {
  348. p_pos->rd = 0;
  349. }
  350. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  351. return ret;
  352. }
  353. }
  354. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  355. {
  356. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  357. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  358. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  359. int rd = p_pos->rd;
  360. while(rd != p_pos->wr) {
  361. p_pos->data[rd] -= diff_len;
  362. int rd_rec = rd;
  363. rd ++;
  364. if (rd >= p_pos->len) {
  365. rd = 0;
  366. }
  367. if (p_pos->data[rd_rec] < 0) {
  368. p_pos->rd = rd;
  369. }
  370. }
  371. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  372. return ESP_OK;
  373. }
  374. int uart_pattern_pop_pos(uart_port_t uart_num)
  375. {
  376. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  377. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  378. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  379. int pos = -1;
  380. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  381. pos = pat_pos->data[pat_pos->rd];
  382. uart_pattern_dequeue(uart_num);
  383. }
  384. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  385. return pos;
  386. }
  387. int uart_pattern_get_pos(uart_port_t uart_num)
  388. {
  389. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  390. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  391. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  392. int pos = -1;
  393. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  394. pos = pat_pos->data[pat_pos->rd];
  395. }
  396. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  397. return pos;
  398. }
  399. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  400. {
  401. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  402. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  403. int* pdata = (int*) malloc(queue_length * sizeof(int));
  404. if(pdata == NULL) {
  405. return ESP_ERR_NO_MEM;
  406. }
  407. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  408. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  409. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  410. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  411. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  412. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  413. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  414. free(ptmp);
  415. return ESP_OK;
  416. }
  417. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  418. {
  419. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  420. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  421. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  422. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  423. UART[uart_num]->at_cmd_char.data = pattern_chr;
  424. UART[uart_num]->at_cmd_char.char_num = chr_num;
  425. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  426. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  427. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  428. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  429. }
  430. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  431. {
  432. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  433. }
  434. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  435. {
  436. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  437. }
  438. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  439. {
  440. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  441. }
  442. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  443. {
  444. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  445. }
  446. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  447. {
  448. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  449. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  450. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  451. UART[uart_num]->int_clr.txfifo_empty = 1;
  452. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  453. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  454. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  455. return ESP_OK;
  456. }
  457. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  458. {
  459. int ret;
  460. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  461. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  462. switch(uart_num) {
  463. case UART_NUM_1:
  464. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  465. break;
  466. case UART_NUM_2:
  467. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  468. break;
  469. case UART_NUM_0:
  470. default:
  471. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  472. break;
  473. }
  474. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  475. return ret;
  476. }
  477. esp_err_t uart_isr_free(uart_port_t uart_num)
  478. {
  479. esp_err_t ret;
  480. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  481. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  482. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  483. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  484. p_uart_obj[uart_num]->intr_handle=NULL;
  485. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  486. return ret;
  487. }
  488. //internal signal can be output to multiple GPIO pads
  489. //only one GPIO pad can connect with input signal
  490. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  491. {
  492. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  493. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  494. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  495. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  496. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  497. int tx_sig, rx_sig, rts_sig, cts_sig;
  498. switch(uart_num) {
  499. case UART_NUM_0:
  500. tx_sig = U0TXD_OUT_IDX;
  501. rx_sig = U0RXD_IN_IDX;
  502. rts_sig = U0RTS_OUT_IDX;
  503. cts_sig = U0CTS_IN_IDX;
  504. break;
  505. case UART_NUM_1:
  506. tx_sig = U1TXD_OUT_IDX;
  507. rx_sig = U1RXD_IN_IDX;
  508. rts_sig = U1RTS_OUT_IDX;
  509. cts_sig = U1CTS_IN_IDX;
  510. break;
  511. case UART_NUM_2:
  512. tx_sig = U2TXD_OUT_IDX;
  513. rx_sig = U2RXD_IN_IDX;
  514. rts_sig = U2RTS_OUT_IDX;
  515. cts_sig = U2CTS_IN_IDX;
  516. break;
  517. case UART_NUM_MAX:
  518. default:
  519. tx_sig = U0TXD_OUT_IDX;
  520. rx_sig = U0RXD_IN_IDX;
  521. rts_sig = U0RTS_OUT_IDX;
  522. cts_sig = U0CTS_IN_IDX;
  523. break;
  524. }
  525. if(tx_io_num >= 0) {
  526. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  527. gpio_set_level(tx_io_num, 1);
  528. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  529. }
  530. if(rx_io_num >= 0) {
  531. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  532. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  533. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  534. gpio_matrix_in(rx_io_num, rx_sig, 0);
  535. }
  536. if(rts_io_num >= 0) {
  537. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  538. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  539. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  540. }
  541. if(cts_io_num >= 0) {
  542. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  543. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  544. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  545. gpio_matrix_in(cts_io_num, cts_sig, 0);
  546. }
  547. return ESP_OK;
  548. }
  549. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  550. {
  551. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  552. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  553. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  554. UART[uart_num]->conf0.sw_rts = level & 0x1;
  555. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  556. return ESP_OK;
  557. }
  558. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  559. {
  560. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  561. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  562. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  563. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  564. return ESP_OK;
  565. }
  566. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  567. {
  568. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  569. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  570. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  571. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  572. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  573. return ESP_OK;
  574. }
  575. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  576. {
  577. esp_err_t r;
  578. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  579. UART_CHECK((uart_config), "param null", ESP_FAIL);
  580. if(uart_num == UART_NUM_0) {
  581. periph_module_enable(PERIPH_UART0_MODULE);
  582. } else if(uart_num == UART_NUM_1) {
  583. periph_module_enable(PERIPH_UART1_MODULE);
  584. } else if(uart_num == UART_NUM_2) {
  585. periph_module_enable(PERIPH_UART2_MODULE);
  586. }
  587. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  588. if (r != ESP_OK) return r;
  589. UART[uart_num]->conf0.val =
  590. (uart_config->parity << UART_PARITY_S)
  591. | (uart_config->data_bits << UART_BIT_NUM_S)
  592. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  593. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  594. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  595. if (r != ESP_OK) return r;
  596. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  597. if (r != ESP_OK) return r;
  598. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  599. //A hardware reset does not reset the fifo,
  600. //so we need to reset the fifo manually.
  601. uart_reset_rx_fifo(uart_num);
  602. return r;
  603. }
  604. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  605. {
  606. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  607. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  608. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  609. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  610. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  611. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  612. UART[uart_num]->conf1.rx_tout_en = 1;
  613. } else {
  614. UART[uart_num]->conf1.rx_tout_en = 0;
  615. }
  616. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  617. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  618. }
  619. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  620. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  621. }
  622. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  623. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  624. return ESP_OK;
  625. }
  626. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  627. {
  628. int cnt = 0;
  629. int len = length;
  630. while (len >= 0) {
  631. if (buf[len] == pat_chr) {
  632. cnt++;
  633. } else {
  634. cnt = 0;
  635. }
  636. if (cnt >= pat_num) {
  637. break;
  638. }
  639. len --;
  640. }
  641. return len;
  642. }
  643. //internal isr handler for default driver code.
  644. static void uart_rx_intr_handler_default(void *param)
  645. {
  646. uart_obj_t *p_uart = (uart_obj_t*) param;
  647. uint8_t uart_num = p_uart->uart_num;
  648. uart_dev_t* uart_reg = UART[uart_num];
  649. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  650. uint8_t buf_idx = 0;
  651. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  652. uart_event_t uart_event;
  653. portBASE_TYPE HPTaskAwoken = 0;
  654. static uint8_t pat_flg = 0;
  655. while(uart_intr_status != 0x0) {
  656. buf_idx = 0;
  657. uart_event.type = UART_EVENT_MAX;
  658. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  659. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  660. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  661. if(p_uart->tx_waiting_brk) {
  662. continue;
  663. }
  664. //TX semaphore will only be used when tx_buf_size is zero.
  665. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  666. p_uart->tx_waiting_fifo = false;
  667. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  668. if(HPTaskAwoken == pdTRUE) {
  669. portYIELD_FROM_ISR() ;
  670. }
  671. } else {
  672. //We don't use TX ring buffer, because the size is zero.
  673. if(p_uart->tx_buf_size == 0) {
  674. continue;
  675. }
  676. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  677. bool en_tx_flg = false;
  678. //We need to put a loop here, in case all the buffer items are very short.
  679. //That would cause a watch_dog reset because empty interrupt happens so often.
  680. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  681. while(tx_fifo_rem) {
  682. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  683. size_t size;
  684. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  685. if(p_uart->tx_head) {
  686. //The first item is the data description
  687. //Get the first item to get the data information
  688. if(p_uart->tx_len_tot == 0) {
  689. p_uart->tx_ptr = NULL;
  690. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  691. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  692. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  693. p_uart->tx_brk_flg = 1;
  694. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  695. }
  696. //We have saved the data description from the 1st item, return buffer.
  697. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  698. if(HPTaskAwoken == pdTRUE) {
  699. portYIELD_FROM_ISR() ;
  700. }
  701. }else if(p_uart->tx_ptr == NULL) {
  702. //Update the TX item pointer, we will need this to return item to buffer.
  703. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  704. en_tx_flg = true;
  705. p_uart->tx_len_cur = size;
  706. }
  707. }
  708. else {
  709. //Can not get data from ring buffer, return;
  710. break;
  711. }
  712. }
  713. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  714. //To fill the TX FIFO.
  715. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  716. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  717. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  718. }
  719. p_uart->tx_len_tot -= send_len;
  720. p_uart->tx_len_cur -= send_len;
  721. tx_fifo_rem -= send_len;
  722. if (p_uart->tx_len_cur == 0) {
  723. //Return item to ring buffer.
  724. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  725. if(HPTaskAwoken == pdTRUE) {
  726. portYIELD_FROM_ISR() ;
  727. }
  728. p_uart->tx_head = NULL;
  729. p_uart->tx_ptr = NULL;
  730. //Sending item done, now we need to send break if there is a record.
  731. //Set TX break signal after FIFO is empty
  732. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  733. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  734. uart_reg->int_ena.tx_brk_done = 0;
  735. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  736. uart_reg->conf0.txd_brk = 1;
  737. uart_reg->int_clr.tx_brk_done = 1;
  738. uart_reg->int_ena.tx_brk_done = 1;
  739. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  740. p_uart->tx_waiting_brk = 1;
  741. } else {
  742. //enable TX empty interrupt
  743. en_tx_flg = true;
  744. }
  745. } else {
  746. //enable TX empty interrupt
  747. en_tx_flg = true;
  748. }
  749. }
  750. }
  751. if (en_tx_flg) {
  752. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  753. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  754. }
  755. }
  756. }
  757. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  758. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  759. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  760. ) {
  761. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  762. if(pat_flg == 1) {
  763. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  764. pat_flg = 0;
  765. }
  766. if (p_uart->rx_buffer_full_flg == false) {
  767. //We have to read out all data in RX FIFO to clear the interrupt signal
  768. while (buf_idx < rx_fifo_len) {
  769. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  770. }
  771. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  772. int pat_num = uart_reg->at_cmd_char.char_num;
  773. int pat_idx = -1;
  774. //Get the buffer from the FIFO
  775. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  776. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  777. uart_event.type = UART_PATTERN_DET;
  778. uart_event.size = rx_fifo_len;
  779. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  780. } else {
  781. //After Copying the Data From FIFO ,Clear intr_status
  782. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  783. uart_event.type = UART_DATA;
  784. uart_event.size = rx_fifo_len;
  785. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  786. if (p_uart->uart_select_notif_callback) {
  787. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  788. }
  789. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  790. }
  791. p_uart->rx_stash_len = rx_fifo_len;
  792. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  793. //Mainly for applications that uses flow control or small ring buffer.
  794. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  795. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  796. if (uart_event.type == UART_PATTERN_DET) {
  797. if (rx_fifo_len < pat_num) {
  798. //some of the characters are read out in last interrupt
  799. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  800. } else {
  801. uart_pattern_enqueue(uart_num,
  802. pat_idx <= -1 ?
  803. //can not find the pattern in buffer,
  804. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  805. // find the pattern in buffer
  806. p_uart->rx_buffered_len + pat_idx);
  807. }
  808. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  809. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  810. }
  811. }
  812. uart_event.type = UART_BUFFER_FULL;
  813. p_uart->rx_buffer_full_flg = true;
  814. } else {
  815. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  816. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  817. if (rx_fifo_len < pat_num) {
  818. //some of the characters are read out in last interrupt
  819. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  820. } else if(pat_idx >= 0) {
  821. // find pattern in statsh buffer.
  822. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  823. }
  824. }
  825. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  826. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  827. }
  828. if(HPTaskAwoken == pdTRUE) {
  829. portYIELD_FROM_ISR() ;
  830. }
  831. } else {
  832. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  833. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  834. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  835. uart_reg->int_clr.at_cmd_char_det = 1;
  836. uart_event.type = UART_PATTERN_DET;
  837. uart_event.size = rx_fifo_len;
  838. pat_flg = 1;
  839. }
  840. }
  841. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  842. // When fifo overflows, we reset the fifo.
  843. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  844. uart_reset_rx_fifo(uart_num);
  845. uart_reg->int_clr.rxfifo_ovf = 1;
  846. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  847. uart_event.type = UART_FIFO_OVF;
  848. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  849. if (p_uart->uart_select_notif_callback) {
  850. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  851. }
  852. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  853. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  854. uart_reg->int_clr.brk_det = 1;
  855. uart_event.type = UART_BREAK;
  856. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  857. uart_reg->int_clr.frm_err = 1;
  858. uart_event.type = UART_FRAME_ERR;
  859. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  860. if (p_uart->uart_select_notif_callback) {
  861. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  862. }
  863. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  864. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  865. uart_reg->int_clr.parity_err = 1;
  866. uart_event.type = UART_PARITY_ERR;
  867. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  868. if (p_uart->uart_select_notif_callback) {
  869. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  870. }
  871. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  872. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  873. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  874. uart_reg->conf0.txd_brk = 0;
  875. uart_reg->int_ena.tx_brk_done = 0;
  876. uart_reg->int_clr.tx_brk_done = 1;
  877. if(p_uart->tx_brk_flg == 1) {
  878. uart_reg->int_ena.txfifo_empty = 1;
  879. }
  880. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  881. if(p_uart->tx_brk_flg == 1) {
  882. p_uart->tx_brk_flg = 0;
  883. p_uart->tx_waiting_brk = 0;
  884. } else {
  885. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  886. if(HPTaskAwoken == pdTRUE) {
  887. portYIELD_FROM_ISR() ;
  888. }
  889. }
  890. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  891. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  892. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  893. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  894. uart_reg->int_clr.at_cmd_char_det = 1;
  895. uart_event.type = UART_PATTERN_DET;
  896. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  897. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  898. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  899. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  900. if(HPTaskAwoken == pdTRUE) {
  901. portYIELD_FROM_ISR() ;
  902. }
  903. } else {
  904. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  905. uart_event.type = UART_EVENT_MAX;
  906. }
  907. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  908. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  909. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  910. }
  911. if(HPTaskAwoken == pdTRUE) {
  912. portYIELD_FROM_ISR() ;
  913. }
  914. }
  915. uart_intr_status = uart_reg->int_st.val;
  916. }
  917. }
  918. /**************************************************************/
  919. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  920. {
  921. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  922. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  923. BaseType_t res;
  924. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  925. //Take tx_mux
  926. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  927. if(res == pdFALSE) {
  928. return ESP_ERR_TIMEOUT;
  929. }
  930. ticks_to_wait = ticks_end - xTaskGetTickCount();
  931. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  932. ticks_to_wait = ticks_end - xTaskGetTickCount();
  933. if(UART[uart_num]->status.txfifo_cnt == 0) {
  934. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  935. return ESP_OK;
  936. }
  937. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  938. //take 2nd tx_done_sem, wait given from ISR
  939. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  940. if(res == pdFALSE) {
  941. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  942. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  943. return ESP_ERR_TIMEOUT;
  944. }
  945. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  946. return ESP_OK;
  947. }
  948. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  949. {
  950. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  951. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  952. UART[uart_num]->conf0.txd_brk = 1;
  953. UART[uart_num]->int_clr.tx_brk_done = 1;
  954. UART[uart_num]->int_ena.tx_brk_done = 1;
  955. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  956. return ESP_OK;
  957. }
  958. //Fill UART tx_fifo and return a number,
  959. //This function by itself is not thread-safe, always call from within a muxed section.
  960. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  961. {
  962. uint8_t i = 0;
  963. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  964. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  965. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  966. for(i = 0; i < copy_cnt; i++) {
  967. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  968. }
  969. return copy_cnt;
  970. }
  971. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  972. {
  973. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  974. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  975. UART_CHECK(buffer, "buffer null", (-1));
  976. if(len == 0) {
  977. return 0;
  978. }
  979. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  980. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  981. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  982. return tx_len;
  983. }
  984. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  985. {
  986. if(size == 0) {
  987. return 0;
  988. }
  989. size_t original_size = size;
  990. //lock for uart_tx
  991. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  992. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  993. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  994. int offset = 0;
  995. uart_tx_data_t evt;
  996. evt.tx_data.size = size;
  997. evt.tx_data.brk_len = brk_len;
  998. if(brk_en) {
  999. evt.type = UART_DATA_BREAK;
  1000. } else {
  1001. evt.type = UART_DATA;
  1002. }
  1003. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1004. while(size > 0) {
  1005. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1006. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1007. size -= send_size;
  1008. offset += send_size;
  1009. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1010. }
  1011. } else {
  1012. while(size) {
  1013. //semaphore for tx_fifo available
  1014. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1015. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1016. if(sent < size) {
  1017. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1018. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1019. }
  1020. size -= sent;
  1021. src += sent;
  1022. }
  1023. }
  1024. if(brk_en) {
  1025. uart_set_break(uart_num, brk_len);
  1026. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1027. }
  1028. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1029. }
  1030. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1031. return original_size;
  1032. }
  1033. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1034. {
  1035. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1036. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1037. UART_CHECK(src, "buffer null", (-1));
  1038. return uart_tx_all(uart_num, src, size, 0, 0);
  1039. }
  1040. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1041. {
  1042. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1043. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1044. UART_CHECK((size > 0), "uart size error", (-1));
  1045. UART_CHECK((src), "uart data null", (-1));
  1046. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1047. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1048. }
  1049. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1050. {
  1051. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1052. UART_CHECK((buf), "uart data null", (-1));
  1053. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1054. uint8_t* data = NULL;
  1055. size_t size;
  1056. size_t copy_len = 0;
  1057. int len_tmp;
  1058. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1059. return -1;
  1060. }
  1061. while(length) {
  1062. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1063. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1064. if(data) {
  1065. p_uart_obj[uart_num]->rx_head_ptr = data;
  1066. p_uart_obj[uart_num]->rx_ptr = data;
  1067. p_uart_obj[uart_num]->rx_cur_remain = size;
  1068. } else {
  1069. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1070. return copy_len;
  1071. }
  1072. }
  1073. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1074. len_tmp = length;
  1075. } else {
  1076. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1077. }
  1078. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1079. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1080. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1081. uart_pattern_queue_update(uart_num, len_tmp);
  1082. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1083. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1084. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1085. copy_len += len_tmp;
  1086. length -= len_tmp;
  1087. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1088. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1089. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1090. p_uart_obj[uart_num]->rx_ptr = NULL;
  1091. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1092. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1093. if(res == pdTRUE) {
  1094. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1095. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1096. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1097. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1098. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1099. }
  1100. }
  1101. }
  1102. }
  1103. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1104. return copy_len;
  1105. }
  1106. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1107. {
  1108. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1109. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1110. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1111. return ESP_OK;
  1112. }
  1113. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1114. esp_err_t uart_flush_input(uart_port_t uart_num)
  1115. {
  1116. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1117. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1118. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1119. uint8_t* data;
  1120. size_t size;
  1121. //rx sem protect the ring buffer read related functions
  1122. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1123. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1124. while(true) {
  1125. if(p_uart->rx_head_ptr) {
  1126. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1127. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1128. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1129. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1130. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1131. p_uart->rx_ptr = NULL;
  1132. p_uart->rx_cur_remain = 0;
  1133. p_uart->rx_head_ptr = NULL;
  1134. }
  1135. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1136. if(data == NULL) {
  1137. break;
  1138. }
  1139. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1140. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1141. uart_pattern_queue_update(uart_num, size);
  1142. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1143. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1144. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1145. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1146. if(res == pdTRUE) {
  1147. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1148. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1149. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1150. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1151. }
  1152. }
  1153. }
  1154. p_uart->rx_ptr = NULL;
  1155. p_uart->rx_cur_remain = 0;
  1156. p_uart->rx_head_ptr = NULL;
  1157. uart_reset_rx_fifo(uart_num);
  1158. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1159. xSemaphoreGive(p_uart->rx_mux);
  1160. return ESP_OK;
  1161. }
  1162. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1163. {
  1164. esp_err_t r;
  1165. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1166. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1167. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1168. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1169. if(p_uart_obj[uart_num] == NULL) {
  1170. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1171. if(p_uart_obj[uart_num] == NULL) {
  1172. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1173. return ESP_FAIL;
  1174. }
  1175. p_uart_obj[uart_num]->uart_num = uart_num;
  1176. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1177. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1178. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1179. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1180. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1181. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1182. p_uart_obj[uart_num]->queue_size = queue_size;
  1183. p_uart_obj[uart_num]->tx_ptr = NULL;
  1184. p_uart_obj[uart_num]->tx_head = NULL;
  1185. p_uart_obj[uart_num]->tx_len_tot = 0;
  1186. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1187. p_uart_obj[uart_num]->tx_brk_len = 0;
  1188. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1189. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1190. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1191. if(uart_queue) {
  1192. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1193. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1194. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1195. } else {
  1196. p_uart_obj[uart_num]->xQueueUart = NULL;
  1197. }
  1198. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1199. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1200. p_uart_obj[uart_num]->rx_ptr = NULL;
  1201. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1202. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1203. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1204. if(tx_buffer_size > 0) {
  1205. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1206. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1207. } else {
  1208. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1209. p_uart_obj[uart_num]->tx_buf_size = 0;
  1210. }
  1211. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1212. } else {
  1213. ESP_LOGE(UART_TAG, "UART driver already installed");
  1214. return ESP_FAIL;
  1215. }
  1216. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1217. if (r!=ESP_OK) goto err;
  1218. uart_intr_config_t uart_intr = {
  1219. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1220. | UART_RXFIFO_TOUT_INT_ENA_M
  1221. | UART_FRM_ERR_INT_ENA_M
  1222. | UART_RXFIFO_OVF_INT_ENA_M
  1223. | UART_BRK_DET_INT_ENA_M
  1224. | UART_PARITY_ERR_INT_ENA_M,
  1225. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1226. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1227. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1228. };
  1229. r=uart_intr_config(uart_num, &uart_intr);
  1230. if (r!=ESP_OK) goto err;
  1231. return r;
  1232. err:
  1233. uart_driver_delete(uart_num);
  1234. return r;
  1235. }
  1236. //Make sure no other tasks are still using UART before you call this function
  1237. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1238. {
  1239. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1240. if(p_uart_obj[uart_num] == NULL) {
  1241. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1242. return ESP_OK;
  1243. }
  1244. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1245. uart_disable_rx_intr(uart_num);
  1246. uart_disable_tx_intr(uart_num);
  1247. uart_pattern_link_free(uart_num);
  1248. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1249. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1250. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1251. }
  1252. if(p_uart_obj[uart_num]->tx_done_sem) {
  1253. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1254. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1255. }
  1256. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1257. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1258. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1259. }
  1260. if(p_uart_obj[uart_num]->tx_mux) {
  1261. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1262. p_uart_obj[uart_num]->tx_mux = NULL;
  1263. }
  1264. if(p_uart_obj[uart_num]->rx_mux) {
  1265. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1266. p_uart_obj[uart_num]->rx_mux = NULL;
  1267. }
  1268. if(p_uart_obj[uart_num]->xQueueUart) {
  1269. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1270. p_uart_obj[uart_num]->xQueueUart = NULL;
  1271. }
  1272. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1273. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1274. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1275. }
  1276. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1277. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1278. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1279. }
  1280. free(p_uart_obj[uart_num]);
  1281. p_uart_obj[uart_num] = NULL;
  1282. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1283. if(uart_num == UART_NUM_0) {
  1284. periph_module_disable(PERIPH_UART0_MODULE);
  1285. } else if(uart_num == UART_NUM_1) {
  1286. periph_module_disable(PERIPH_UART1_MODULE);
  1287. } else if(uart_num == UART_NUM_2) {
  1288. periph_module_disable(PERIPH_UART2_MODULE);
  1289. }
  1290. }
  1291. return ESP_OK;
  1292. }
  1293. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1294. {
  1295. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1296. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1297. }
  1298. }
  1299. portMUX_TYPE *uart_get_selectlock()
  1300. {
  1301. return &uart_selectlock;
  1302. }