uart.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/task.h"
  24. #include "freertos/ringbuf.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "sdkconfig.h"
  30. #if CONFIG_IDF_TARGET_ESP32
  31. #include "esp32/clk.h"
  32. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  33. #include "esp32s2beta/clk.h"
  34. #endif
  35. #define XOFF (char)0x13
  36. #define XON (char)0x11
  37. static const char* UART_TAG = "uart";
  38. #define UART_CHECK(a, str, ret_val) \
  39. if (!(a)) { \
  40. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  41. return (ret_val); \
  42. }
  43. #define UART_EMPTY_THRESH_DEFAULT (10)
  44. #define UART_FULL_THRESH_DEFAULT (120)
  45. #define UART_TOUT_THRESH_DEFAULT (10)
  46. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  47. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  48. #define UART_TX_IDLE_NUM_DEFAULT (0)
  49. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  50. #define UART_MIN_WAKEUP_THRESH (2)
  51. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  52. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  53. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  54. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  55. // Check actual UART mode set
  56. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  57. typedef struct {
  58. uart_event_type_t type; /*!< UART TX data type */
  59. struct {
  60. int brk_len;
  61. size_t size;
  62. uint8_t data[0];
  63. } tx_data;
  64. } uart_tx_data_t;
  65. typedef struct {
  66. int wr;
  67. int rd;
  68. int len;
  69. int* data;
  70. } uart_pat_rb_t;
  71. typedef struct {
  72. uart_port_t uart_num; /*!< UART port number*/
  73. int queue_size; /*!< UART event queue size*/
  74. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  75. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  76. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  77. bool coll_det_flg; /*!< UART collision detection flag */
  78. //rx parameters
  79. int rx_buffered_len; /*!< UART cached data length */
  80. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  81. int rx_buf_size; /*!< RX ring buffer size */
  82. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  83. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  84. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  85. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  86. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  87. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  88. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  89. uart_pat_rb_t rx_pattern_pos;
  90. //tx parameters
  91. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  92. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  93. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  94. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  95. int tx_buf_size; /*!< TX ring buffer size */
  96. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  97. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  98. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  99. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  100. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  101. uint32_t tx_len_cur;
  102. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  103. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  104. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  105. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  106. } uart_obj_t;
  107. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  108. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  109. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  110. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  111. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  112. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  113. {
  114. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  115. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  116. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  117. UART[uart_num]->conf0.bit_num = data_bit;
  118. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  119. return ESP_OK;
  120. }
  121. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  122. {
  123. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  124. *(data_bit) = UART[uart_num]->conf0.bit_num;
  125. return ESP_OK;
  126. }
  127. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  128. {
  129. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  130. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  131. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  132. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  133. if (stop_bit == UART_STOP_BITS_2) {
  134. stop_bit = UART_STOP_BITS_1;
  135. UART[uart_num]->rs485_conf.dl1_en = 1;
  136. } else {
  137. UART[uart_num]->rs485_conf.dl1_en = 0;
  138. }
  139. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  140. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  141. return ESP_OK;
  142. }
  143. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  144. {
  145. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  146. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  147. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  148. (*stop_bit) = UART_STOP_BITS_2;
  149. } else {
  150. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  151. }
  152. return ESP_OK;
  153. }
  154. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  155. {
  156. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  157. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  158. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  159. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  160. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  161. return ESP_OK;
  162. }
  163. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  164. {
  165. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  166. int val = UART[uart_num]->conf0.val;
  167. if(val & UART_PARITY_EN_M) {
  168. if(val & UART_PARITY_M) {
  169. (*parity_mode) = UART_PARITY_ODD;
  170. } else {
  171. (*parity_mode) = UART_PARITY_EVEN;
  172. }
  173. } else {
  174. (*parity_mode) = UART_PARITY_DISABLE;
  175. }
  176. return ESP_OK;
  177. }
  178. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  179. {
  180. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  181. esp_err_t ret = ESP_OK;
  182. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  183. int uart_clk_freq;
  184. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  185. /* this UART has been configured to use REF_TICK */
  186. uart_clk_freq = REF_CLK_FREQ;
  187. } else {
  188. uart_clk_freq = esp_clk_apb_freq();
  189. }
  190. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  191. if (clk_div < 16) {
  192. /* baud rate is too high for this clock frequency */
  193. ret = ESP_ERR_INVALID_ARG;
  194. } else {
  195. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  196. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  197. }
  198. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  199. return ret;
  200. }
  201. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  202. {
  203. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  204. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  205. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  206. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  207. uint32_t uart_clk_freq = esp_clk_apb_freq();
  208. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  209. uart_clk_freq = REF_CLK_FREQ;
  210. }
  211. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  212. return ESP_OK;
  213. }
  214. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  215. {
  216. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  217. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  218. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  219. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  220. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  221. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  222. return ESP_OK;
  223. }
  224. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  225. {
  226. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  227. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  228. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  229. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  230. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  231. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  232. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  233. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  234. UART[uart_num]->swfc_conf.xon_char = XON;
  235. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  236. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  237. return ESP_OK;
  238. }
  239. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  240. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  241. {
  242. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  243. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  244. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  245. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  246. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  247. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  248. UART[uart_num]->conf1.rx_flow_en = 1;
  249. } else {
  250. UART[uart_num]->conf1.rx_flow_en = 0;
  251. }
  252. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  253. UART[uart_num]->conf0.tx_flow_en = 1;
  254. } else {
  255. UART[uart_num]->conf0.tx_flow_en = 0;
  256. }
  257. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  258. return ESP_OK;
  259. }
  260. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  261. {
  262. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  263. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  264. if(UART[uart_num]->conf1.rx_flow_en) {
  265. val |= UART_HW_FLOWCTRL_RTS;
  266. }
  267. if(UART[uart_num]->conf0.tx_flow_en) {
  268. val |= UART_HW_FLOWCTRL_CTS;
  269. }
  270. (*flow_ctrl) = val;
  271. return ESP_OK;
  272. }
  273. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  274. {
  275. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  276. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  277. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  278. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  279. #if CONFIG_IDF_TARGET_ESP32
  280. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  281. READ_PERI_REG(UART_FIFO_REG(uart_num));
  282. }
  283. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  284. UART[uart_num]->conf0.rxfifo_rst = 1;
  285. UART[uart_num]->conf0.rxfifo_rst = 0;
  286. #endif
  287. return ESP_OK;
  288. }
  289. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  290. {
  291. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  292. //intr_clr register is write-only
  293. UART[uart_num]->int_clr.val = clr_mask;
  294. return ESP_OK;
  295. }
  296. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  297. {
  298. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  299. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  300. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  301. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  302. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  303. return ESP_OK;
  304. }
  305. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  306. {
  307. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  308. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  309. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  310. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  311. return ESP_OK;
  312. }
  313. static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  314. {
  315. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  316. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  317. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  318. }
  319. static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  320. {
  321. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  322. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  323. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  324. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  325. }
  326. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  327. {
  328. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  329. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  330. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  331. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  332. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  333. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  334. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  335. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  336. free(pdata);
  337. }
  338. return ESP_OK;
  339. }
  340. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  341. {
  342. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  343. esp_err_t ret = ESP_OK;
  344. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  345. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  346. int next = p_pos->wr + 1;
  347. if (next >= p_pos->len) {
  348. next = 0;
  349. }
  350. if (next == p_pos->rd) {
  351. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  352. ret = ESP_FAIL;
  353. } else {
  354. p_pos->data[p_pos->wr] = pos;
  355. p_pos->wr = next;
  356. ret = ESP_OK;
  357. }
  358. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  359. return ret;
  360. }
  361. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  362. {
  363. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  364. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  365. return ESP_ERR_INVALID_STATE;
  366. } else {
  367. esp_err_t ret = ESP_OK;
  368. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  369. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  370. if (p_pos->rd == p_pos->wr) {
  371. ret = ESP_FAIL;
  372. } else {
  373. p_pos->rd++;
  374. }
  375. if (p_pos->rd >= p_pos->len) {
  376. p_pos->rd = 0;
  377. }
  378. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  379. return ret;
  380. }
  381. }
  382. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  383. {
  384. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  385. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  386. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  387. int rd = p_pos->rd;
  388. while(rd != p_pos->wr) {
  389. p_pos->data[rd] -= diff_len;
  390. int rd_rec = rd;
  391. rd ++;
  392. if (rd >= p_pos->len) {
  393. rd = 0;
  394. }
  395. if (p_pos->data[rd_rec] < 0) {
  396. p_pos->rd = rd;
  397. }
  398. }
  399. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  400. return ESP_OK;
  401. }
  402. int uart_pattern_pop_pos(uart_port_t uart_num)
  403. {
  404. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  405. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  406. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  407. int pos = -1;
  408. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  409. pos = pat_pos->data[pat_pos->rd];
  410. uart_pattern_dequeue(uart_num);
  411. }
  412. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  413. return pos;
  414. }
  415. int uart_pattern_get_pos(uart_port_t uart_num)
  416. {
  417. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  418. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  419. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  420. int pos = -1;
  421. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  422. pos = pat_pos->data[pat_pos->rd];
  423. }
  424. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  425. return pos;
  426. }
  427. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  428. {
  429. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  430. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  431. int* pdata = (int*) malloc(queue_length * sizeof(int));
  432. if(pdata == NULL) {
  433. return ESP_ERR_NO_MEM;
  434. }
  435. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  436. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  437. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  438. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  439. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  440. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  441. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  442. free(ptmp);
  443. return ESP_OK;
  444. }
  445. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  446. {
  447. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  448. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  449. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  450. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  451. UART[uart_num]->at_cmd_char.data = pattern_chr;
  452. UART[uart_num]->at_cmd_char.char_num = chr_num;
  453. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  454. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  455. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  456. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  457. }
  458. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  459. {
  460. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  461. }
  462. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  463. {
  464. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  465. }
  466. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  467. {
  468. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  469. }
  470. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  471. {
  472. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  473. }
  474. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  475. {
  476. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  477. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  478. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  479. UART[uart_num]->int_clr.txfifo_empty = 1;
  480. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  481. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  482. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  483. return ESP_OK;
  484. }
  485. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  486. {
  487. int ret;
  488. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  489. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  490. switch(uart_num) {
  491. case UART_NUM_1:
  492. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  493. break;
  494. case UART_NUM_2:
  495. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  496. break;
  497. case UART_NUM_0:
  498. default:
  499. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  500. break;
  501. }
  502. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  503. return ret;
  504. }
  505. esp_err_t uart_isr_free(uart_port_t uart_num)
  506. {
  507. esp_err_t ret;
  508. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  509. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  510. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  511. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  512. p_uart_obj[uart_num]->intr_handle=NULL;
  513. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  514. return ret;
  515. }
  516. //internal signal can be output to multiple GPIO pads
  517. //only one GPIO pad can connect with input signal
  518. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  519. {
  520. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  521. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  522. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  523. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  524. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  525. int tx_sig, rx_sig, rts_sig, cts_sig;
  526. switch(uart_num) {
  527. case UART_NUM_0:
  528. tx_sig = U0TXD_OUT_IDX;
  529. rx_sig = U0RXD_IN_IDX;
  530. rts_sig = U0RTS_OUT_IDX;
  531. cts_sig = U0CTS_IN_IDX;
  532. break;
  533. case UART_NUM_1:
  534. tx_sig = U1TXD_OUT_IDX;
  535. rx_sig = U1RXD_IN_IDX;
  536. rts_sig = U1RTS_OUT_IDX;
  537. cts_sig = U1CTS_IN_IDX;
  538. break;
  539. #if CONFIG_IDF_TARGET_ESP32
  540. case UART_NUM_2:
  541. tx_sig = U2TXD_OUT_IDX;
  542. rx_sig = U2RXD_IN_IDX;
  543. rts_sig = U2RTS_OUT_IDX;
  544. cts_sig = U2CTS_IN_IDX;
  545. break;
  546. #endif
  547. case UART_NUM_MAX:
  548. default:
  549. tx_sig = U0TXD_OUT_IDX;
  550. rx_sig = U0RXD_IN_IDX;
  551. rts_sig = U0RTS_OUT_IDX;
  552. cts_sig = U0CTS_IN_IDX;
  553. break;
  554. }
  555. if(tx_io_num >= 0) {
  556. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  557. gpio_set_level(tx_io_num, 1);
  558. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  559. }
  560. if(rx_io_num >= 0) {
  561. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  562. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  563. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  564. gpio_matrix_in(rx_io_num, rx_sig, 0);
  565. }
  566. if(rts_io_num >= 0) {
  567. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  568. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  569. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  570. }
  571. if(cts_io_num >= 0) {
  572. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  573. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  574. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  575. gpio_matrix_in(cts_io_num, cts_sig, 0);
  576. }
  577. return ESP_OK;
  578. }
  579. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  580. {
  581. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  582. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  583. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  584. UART[uart_num]->conf0.sw_rts = level & 0x1;
  585. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  586. return ESP_OK;
  587. }
  588. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  589. {
  590. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  591. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  592. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  593. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  594. return ESP_OK;
  595. }
  596. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  597. {
  598. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  599. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  600. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  601. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  602. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  603. return ESP_OK;
  604. }
  605. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  606. {
  607. esp_err_t r;
  608. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  609. UART_CHECK((uart_config), "param null", ESP_FAIL);
  610. if(uart_num == UART_NUM_0) {
  611. periph_module_enable(PERIPH_UART0_MODULE);
  612. } else if(uart_num == UART_NUM_1) {
  613. periph_module_enable(PERIPH_UART1_MODULE);
  614. } else if(uart_num == UART_NUM_2) {
  615. #if CONFIG_IDF_TARGET_ESP32
  616. periph_module_enable(PERIPH_UART2_MODULE);
  617. #else
  618. return ESP_FAIL;
  619. #endif
  620. }
  621. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  622. if (r != ESP_OK) return r;
  623. UART[uart_num]->conf0.val =
  624. (uart_config->parity << UART_PARITY_S)
  625. | (uart_config->data_bits << UART_BIT_NUM_S)
  626. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  627. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  628. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  629. if (r != ESP_OK) return r;
  630. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  631. if (r != ESP_OK) return r;
  632. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  633. //A hardware reset does not reset the fifo,
  634. //so we need to reset the fifo manually.
  635. uart_reset_rx_fifo(uart_num);
  636. return r;
  637. }
  638. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  639. {
  640. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  641. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  642. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  643. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  644. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  645. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  646. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  647. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  648. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  649. } else {
  650. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  651. }
  652. UART[uart_num]->conf1.rx_tout_en = 1;
  653. } else {
  654. UART[uart_num]->conf1.rx_tout_en = 0;
  655. }
  656. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  657. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  658. }
  659. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  660. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  661. }
  662. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  663. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  664. return ESP_OK;
  665. }
  666. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  667. {
  668. int cnt = 0;
  669. int len = length;
  670. while (len >= 0) {
  671. if (buf[len] == pat_chr) {
  672. cnt++;
  673. } else {
  674. cnt = 0;
  675. }
  676. if (cnt >= pat_num) {
  677. break;
  678. }
  679. len --;
  680. }
  681. return len;
  682. }
  683. //internal isr handler for default driver code.
  684. static void uart_rx_intr_handler_default(void *param)
  685. {
  686. uart_obj_t *p_uart = (uart_obj_t*) param;
  687. uint8_t uart_num = p_uart->uart_num;
  688. uart_dev_t* uart_reg = UART[uart_num];
  689. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  690. uint8_t buf_idx = 0;
  691. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  692. uart_event_t uart_event;
  693. portBASE_TYPE HPTaskAwoken = 0;
  694. static uint8_t pat_flg = 0;
  695. while(uart_intr_status != 0x0) {
  696. buf_idx = 0;
  697. uart_event.type = UART_EVENT_MAX;
  698. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  699. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  700. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  701. if(p_uart->tx_waiting_brk) {
  702. continue;
  703. }
  704. //TX semaphore will only be used when tx_buf_size is zero.
  705. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  706. p_uart->tx_waiting_fifo = false;
  707. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  708. if(HPTaskAwoken == pdTRUE) {
  709. portYIELD_FROM_ISR();
  710. }
  711. } else {
  712. //We don't use TX ring buffer, because the size is zero.
  713. if(p_uart->tx_buf_size == 0) {
  714. continue;
  715. }
  716. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  717. bool en_tx_flg = false;
  718. //We need to put a loop here, in case all the buffer items are very short.
  719. //That would cause a watch_dog reset because empty interrupt happens so often.
  720. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  721. while(tx_fifo_rem) {
  722. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  723. size_t size;
  724. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  725. if(p_uart->tx_head) {
  726. //The first item is the data description
  727. //Get the first item to get the data information
  728. if(p_uart->tx_len_tot == 0) {
  729. p_uart->tx_ptr = NULL;
  730. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  731. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  732. p_uart->tx_brk_flg = 1;
  733. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  734. }
  735. //We have saved the data description from the 1st item, return buffer.
  736. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  737. if(HPTaskAwoken == pdTRUE) {
  738. portYIELD_FROM_ISR();
  739. }
  740. }else if(p_uart->tx_ptr == NULL) {
  741. //Update the TX item pointer, we will need this to return item to buffer.
  742. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  743. en_tx_flg = true;
  744. p_uart->tx_len_cur = size;
  745. }
  746. }
  747. else {
  748. //Can not get data from ring buffer, return;
  749. break;
  750. }
  751. }
  752. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  753. //To fill the TX FIFO.
  754. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  755. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  756. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  757. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  758. uart_reg->conf0.sw_rts = 0;
  759. uart_reg->int_ena.tx_done = 1;
  760. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  761. }
  762. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  763. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  764. *(p_uart->tx_ptr++) & 0xff);
  765. }
  766. p_uart->tx_len_tot -= send_len;
  767. p_uart->tx_len_cur -= send_len;
  768. tx_fifo_rem -= send_len;
  769. if (p_uart->tx_len_cur == 0) {
  770. //Return item to ring buffer.
  771. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  772. if(HPTaskAwoken == pdTRUE) {
  773. portYIELD_FROM_ISR();
  774. }
  775. p_uart->tx_head = NULL;
  776. p_uart->tx_ptr = NULL;
  777. //Sending item done, now we need to send break if there is a record.
  778. //Set TX break signal after FIFO is empty
  779. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  780. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  781. uart_reg->int_ena.tx_brk_done = 0;
  782. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  783. uart_reg->conf0.txd_brk = 1;
  784. uart_reg->int_clr.tx_brk_done = 1;
  785. uart_reg->int_ena.tx_brk_done = 1;
  786. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  787. p_uart->tx_waiting_brk = 1;
  788. //do not enable TX empty interrupt
  789. en_tx_flg = false;
  790. } else {
  791. //enable TX empty interrupt
  792. en_tx_flg = true;
  793. }
  794. } else {
  795. //enable TX empty interrupt
  796. en_tx_flg = true;
  797. }
  798. }
  799. }
  800. if (en_tx_flg) {
  801. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  802. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  803. }
  804. }
  805. }
  806. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  807. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  808. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  809. ) {
  810. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  811. if(pat_flg == 1) {
  812. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  813. pat_flg = 0;
  814. }
  815. if (p_uart->rx_buffer_full_flg == false) {
  816. //We have to read out all data in RX FIFO to clear the interrupt signal
  817. while (buf_idx < rx_fifo_len) {
  818. #if CONFIG_IDF_TARGET_ESP32
  819. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  820. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  821. p_uart->rx_data_buf[buf_idx++] = READ_PERI_REG(UART_FIFO_AHB_REG(uart_num));
  822. #endif
  823. }
  824. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  825. int pat_num = uart_reg->at_cmd_char.char_num;
  826. int pat_idx = -1;
  827. //Get the buffer from the FIFO
  828. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  829. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  830. uart_event.type = UART_PATTERN_DET;
  831. uart_event.size = rx_fifo_len;
  832. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  833. } else {
  834. //After Copying the Data From FIFO ,Clear intr_status
  835. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  836. uart_event.type = UART_DATA;
  837. uart_event.size = rx_fifo_len;
  838. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  839. if (p_uart->uart_select_notif_callback) {
  840. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  841. }
  842. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  843. }
  844. p_uart->rx_stash_len = rx_fifo_len;
  845. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  846. //Mainly for applications that uses flow control or small ring buffer.
  847. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  848. p_uart->rx_buffer_full_flg = true;
  849. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  850. if (uart_event.type == UART_PATTERN_DET) {
  851. if (rx_fifo_len < pat_num) {
  852. //some of the characters are read out in last interrupt
  853. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  854. } else {
  855. uart_pattern_enqueue(uart_num,
  856. pat_idx <= -1 ?
  857. //can not find the pattern in buffer,
  858. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  859. // find the pattern in buffer
  860. p_uart->rx_buffered_len + pat_idx);
  861. }
  862. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  863. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  864. }
  865. }
  866. uart_event.type = UART_BUFFER_FULL;
  867. } else {
  868. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  869. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  870. if (rx_fifo_len < pat_num) {
  871. //some of the characters are read out in last interrupt
  872. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  873. } else if(pat_idx >= 0) {
  874. // find pattern in statsh buffer.
  875. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  876. }
  877. }
  878. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  879. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  880. }
  881. if(HPTaskAwoken == pdTRUE) {
  882. portYIELD_FROM_ISR();
  883. }
  884. } else {
  885. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  886. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  887. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  888. uart_reg->int_clr.at_cmd_char_det = 1;
  889. uart_event.type = UART_PATTERN_DET;
  890. uart_event.size = rx_fifo_len;
  891. pat_flg = 1;
  892. }
  893. }
  894. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  895. // When fifo overflows, we reset the fifo.
  896. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  897. uart_reset_rx_fifo(uart_num);
  898. uart_reg->int_clr.rxfifo_ovf = 1;
  899. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  900. uart_event.type = UART_FIFO_OVF;
  901. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  902. if (p_uart->uart_select_notif_callback) {
  903. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  904. }
  905. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  906. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  907. uart_reg->int_clr.brk_det = 1;
  908. uart_event.type = UART_BREAK;
  909. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  910. uart_reg->int_clr.frm_err = 1;
  911. uart_event.type = UART_FRAME_ERR;
  912. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  913. if (p_uart->uart_select_notif_callback) {
  914. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  915. }
  916. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  917. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  918. uart_reg->int_clr.parity_err = 1;
  919. uart_event.type = UART_PARITY_ERR;
  920. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  921. if (p_uart->uart_select_notif_callback) {
  922. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  923. }
  924. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  925. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  926. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  927. uart_reg->conf0.txd_brk = 0;
  928. uart_reg->int_ena.tx_brk_done = 0;
  929. uart_reg->int_clr.tx_brk_done = 1;
  930. if(p_uart->tx_brk_flg == 1) {
  931. uart_reg->int_ena.txfifo_empty = 1;
  932. }
  933. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  934. if(p_uart->tx_brk_flg == 1) {
  935. p_uart->tx_brk_flg = 0;
  936. p_uart->tx_waiting_brk = 0;
  937. } else {
  938. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  939. if(HPTaskAwoken == pdTRUE) {
  940. portYIELD_FROM_ISR();
  941. }
  942. }
  943. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  944. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  945. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  946. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  947. uart_reg->int_clr.at_cmd_char_det = 1;
  948. uart_event.type = UART_PATTERN_DET;
  949. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  950. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  951. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  952. // RS485 collision or frame error interrupt triggered
  953. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  954. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  955. uart_reset_rx_fifo(uart_num);
  956. // Set collision detection flag
  957. p_uart_obj[uart_num]->coll_det_flg = true;
  958. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  959. uart_event.type = UART_EVENT_MAX;
  960. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  961. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  962. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  963. // If RS485 half duplex mode is enable then reset FIFO and
  964. // reset RTS pin to start receiver driver
  965. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  966. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  967. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  968. uart_reg->conf0.sw_rts = 1;
  969. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  970. }
  971. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  972. if (HPTaskAwoken == pdTRUE) {
  973. portYIELD_FROM_ISR();
  974. }
  975. } else {
  976. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  977. uart_event.type = UART_EVENT_MAX;
  978. }
  979. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  980. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  981. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  982. }
  983. if(HPTaskAwoken == pdTRUE) {
  984. portYIELD_FROM_ISR();
  985. }
  986. }
  987. uart_intr_status = uart_reg->int_st.val;
  988. }
  989. }
  990. /**************************************************************/
  991. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  992. {
  993. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  994. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  995. BaseType_t res;
  996. portTickType ticks_start = xTaskGetTickCount();
  997. //Take tx_mux
  998. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  999. if(res == pdFALSE) {
  1000. return ESP_ERR_TIMEOUT;
  1001. }
  1002. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1003. if(UART[uart_num]->status.txfifo_cnt == 0) {
  1004. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1005. return ESP_OK;
  1006. }
  1007. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1008. TickType_t ticks_end = xTaskGetTickCount();
  1009. if (ticks_end - ticks_start > ticks_to_wait) {
  1010. ticks_to_wait = 0;
  1011. } else {
  1012. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1013. }
  1014. //take 2nd tx_done_sem, wait given from ISR
  1015. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1016. if(res == pdFALSE) {
  1017. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1018. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1019. return ESP_ERR_TIMEOUT;
  1020. }
  1021. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1022. return ESP_OK;
  1023. }
  1024. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1025. {
  1026. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1027. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1028. UART[uart_num]->conf0.txd_brk = 1;
  1029. UART[uart_num]->int_clr.tx_brk_done = 1;
  1030. UART[uart_num]->int_ena.tx_brk_done = 1;
  1031. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1032. return ESP_OK;
  1033. }
  1034. //Fill UART tx_fifo and return a number,
  1035. //This function by itself is not thread-safe, always call from within a muxed section.
  1036. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1037. {
  1038. uint8_t i = 0;
  1039. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1040. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1041. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1042. // Set the RTS pin if RS485 mode is enabled
  1043. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1044. UART[uart_num]->conf0.sw_rts = 0;
  1045. UART[uart_num]->int_ena.tx_done = 1;
  1046. }
  1047. for (i = 0; i < copy_cnt; i++) {
  1048. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1049. }
  1050. return copy_cnt;
  1051. }
  1052. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1053. {
  1054. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1055. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1056. UART_CHECK(buffer, "buffer null", (-1));
  1057. if(len == 0) {
  1058. return 0;
  1059. }
  1060. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1061. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1062. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1063. return tx_len;
  1064. }
  1065. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1066. {
  1067. if(size == 0) {
  1068. return 0;
  1069. }
  1070. size_t original_size = size;
  1071. //lock for uart_tx
  1072. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1073. p_uart_obj[uart_num]->coll_det_flg = false;
  1074. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1075. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1076. int offset = 0;
  1077. uart_tx_data_t evt;
  1078. evt.tx_data.size = size;
  1079. evt.tx_data.brk_len = brk_len;
  1080. if(brk_en) {
  1081. evt.type = UART_DATA_BREAK;
  1082. } else {
  1083. evt.type = UART_DATA;
  1084. }
  1085. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1086. while(size > 0) {
  1087. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1088. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1089. size -= send_size;
  1090. offset += send_size;
  1091. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1092. }
  1093. } else {
  1094. while(size) {
  1095. //semaphore for tx_fifo available
  1096. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1097. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1098. if(sent < size) {
  1099. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1100. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1101. }
  1102. size -= sent;
  1103. src += sent;
  1104. }
  1105. }
  1106. if(brk_en) {
  1107. uart_set_break(uart_num, brk_len);
  1108. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1109. }
  1110. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1111. }
  1112. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1113. return original_size;
  1114. }
  1115. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1116. {
  1117. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1118. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1119. UART_CHECK(src, "buffer null", (-1));
  1120. return uart_tx_all(uart_num, src, size, 0, 0);
  1121. }
  1122. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1123. {
  1124. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1125. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1126. UART_CHECK((size > 0), "uart size error", (-1));
  1127. UART_CHECK((src), "uart data null", (-1));
  1128. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1129. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1130. }
  1131. static bool uart_check_buf_full(uart_port_t uart_num)
  1132. {
  1133. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1134. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1135. if(res == pdTRUE) {
  1136. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1137. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1138. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1139. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1140. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1141. return true;
  1142. }
  1143. }
  1144. return false;
  1145. }
  1146. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1147. {
  1148. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1149. UART_CHECK((buf), "uart data null", (-1));
  1150. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1151. uint8_t* data = NULL;
  1152. size_t size;
  1153. size_t copy_len = 0;
  1154. int len_tmp;
  1155. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1156. return -1;
  1157. }
  1158. while(length) {
  1159. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1160. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1161. if(data) {
  1162. p_uart_obj[uart_num]->rx_head_ptr = data;
  1163. p_uart_obj[uart_num]->rx_ptr = data;
  1164. p_uart_obj[uart_num]->rx_cur_remain = size;
  1165. } else {
  1166. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1167. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1168. //to solve the possible asynchronous issues.
  1169. if(uart_check_buf_full(uart_num)) {
  1170. //This condition will never be true if `uart_read_bytes`
  1171. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1172. continue;
  1173. } else {
  1174. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1175. return copy_len;
  1176. }
  1177. }
  1178. }
  1179. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1180. len_tmp = length;
  1181. } else {
  1182. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1183. }
  1184. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1185. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1186. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1187. uart_pattern_queue_update(uart_num, len_tmp);
  1188. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1189. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1190. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1191. copy_len += len_tmp;
  1192. length -= len_tmp;
  1193. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1194. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1195. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1196. p_uart_obj[uart_num]->rx_ptr = NULL;
  1197. uart_check_buf_full(uart_num);
  1198. }
  1199. }
  1200. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1201. return copy_len;
  1202. }
  1203. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1204. {
  1205. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1206. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1207. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1208. return ESP_OK;
  1209. }
  1210. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1211. esp_err_t uart_flush_input(uart_port_t uart_num)
  1212. {
  1213. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1214. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1215. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1216. uint8_t* data;
  1217. size_t size;
  1218. //rx sem protect the ring buffer read related functions
  1219. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1220. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1221. while(true) {
  1222. if(p_uart->rx_head_ptr) {
  1223. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1224. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1225. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1226. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1227. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1228. p_uart->rx_ptr = NULL;
  1229. p_uart->rx_cur_remain = 0;
  1230. p_uart->rx_head_ptr = NULL;
  1231. }
  1232. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1233. if(data == NULL) {
  1234. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1235. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1236. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1237. }
  1238. //We also need to clear the `rx_buffer_full_flg` here.
  1239. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1240. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1241. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1242. break;
  1243. }
  1244. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1245. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1246. uart_pattern_queue_update(uart_num, size);
  1247. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1248. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1249. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1250. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1251. if(res == pdTRUE) {
  1252. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1253. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1254. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1255. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1256. }
  1257. }
  1258. }
  1259. p_uart->rx_ptr = NULL;
  1260. p_uart->rx_cur_remain = 0;
  1261. p_uart->rx_head_ptr = NULL;
  1262. uart_reset_rx_fifo(uart_num);
  1263. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1264. xSemaphoreGive(p_uart->rx_mux);
  1265. return ESP_OK;
  1266. }
  1267. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1268. {
  1269. esp_err_t r;
  1270. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1271. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1272. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1273. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1274. if(p_uart_obj[uart_num] == NULL) {
  1275. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1276. if(p_uart_obj[uart_num] == NULL) {
  1277. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1278. return ESP_FAIL;
  1279. }
  1280. p_uart_obj[uart_num]->uart_num = uart_num;
  1281. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1282. p_uart_obj[uart_num]->coll_det_flg = false;
  1283. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1284. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1285. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1286. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1287. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1288. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1289. p_uart_obj[uart_num]->queue_size = queue_size;
  1290. p_uart_obj[uart_num]->tx_ptr = NULL;
  1291. p_uart_obj[uart_num]->tx_head = NULL;
  1292. p_uart_obj[uart_num]->tx_len_tot = 0;
  1293. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1294. p_uart_obj[uart_num]->tx_brk_len = 0;
  1295. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1296. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1297. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1298. if(uart_queue) {
  1299. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1300. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1301. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1302. } else {
  1303. p_uart_obj[uart_num]->xQueueUart = NULL;
  1304. }
  1305. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1306. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1307. p_uart_obj[uart_num]->rx_ptr = NULL;
  1308. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1309. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1310. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1311. if(tx_buffer_size > 0) {
  1312. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1313. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1314. } else {
  1315. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1316. p_uart_obj[uart_num]->tx_buf_size = 0;
  1317. }
  1318. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1319. } else {
  1320. ESP_LOGE(UART_TAG, "UART driver already installed");
  1321. return ESP_FAIL;
  1322. }
  1323. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1324. if (r!=ESP_OK) goto err;
  1325. uart_intr_config_t uart_intr = {
  1326. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1327. | UART_RXFIFO_TOUT_INT_ENA_M
  1328. | UART_FRM_ERR_INT_ENA_M
  1329. | UART_RXFIFO_OVF_INT_ENA_M
  1330. | UART_BRK_DET_INT_ENA_M
  1331. | UART_PARITY_ERR_INT_ENA_M,
  1332. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1333. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1334. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1335. };
  1336. r=uart_intr_config(uart_num, &uart_intr);
  1337. if (r!=ESP_OK) goto err;
  1338. return r;
  1339. err:
  1340. uart_driver_delete(uart_num);
  1341. return r;
  1342. }
  1343. //Make sure no other tasks are still using UART before you call this function
  1344. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1345. {
  1346. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1347. if(p_uart_obj[uart_num] == NULL) {
  1348. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1349. return ESP_OK;
  1350. }
  1351. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1352. uart_disable_rx_intr(uart_num);
  1353. uart_disable_tx_intr(uart_num);
  1354. uart_pattern_link_free(uart_num);
  1355. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1356. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1357. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1358. }
  1359. if(p_uart_obj[uart_num]->tx_done_sem) {
  1360. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1361. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1362. }
  1363. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1364. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1365. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1366. }
  1367. if(p_uart_obj[uart_num]->tx_mux) {
  1368. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1369. p_uart_obj[uart_num]->tx_mux = NULL;
  1370. }
  1371. if(p_uart_obj[uart_num]->rx_mux) {
  1372. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1373. p_uart_obj[uart_num]->rx_mux = NULL;
  1374. }
  1375. if(p_uart_obj[uart_num]->xQueueUart) {
  1376. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1377. p_uart_obj[uart_num]->xQueueUart = NULL;
  1378. }
  1379. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1380. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1381. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1382. }
  1383. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1384. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1385. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1386. }
  1387. free(p_uart_obj[uart_num]);
  1388. p_uart_obj[uart_num] = NULL;
  1389. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  1390. if(uart_num == UART_NUM_0) {
  1391. periph_module_disable(PERIPH_UART0_MODULE);
  1392. } else if(uart_num == UART_NUM_1) {
  1393. periph_module_disable(PERIPH_UART1_MODULE);
  1394. } else if(uart_num == UART_NUM_2) {
  1395. #if CONFIG_IDF_TARGET_ESP32
  1396. periph_module_disable(PERIPH_UART2_MODULE);
  1397. #else
  1398. return ESP_FAIL;
  1399. #endif
  1400. }
  1401. }
  1402. return ESP_OK;
  1403. }
  1404. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1405. {
  1406. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1407. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1408. }
  1409. }
  1410. portMUX_TYPE *uart_get_selectlock()
  1411. {
  1412. return &uart_selectlock;
  1413. }
  1414. // Set UART mode
  1415. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1416. {
  1417. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1418. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1419. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1420. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1421. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1422. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1423. }
  1424. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1425. UART[uart_num]->rs485_conf.en = 0;
  1426. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1427. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1428. UART[uart_num]->conf0.irda_en = 0;
  1429. UART[uart_num]->conf0.sw_rts = 0;
  1430. switch (mode) {
  1431. case UART_MODE_UART:
  1432. break;
  1433. case UART_MODE_RS485_COLLISION_DETECT:
  1434. // This mode allows read while transmitting that allows collision detection
  1435. p_uart_obj[uart_num]->coll_det_flg = false;
  1436. // Transmitter’s output signal loop back to the receiver’s input signal
  1437. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1438. // Transmitter should send data when its receiver is busy
  1439. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1440. UART[uart_num]->rs485_conf.en = 1;
  1441. // Enable collision detection interrupts
  1442. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1443. | UART_RXFIFO_FULL_INT_ENA
  1444. | UART_RS485_CLASH_INT_ENA
  1445. | UART_RS485_FRM_ERR_INT_ENA
  1446. | UART_RS485_PARITY_ERR_INT_ENA);
  1447. break;
  1448. case UART_MODE_RS485_APP_CTRL:
  1449. // Application software control, remove echo
  1450. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1451. UART[uart_num]->rs485_conf.en = 1;
  1452. break;
  1453. case UART_MODE_RS485_HALF_DUPLEX:
  1454. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1455. UART[uart_num]->conf0.sw_rts = 1;
  1456. UART[uart_num]->rs485_conf.en = 1;
  1457. // Must be set to 0 to automatically remove echo
  1458. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1459. // This is to void collision
  1460. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1461. break;
  1462. case UART_MODE_IRDA:
  1463. UART[uart_num]->conf0.irda_en = 1;
  1464. break;
  1465. default:
  1466. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1467. break;
  1468. }
  1469. p_uart_obj[uart_num]->uart_mode = mode;
  1470. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1471. return ESP_OK;
  1472. }
  1473. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1474. {
  1475. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1476. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1477. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1478. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1479. // transmission time of one symbol (~11 bit) on current baudrate
  1480. if (tout_thresh > 0) {
  1481. UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V);
  1482. UART[uart_num]->conf1.rx_tout_en = 1;
  1483. } else {
  1484. UART[uart_num]->conf1.rx_tout_en = 0;
  1485. }
  1486. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1487. return ESP_OK;
  1488. }
  1489. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1490. {
  1491. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1492. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1493. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1494. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1495. "wrong mode", ESP_ERR_INVALID_ARG);
  1496. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1497. return ESP_OK;
  1498. }
  1499. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1500. {
  1501. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1502. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1503. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1504. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1505. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1506. return ESP_OK;
  1507. }
  1508. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1509. {
  1510. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1511. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1512. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1513. return ESP_OK;
  1514. }