uart.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "esp32/clk.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/uart_periph.h"
  27. #include "driver/uart.h"
  28. #include "driver/gpio.h"
  29. #include "driver/uart_select.h"
  30. #define UART_NUM SOC_UART_NUM
  31. #define XOFF (char)0x13
  32. #define XON (char)0x11
  33. static const char* UART_TAG = "uart";
  34. #define UART_CHECK(a, str, ret_val) \
  35. if (!(a)) { \
  36. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  37. return (ret_val); \
  38. }
  39. #define UART_EMPTY_THRESH_DEFAULT (10)
  40. #define UART_FULL_THRESH_DEFAULT (120)
  41. #define UART_TOUT_THRESH_DEFAULT (10)
  42. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  43. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  44. #define UART_TX_IDLE_NUM_DEFAULT (0)
  45. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  46. #define UART_MIN_WAKEUP_THRESH (2)
  47. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  48. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  49. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  50. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  51. // Check actual UART mode set
  52. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  53. typedef struct {
  54. uart_event_type_t type; /*!< UART TX data type */
  55. struct {
  56. int brk_len;
  57. size_t size;
  58. uint8_t data[0];
  59. } tx_data;
  60. } uart_tx_data_t;
  61. typedef struct {
  62. int wr;
  63. int rd;
  64. int len;
  65. int* data;
  66. } uart_pat_rb_t;
  67. typedef struct {
  68. uart_port_t uart_num; /*!< UART port number*/
  69. int queue_size; /*!< UART event queue size*/
  70. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  71. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  72. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  73. bool coll_det_flg; /*!< UART collision detection flag */
  74. //rx parameters
  75. int rx_buffered_len; /*!< UART cached data length */
  76. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  77. int rx_buf_size; /*!< RX ring buffer size */
  78. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  79. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  80. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  81. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  82. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  83. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  84. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  85. uart_pat_rb_t rx_pattern_pos;
  86. //tx parameters
  87. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  88. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  89. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  90. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  91. int tx_buf_size; /*!< TX ring buffer size */
  92. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  93. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  94. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  95. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  96. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  97. uint32_t tx_len_cur;
  98. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  99. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  100. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  101. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  102. } uart_obj_t;
  103. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  104. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  105. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {
  106. &UART0,
  107. &UART1,
  108. #if UART_NUM > 2
  109. &UART2
  110. #endif
  111. };
  112. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
  113. portMUX_INITIALIZER_UNLOCKED,
  114. portMUX_INITIALIZER_UNLOCKED,
  115. #if UART_NUM > 2
  116. portMUX_INITIALIZER_UNLOCKED
  117. #endif
  118. };
  119. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  120. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  121. {
  122. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  123. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  124. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  125. UART[uart_num]->conf0.bit_num = data_bit;
  126. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  127. return ESP_OK;
  128. }
  129. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  130. {
  131. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  132. *(data_bit) = UART[uart_num]->conf0.bit_num;
  133. return ESP_OK;
  134. }
  135. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  136. {
  137. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  138. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  139. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  140. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  141. if (stop_bit == UART_STOP_BITS_2) {
  142. stop_bit = UART_STOP_BITS_1;
  143. UART[uart_num]->rs485_conf.dl1_en = 1;
  144. } else {
  145. UART[uart_num]->rs485_conf.dl1_en = 0;
  146. }
  147. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  148. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  149. return ESP_OK;
  150. }
  151. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  152. {
  153. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  154. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  155. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  156. (*stop_bit) = UART_STOP_BITS_2;
  157. } else {
  158. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  159. }
  160. return ESP_OK;
  161. }
  162. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  163. {
  164. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  165. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  166. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  167. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  168. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  169. return ESP_OK;
  170. }
  171. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  172. {
  173. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  174. int val = UART[uart_num]->conf0.val;
  175. if(val & UART_PARITY_EN_M) {
  176. if(val & UART_PARITY_M) {
  177. (*parity_mode) = UART_PARITY_ODD;
  178. } else {
  179. (*parity_mode) = UART_PARITY_EVEN;
  180. }
  181. } else {
  182. (*parity_mode) = UART_PARITY_DISABLE;
  183. }
  184. return ESP_OK;
  185. }
  186. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  187. {
  188. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  189. esp_err_t ret = ESP_OK;
  190. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  191. int uart_clk_freq;
  192. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  193. /* this UART has been configured to use REF_TICK */
  194. uart_clk_freq = REF_CLK_FREQ;
  195. } else {
  196. uart_clk_freq = esp_clk_apb_freq();
  197. }
  198. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  199. if (clk_div < 16) {
  200. /* baud rate is too high for this clock frequency */
  201. ret = ESP_ERR_INVALID_ARG;
  202. } else {
  203. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  204. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  205. }
  206. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  207. return ret;
  208. }
  209. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  210. {
  211. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  212. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  213. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  214. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  215. uint32_t uart_clk_freq = esp_clk_apb_freq();
  216. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  217. uart_clk_freq = REF_CLK_FREQ;
  218. }
  219. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  220. return ESP_OK;
  221. }
  222. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  223. {
  224. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  225. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  227. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  228. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  229. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  230. return ESP_OK;
  231. }
  232. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  233. {
  234. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  235. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  236. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  237. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  238. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  239. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  240. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  241. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  242. UART[uart_num]->swfc_conf.xon_char = XON;
  243. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  244. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  245. return ESP_OK;
  246. }
  247. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  248. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  249. {
  250. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  251. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  252. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  253. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  254. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  255. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  256. UART[uart_num]->conf1.rx_flow_en = 1;
  257. } else {
  258. UART[uart_num]->conf1.rx_flow_en = 0;
  259. }
  260. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  261. UART[uart_num]->conf0.tx_flow_en = 1;
  262. } else {
  263. UART[uart_num]->conf0.tx_flow_en = 0;
  264. }
  265. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  266. return ESP_OK;
  267. }
  268. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  269. {
  270. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  271. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  272. if(UART[uart_num]->conf1.rx_flow_en) {
  273. val |= UART_HW_FLOWCTRL_RTS;
  274. }
  275. if(UART[uart_num]->conf0.tx_flow_en) {
  276. val |= UART_HW_FLOWCTRL_CTS;
  277. }
  278. (*flow_ctrl) = val;
  279. return ESP_OK;
  280. }
  281. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  285. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  286. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  287. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  288. READ_PERI_REG(UART_FIFO_REG(uart_num));
  289. }
  290. return ESP_OK;
  291. }
  292. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  293. {
  294. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  295. //intr_clr register is write-only
  296. UART[uart_num]->int_clr.val = clr_mask;
  297. return ESP_OK;
  298. }
  299. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  300. {
  301. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  302. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  303. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  304. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  305. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  306. return ESP_OK;
  307. }
  308. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  309. {
  310. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  311. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  312. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  313. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  314. return ESP_OK;
  315. }
  316. static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  317. {
  318. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  319. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  320. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  321. }
  322. static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  323. {
  324. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  325. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  326. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  327. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  328. }
  329. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  330. {
  331. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  332. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  333. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  334. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  335. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  336. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  337. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  338. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  339. free(pdata);
  340. }
  341. return ESP_OK;
  342. }
  343. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  344. {
  345. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  346. esp_err_t ret = ESP_OK;
  347. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  348. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  349. int next = p_pos->wr + 1;
  350. if (next >= p_pos->len) {
  351. next = 0;
  352. }
  353. if (next == p_pos->rd) {
  354. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  355. ret = ESP_FAIL;
  356. } else {
  357. p_pos->data[p_pos->wr] = pos;
  358. p_pos->wr = next;
  359. ret = ESP_OK;
  360. }
  361. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  362. return ret;
  363. }
  364. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  365. {
  366. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  367. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  368. return ESP_ERR_INVALID_STATE;
  369. } else {
  370. esp_err_t ret = ESP_OK;
  371. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  372. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  373. if (p_pos->rd == p_pos->wr) {
  374. ret = ESP_FAIL;
  375. } else {
  376. p_pos->rd++;
  377. }
  378. if (p_pos->rd >= p_pos->len) {
  379. p_pos->rd = 0;
  380. }
  381. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  382. return ret;
  383. }
  384. }
  385. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  386. {
  387. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  388. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  389. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  390. int rd = p_pos->rd;
  391. while(rd != p_pos->wr) {
  392. p_pos->data[rd] -= diff_len;
  393. int rd_rec = rd;
  394. rd ++;
  395. if (rd >= p_pos->len) {
  396. rd = 0;
  397. }
  398. if (p_pos->data[rd_rec] < 0) {
  399. p_pos->rd = rd;
  400. }
  401. }
  402. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  403. return ESP_OK;
  404. }
  405. int uart_pattern_pop_pos(uart_port_t uart_num)
  406. {
  407. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  408. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  409. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  410. int pos = -1;
  411. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  412. pos = pat_pos->data[pat_pos->rd];
  413. uart_pattern_dequeue(uart_num);
  414. }
  415. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  416. return pos;
  417. }
  418. int uart_pattern_get_pos(uart_port_t uart_num)
  419. {
  420. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  421. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  422. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  423. int pos = -1;
  424. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  425. pos = pat_pos->data[pat_pos->rd];
  426. }
  427. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  428. return pos;
  429. }
  430. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  431. {
  432. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  433. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  434. int* pdata = (int*) malloc(queue_length * sizeof(int));
  435. if(pdata == NULL) {
  436. return ESP_ERR_NO_MEM;
  437. }
  438. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  439. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  440. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  441. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  442. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  443. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  444. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  445. free(ptmp);
  446. return ESP_OK;
  447. }
  448. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  449. {
  450. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  451. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  452. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  453. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  454. UART[uart_num]->at_cmd_char.data = pattern_chr;
  455. UART[uart_num]->at_cmd_char.char_num = chr_num;
  456. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  457. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  458. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  459. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  460. }
  461. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  462. {
  463. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  464. }
  465. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  466. {
  467. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  468. }
  469. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  470. {
  471. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  472. }
  473. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  474. {
  475. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  476. }
  477. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  478. {
  479. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  480. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  481. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  482. UART[uart_num]->int_clr.txfifo_empty = 1;
  483. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  484. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  485. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  486. return ESP_OK;
  487. }
  488. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  489. {
  490. int ret;
  491. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  492. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  493. switch(uart_num) {
  494. case UART_NUM_1:
  495. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  496. break;
  497. #if UART_NUM > 2
  498. case UART_NUM_2:
  499. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  500. break;
  501. #endif
  502. case UART_NUM_0:
  503. default:
  504. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  505. break;
  506. }
  507. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  508. return ret;
  509. }
  510. esp_err_t uart_isr_free(uart_port_t uart_num)
  511. {
  512. esp_err_t ret;
  513. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  514. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  515. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  516. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  517. p_uart_obj[uart_num]->intr_handle=NULL;
  518. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  519. return ret;
  520. }
  521. //internal signal can be output to multiple GPIO pads
  522. //only one GPIO pad can connect with input signal
  523. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  524. {
  525. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  526. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  527. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  528. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  529. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  530. int tx_sig, rx_sig, rts_sig, cts_sig;
  531. switch(uart_num) {
  532. case UART_NUM_0:
  533. tx_sig = U0TXD_OUT_IDX;
  534. rx_sig = U0RXD_IN_IDX;
  535. rts_sig = U0RTS_OUT_IDX;
  536. cts_sig = U0CTS_IN_IDX;
  537. break;
  538. case UART_NUM_1:
  539. tx_sig = U1TXD_OUT_IDX;
  540. rx_sig = U1RXD_IN_IDX;
  541. rts_sig = U1RTS_OUT_IDX;
  542. cts_sig = U1CTS_IN_IDX;
  543. break;
  544. #if UART_NUM > 2
  545. case UART_NUM_2:
  546. tx_sig = U2TXD_OUT_IDX;
  547. rx_sig = U2RXD_IN_IDX;
  548. rts_sig = U2RTS_OUT_IDX;
  549. cts_sig = U2CTS_IN_IDX;
  550. break;
  551. #endif
  552. case UART_NUM_MAX:
  553. default:
  554. tx_sig = U0TXD_OUT_IDX;
  555. rx_sig = U0RXD_IN_IDX;
  556. rts_sig = U0RTS_OUT_IDX;
  557. cts_sig = U0CTS_IN_IDX;
  558. break;
  559. }
  560. if(tx_io_num >= 0) {
  561. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  562. gpio_set_level(tx_io_num, 1);
  563. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  564. }
  565. if(rx_io_num >= 0) {
  566. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  567. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  568. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  569. gpio_matrix_in(rx_io_num, rx_sig, 0);
  570. }
  571. if(rts_io_num >= 0) {
  572. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  573. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  574. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  575. }
  576. if(cts_io_num >= 0) {
  577. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  578. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  579. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  580. gpio_matrix_in(cts_io_num, cts_sig, 0);
  581. }
  582. return ESP_OK;
  583. }
  584. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  585. {
  586. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  587. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  588. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  589. UART[uart_num]->conf0.sw_rts = level & 0x1;
  590. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  591. return ESP_OK;
  592. }
  593. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  594. {
  595. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  596. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  597. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  598. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  599. return ESP_OK;
  600. }
  601. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  602. {
  603. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  604. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  605. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  606. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  607. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  608. return ESP_OK;
  609. }
  610. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  611. {
  612. esp_err_t r;
  613. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  614. UART_CHECK((uart_config), "param null", ESP_FAIL);
  615. if(uart_num == UART_NUM_0) {
  616. periph_module_enable(PERIPH_UART0_MODULE);
  617. } else if(uart_num == UART_NUM_1) {
  618. periph_module_enable(PERIPH_UART1_MODULE);
  619. #if UART_NUM > 2
  620. } else if(uart_num == UART_NUM_2) {
  621. periph_module_enable(PERIPH_UART2_MODULE);
  622. #endif
  623. }
  624. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  625. if (r != ESP_OK) return r;
  626. UART[uart_num]->conf0.val =
  627. (uart_config->parity << UART_PARITY_S)
  628. | (uart_config->data_bits << UART_BIT_NUM_S)
  629. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  630. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  631. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  632. if (r != ESP_OK) return r;
  633. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  634. if (r != ESP_OK) return r;
  635. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  636. //A hardware reset does not reset the fifo,
  637. //so we need to reset the fifo manually.
  638. uart_reset_rx_fifo(uart_num);
  639. return r;
  640. }
  641. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  642. {
  643. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  644. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  645. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  646. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  647. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  648. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  649. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  650. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  651. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  652. } else {
  653. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  654. }
  655. UART[uart_num]->conf1.rx_tout_en = 1;
  656. } else {
  657. UART[uart_num]->conf1.rx_tout_en = 0;
  658. }
  659. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  660. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  661. }
  662. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  663. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  664. }
  665. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  666. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  667. return ESP_OK;
  668. }
  669. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  670. {
  671. int cnt = 0;
  672. int len = length;
  673. while (len >= 0) {
  674. if (buf[len] == pat_chr) {
  675. cnt++;
  676. } else {
  677. cnt = 0;
  678. }
  679. if (cnt >= pat_num) {
  680. break;
  681. }
  682. len --;
  683. }
  684. return len;
  685. }
  686. //internal isr handler for default driver code.
  687. static void uart_rx_intr_handler_default(void *param)
  688. {
  689. uart_obj_t *p_uart = (uart_obj_t*) param;
  690. uint8_t uart_num = p_uart->uart_num;
  691. uart_dev_t* uart_reg = UART[uart_num];
  692. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  693. uint8_t buf_idx = 0;
  694. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  695. uart_event_t uart_event;
  696. portBASE_TYPE HPTaskAwoken = 0;
  697. static uint8_t pat_flg = 0;
  698. while(uart_intr_status != 0x0) {
  699. buf_idx = 0;
  700. uart_event.type = UART_EVENT_MAX;
  701. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  702. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  703. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  704. if(p_uart->tx_waiting_brk) {
  705. continue;
  706. }
  707. //TX semaphore will only be used when tx_buf_size is zero.
  708. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  709. p_uart->tx_waiting_fifo = false;
  710. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  711. if(HPTaskAwoken == pdTRUE) {
  712. portYIELD_FROM_ISR();
  713. }
  714. } else {
  715. //We don't use TX ring buffer, because the size is zero.
  716. if(p_uart->tx_buf_size == 0) {
  717. continue;
  718. }
  719. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  720. bool en_tx_flg = false;
  721. //We need to put a loop here, in case all the buffer items are very short.
  722. //That would cause a watch_dog reset because empty interrupt happens so often.
  723. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  724. while(tx_fifo_rem) {
  725. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  726. size_t size;
  727. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  728. if(p_uart->tx_head) {
  729. //The first item is the data description
  730. //Get the first item to get the data information
  731. if(p_uart->tx_len_tot == 0) {
  732. p_uart->tx_ptr = NULL;
  733. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  734. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  735. p_uart->tx_brk_flg = 1;
  736. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  737. }
  738. //We have saved the data description from the 1st item, return buffer.
  739. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  740. if(HPTaskAwoken == pdTRUE) {
  741. portYIELD_FROM_ISR();
  742. }
  743. }else if(p_uart->tx_ptr == NULL) {
  744. //Update the TX item pointer, we will need this to return item to buffer.
  745. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  746. en_tx_flg = true;
  747. p_uart->tx_len_cur = size;
  748. }
  749. }
  750. else {
  751. //Can not get data from ring buffer, return;
  752. break;
  753. }
  754. }
  755. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  756. //To fill the TX FIFO.
  757. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  758. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  759. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  760. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  761. uart_reg->conf0.sw_rts = 0;
  762. uart_reg->int_ena.tx_done = 1;
  763. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  764. }
  765. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  766. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  767. *(p_uart->tx_ptr++) & 0xff);
  768. }
  769. p_uart->tx_len_tot -= send_len;
  770. p_uart->tx_len_cur -= send_len;
  771. tx_fifo_rem -= send_len;
  772. if (p_uart->tx_len_cur == 0) {
  773. //Return item to ring buffer.
  774. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  775. if(HPTaskAwoken == pdTRUE) {
  776. portYIELD_FROM_ISR();
  777. }
  778. p_uart->tx_head = NULL;
  779. p_uart->tx_ptr = NULL;
  780. //Sending item done, now we need to send break if there is a record.
  781. //Set TX break signal after FIFO is empty
  782. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  783. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  784. uart_reg->int_ena.tx_brk_done = 0;
  785. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  786. uart_reg->conf0.txd_brk = 1;
  787. uart_reg->int_clr.tx_brk_done = 1;
  788. uart_reg->int_ena.tx_brk_done = 1;
  789. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  790. p_uart->tx_waiting_brk = 1;
  791. //do not enable TX empty interrupt
  792. en_tx_flg = false;
  793. } else {
  794. //enable TX empty interrupt
  795. en_tx_flg = true;
  796. }
  797. } else {
  798. //enable TX empty interrupt
  799. en_tx_flg = true;
  800. }
  801. }
  802. }
  803. if (en_tx_flg) {
  804. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  805. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  806. }
  807. }
  808. }
  809. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  810. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  811. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  812. ) {
  813. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  814. if(pat_flg == 1) {
  815. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  816. pat_flg = 0;
  817. }
  818. if (p_uart->rx_buffer_full_flg == false) {
  819. //We have to read out all data in RX FIFO to clear the interrupt signal
  820. while (buf_idx < rx_fifo_len) {
  821. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  822. }
  823. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  824. int pat_num = uart_reg->at_cmd_char.char_num;
  825. int pat_idx = -1;
  826. //Get the buffer from the FIFO
  827. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  828. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  829. uart_event.type = UART_PATTERN_DET;
  830. uart_event.size = rx_fifo_len;
  831. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  832. } else {
  833. //After Copying the Data From FIFO ,Clear intr_status
  834. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  835. uart_event.type = UART_DATA;
  836. uart_event.size = rx_fifo_len;
  837. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  838. if (p_uart->uart_select_notif_callback) {
  839. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  840. }
  841. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  842. }
  843. p_uart->rx_stash_len = rx_fifo_len;
  844. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  845. //Mainly for applications that uses flow control or small ring buffer.
  846. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  847. p_uart->rx_buffer_full_flg = true;
  848. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  849. if (uart_event.type == UART_PATTERN_DET) {
  850. if (rx_fifo_len < pat_num) {
  851. //some of the characters are read out in last interrupt
  852. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  853. } else {
  854. uart_pattern_enqueue(uart_num,
  855. pat_idx <= -1 ?
  856. //can not find the pattern in buffer,
  857. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  858. // find the pattern in buffer
  859. p_uart->rx_buffered_len + pat_idx);
  860. }
  861. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  862. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  863. }
  864. }
  865. uart_event.type = UART_BUFFER_FULL;
  866. } else {
  867. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  868. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  869. if (rx_fifo_len < pat_num) {
  870. //some of the characters are read out in last interrupt
  871. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  872. } else if(pat_idx >= 0) {
  873. // find pattern in statsh buffer.
  874. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  875. }
  876. }
  877. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  878. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  879. }
  880. if(HPTaskAwoken == pdTRUE) {
  881. portYIELD_FROM_ISR();
  882. }
  883. } else {
  884. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  885. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  886. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  887. uart_reg->int_clr.at_cmd_char_det = 1;
  888. uart_event.type = UART_PATTERN_DET;
  889. uart_event.size = rx_fifo_len;
  890. pat_flg = 1;
  891. }
  892. }
  893. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  894. // When fifo overflows, we reset the fifo.
  895. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  896. uart_reset_rx_fifo(uart_num);
  897. uart_reg->int_clr.rxfifo_ovf = 1;
  898. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  899. uart_event.type = UART_FIFO_OVF;
  900. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  901. if (p_uart->uart_select_notif_callback) {
  902. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  903. }
  904. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  905. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  906. uart_reg->int_clr.brk_det = 1;
  907. uart_event.type = UART_BREAK;
  908. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  909. uart_reg->int_clr.frm_err = 1;
  910. uart_event.type = UART_FRAME_ERR;
  911. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  912. if (p_uart->uart_select_notif_callback) {
  913. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  914. }
  915. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  916. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  917. uart_reg->int_clr.parity_err = 1;
  918. uart_event.type = UART_PARITY_ERR;
  919. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  920. if (p_uart->uart_select_notif_callback) {
  921. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  922. }
  923. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  924. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  925. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  926. uart_reg->conf0.txd_brk = 0;
  927. uart_reg->int_ena.tx_brk_done = 0;
  928. uart_reg->int_clr.tx_brk_done = 1;
  929. if(p_uart->tx_brk_flg == 1) {
  930. uart_reg->int_ena.txfifo_empty = 1;
  931. }
  932. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  933. if(p_uart->tx_brk_flg == 1) {
  934. p_uart->tx_brk_flg = 0;
  935. p_uart->tx_waiting_brk = 0;
  936. } else {
  937. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  938. if(HPTaskAwoken == pdTRUE) {
  939. portYIELD_FROM_ISR();
  940. }
  941. }
  942. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  943. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  944. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  945. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  946. uart_reg->int_clr.at_cmd_char_det = 1;
  947. uart_event.type = UART_PATTERN_DET;
  948. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  949. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  950. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  951. // RS485 collision or frame error interrupt triggered
  952. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  953. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  954. uart_reset_rx_fifo(uart_num);
  955. // Set collision detection flag
  956. p_uart_obj[uart_num]->coll_det_flg = true;
  957. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  958. uart_event.type = UART_EVENT_MAX;
  959. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  960. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  961. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  962. // If RS485 half duplex mode is enable then reset FIFO and
  963. // reset RTS pin to start receiver driver
  964. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  965. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  966. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  967. uart_reg->conf0.sw_rts = 1;
  968. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  969. }
  970. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  971. if (HPTaskAwoken == pdTRUE) {
  972. portYIELD_FROM_ISR();
  973. }
  974. } else {
  975. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  976. uart_event.type = UART_EVENT_MAX;
  977. }
  978. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  979. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  980. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  981. }
  982. if(HPTaskAwoken == pdTRUE) {
  983. portYIELD_FROM_ISR();
  984. }
  985. }
  986. uart_intr_status = uart_reg->int_st.val;
  987. }
  988. }
  989. /**************************************************************/
  990. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  991. {
  992. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  993. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  994. BaseType_t res;
  995. portTickType ticks_start = xTaskGetTickCount();
  996. //Take tx_mux
  997. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  998. if(res == pdFALSE) {
  999. return ESP_ERR_TIMEOUT;
  1000. }
  1001. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1002. if(UART[uart_num]->status.txfifo_cnt == 0) {
  1003. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1004. return ESP_OK;
  1005. }
  1006. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1007. TickType_t ticks_end = xTaskGetTickCount();
  1008. if (ticks_end - ticks_start > ticks_to_wait) {
  1009. ticks_to_wait = 0;
  1010. } else {
  1011. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1012. }
  1013. //take 2nd tx_done_sem, wait given from ISR
  1014. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1015. if(res == pdFALSE) {
  1016. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1017. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1018. return ESP_ERR_TIMEOUT;
  1019. }
  1020. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1021. return ESP_OK;
  1022. }
  1023. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1024. {
  1025. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1026. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1027. UART[uart_num]->conf0.txd_brk = 1;
  1028. UART[uart_num]->int_clr.tx_brk_done = 1;
  1029. UART[uart_num]->int_ena.tx_brk_done = 1;
  1030. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1031. return ESP_OK;
  1032. }
  1033. //Fill UART tx_fifo and return a number,
  1034. //This function by itself is not thread-safe, always call from within a muxed section.
  1035. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1036. {
  1037. uint8_t i = 0;
  1038. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1039. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1040. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1041. // Set the RTS pin if RS485 mode is enabled
  1042. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1043. UART[uart_num]->conf0.sw_rts = 0;
  1044. UART[uart_num]->int_ena.tx_done = 1;
  1045. }
  1046. for (i = 0; i < copy_cnt; i++) {
  1047. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1048. }
  1049. return copy_cnt;
  1050. }
  1051. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1052. {
  1053. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1054. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1055. UART_CHECK(buffer, "buffer null", (-1));
  1056. if(len == 0) {
  1057. return 0;
  1058. }
  1059. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1060. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1061. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1062. return tx_len;
  1063. }
  1064. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1065. {
  1066. if(size == 0) {
  1067. return 0;
  1068. }
  1069. size_t original_size = size;
  1070. //lock for uart_tx
  1071. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1072. p_uart_obj[uart_num]->coll_det_flg = false;
  1073. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1074. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1075. int offset = 0;
  1076. uart_tx_data_t evt;
  1077. evt.tx_data.size = size;
  1078. evt.tx_data.brk_len = brk_len;
  1079. if(brk_en) {
  1080. evt.type = UART_DATA_BREAK;
  1081. } else {
  1082. evt.type = UART_DATA;
  1083. }
  1084. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1085. while(size > 0) {
  1086. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1087. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1088. size -= send_size;
  1089. offset += send_size;
  1090. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1091. }
  1092. } else {
  1093. while(size) {
  1094. //semaphore for tx_fifo available
  1095. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1096. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1097. if(sent < size) {
  1098. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1099. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1100. }
  1101. size -= sent;
  1102. src += sent;
  1103. }
  1104. }
  1105. if(brk_en) {
  1106. uart_set_break(uart_num, brk_len);
  1107. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1108. }
  1109. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1110. }
  1111. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1112. return original_size;
  1113. }
  1114. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1115. {
  1116. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1117. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1118. UART_CHECK(src, "buffer null", (-1));
  1119. return uart_tx_all(uart_num, src, size, 0, 0);
  1120. }
  1121. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1122. {
  1123. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1124. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1125. UART_CHECK((size > 0), "uart size error", (-1));
  1126. UART_CHECK((src), "uart data null", (-1));
  1127. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1128. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1129. }
  1130. static bool uart_check_buf_full(uart_port_t uart_num)
  1131. {
  1132. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1133. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1134. if(res == pdTRUE) {
  1135. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1136. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1137. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1138. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1139. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1140. return true;
  1141. }
  1142. }
  1143. return false;
  1144. }
  1145. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1146. {
  1147. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1148. UART_CHECK((buf), "uart data null", (-1));
  1149. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1150. uint8_t* data = NULL;
  1151. size_t size;
  1152. size_t copy_len = 0;
  1153. int len_tmp;
  1154. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1155. return -1;
  1156. }
  1157. while(length) {
  1158. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1159. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1160. if(data) {
  1161. p_uart_obj[uart_num]->rx_head_ptr = data;
  1162. p_uart_obj[uart_num]->rx_ptr = data;
  1163. p_uart_obj[uart_num]->rx_cur_remain = size;
  1164. } else {
  1165. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1166. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1167. //to solve the possible asynchronous issues.
  1168. if(uart_check_buf_full(uart_num)) {
  1169. //This condition will never be true if `uart_read_bytes`
  1170. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1171. continue;
  1172. } else {
  1173. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1174. return copy_len;
  1175. }
  1176. }
  1177. }
  1178. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1179. len_tmp = length;
  1180. } else {
  1181. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1182. }
  1183. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1184. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1185. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1186. uart_pattern_queue_update(uart_num, len_tmp);
  1187. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1188. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1189. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1190. copy_len += len_tmp;
  1191. length -= len_tmp;
  1192. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1193. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1194. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1195. p_uart_obj[uart_num]->rx_ptr = NULL;
  1196. uart_check_buf_full(uart_num);
  1197. }
  1198. }
  1199. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1200. return copy_len;
  1201. }
  1202. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1203. {
  1204. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1205. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1206. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1207. return ESP_OK;
  1208. }
  1209. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1210. esp_err_t uart_flush_input(uart_port_t uart_num)
  1211. {
  1212. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1213. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1214. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1215. uint8_t* data;
  1216. size_t size;
  1217. //rx sem protect the ring buffer read related functions
  1218. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1219. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1220. while(true) {
  1221. if(p_uart->rx_head_ptr) {
  1222. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1223. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1224. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1225. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1226. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1227. p_uart->rx_ptr = NULL;
  1228. p_uart->rx_cur_remain = 0;
  1229. p_uart->rx_head_ptr = NULL;
  1230. }
  1231. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1232. if(data == NULL) {
  1233. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1234. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1235. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1236. }
  1237. //We also need to clear the `rx_buffer_full_flg` here.
  1238. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1239. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1240. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1241. break;
  1242. }
  1243. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1244. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1245. uart_pattern_queue_update(uart_num, size);
  1246. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1247. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1248. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1249. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1250. if(res == pdTRUE) {
  1251. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1252. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1253. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1254. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1255. }
  1256. }
  1257. }
  1258. p_uart->rx_ptr = NULL;
  1259. p_uart->rx_cur_remain = 0;
  1260. p_uart->rx_head_ptr = NULL;
  1261. uart_reset_rx_fifo(uart_num);
  1262. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1263. xSemaphoreGive(p_uart->rx_mux);
  1264. return ESP_OK;
  1265. }
  1266. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1267. {
  1268. esp_err_t r;
  1269. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1270. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1271. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1272. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1273. if(p_uart_obj[uart_num] == NULL) {
  1274. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1275. if(p_uart_obj[uart_num] == NULL) {
  1276. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1277. return ESP_FAIL;
  1278. }
  1279. p_uart_obj[uart_num]->uart_num = uart_num;
  1280. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1281. p_uart_obj[uart_num]->coll_det_flg = false;
  1282. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1283. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1284. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1285. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1286. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1287. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1288. p_uart_obj[uart_num]->queue_size = queue_size;
  1289. p_uart_obj[uart_num]->tx_ptr = NULL;
  1290. p_uart_obj[uart_num]->tx_head = NULL;
  1291. p_uart_obj[uart_num]->tx_len_tot = 0;
  1292. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1293. p_uart_obj[uart_num]->tx_brk_len = 0;
  1294. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1295. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1296. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1297. if(uart_queue) {
  1298. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1299. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1300. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1301. } else {
  1302. p_uart_obj[uart_num]->xQueueUart = NULL;
  1303. }
  1304. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1305. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1306. p_uart_obj[uart_num]->rx_ptr = NULL;
  1307. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1308. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1309. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1310. if(tx_buffer_size > 0) {
  1311. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1312. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1313. } else {
  1314. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1315. p_uart_obj[uart_num]->tx_buf_size = 0;
  1316. }
  1317. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1318. } else {
  1319. ESP_LOGE(UART_TAG, "UART driver already installed");
  1320. return ESP_FAIL;
  1321. }
  1322. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1323. if (r!=ESP_OK) goto err;
  1324. uart_intr_config_t uart_intr = {
  1325. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1326. | UART_RXFIFO_TOUT_INT_ENA_M
  1327. | UART_FRM_ERR_INT_ENA_M
  1328. | UART_RXFIFO_OVF_INT_ENA_M
  1329. | UART_BRK_DET_INT_ENA_M
  1330. | UART_PARITY_ERR_INT_ENA_M,
  1331. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1332. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1333. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1334. };
  1335. r=uart_intr_config(uart_num, &uart_intr);
  1336. if (r!=ESP_OK) goto err;
  1337. return r;
  1338. err:
  1339. uart_driver_delete(uart_num);
  1340. return r;
  1341. }
  1342. //Make sure no other tasks are still using UART before you call this function
  1343. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1344. {
  1345. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1346. if(p_uart_obj[uart_num] == NULL) {
  1347. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1348. return ESP_OK;
  1349. }
  1350. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1351. uart_disable_rx_intr(uart_num);
  1352. uart_disable_tx_intr(uart_num);
  1353. uart_pattern_link_free(uart_num);
  1354. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1355. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1356. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1357. }
  1358. if(p_uart_obj[uart_num]->tx_done_sem) {
  1359. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1360. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1361. }
  1362. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1363. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1364. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1365. }
  1366. if(p_uart_obj[uart_num]->tx_mux) {
  1367. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1368. p_uart_obj[uart_num]->tx_mux = NULL;
  1369. }
  1370. if(p_uart_obj[uart_num]->rx_mux) {
  1371. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1372. p_uart_obj[uart_num]->rx_mux = NULL;
  1373. }
  1374. if(p_uart_obj[uart_num]->xQueueUart) {
  1375. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1376. p_uart_obj[uart_num]->xQueueUart = NULL;
  1377. }
  1378. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1379. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1380. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1381. }
  1382. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1383. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1384. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1385. }
  1386. free(p_uart_obj[uart_num]);
  1387. p_uart_obj[uart_num] = NULL;
  1388. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  1389. if(uart_num == UART_NUM_0) {
  1390. periph_module_disable(PERIPH_UART0_MODULE);
  1391. } else if(uart_num == UART_NUM_1) {
  1392. periph_module_disable(PERIPH_UART1_MODULE);
  1393. #if UART_NUM > 2
  1394. } else if(uart_num == UART_NUM_2) {
  1395. periph_module_disable(PERIPH_UART2_MODULE);
  1396. #endif
  1397. }
  1398. }
  1399. return ESP_OK;
  1400. }
  1401. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1402. {
  1403. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1404. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1405. }
  1406. }
  1407. portMUX_TYPE *uart_get_selectlock()
  1408. {
  1409. return &uart_selectlock;
  1410. }
  1411. // Set UART mode
  1412. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1413. {
  1414. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1415. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1416. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1417. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1418. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1419. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1420. }
  1421. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1422. UART[uart_num]->rs485_conf.en = 0;
  1423. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1424. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1425. UART[uart_num]->conf0.irda_en = 0;
  1426. UART[uart_num]->conf0.sw_rts = 0;
  1427. switch (mode) {
  1428. case UART_MODE_UART:
  1429. break;
  1430. case UART_MODE_RS485_COLLISION_DETECT:
  1431. // This mode allows read while transmitting that allows collision detection
  1432. p_uart_obj[uart_num]->coll_det_flg = false;
  1433. // Transmitter’s output signal loop back to the receiver’s input signal
  1434. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1435. // Transmitter should send data when its receiver is busy
  1436. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1437. UART[uart_num]->rs485_conf.en = 1;
  1438. // Enable collision detection interrupts
  1439. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1440. | UART_RXFIFO_FULL_INT_ENA
  1441. | UART_RS485_CLASH_INT_ENA
  1442. | UART_RS485_FRM_ERR_INT_ENA
  1443. | UART_RS485_PARITY_ERR_INT_ENA);
  1444. break;
  1445. case UART_MODE_RS485_APP_CTRL:
  1446. // Application software control, remove echo
  1447. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1448. UART[uart_num]->rs485_conf.en = 1;
  1449. break;
  1450. case UART_MODE_RS485_HALF_DUPLEX:
  1451. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1452. UART[uart_num]->conf0.sw_rts = 1;
  1453. UART[uart_num]->rs485_conf.en = 1;
  1454. // Must be set to 0 to automatically remove echo
  1455. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1456. // This is to void collision
  1457. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1458. break;
  1459. case UART_MODE_IRDA:
  1460. UART[uart_num]->conf0.irda_en = 1;
  1461. break;
  1462. default:
  1463. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1464. break;
  1465. }
  1466. p_uart_obj[uart_num]->uart_mode = mode;
  1467. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1468. return ESP_OK;
  1469. }
  1470. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1471. {
  1472. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1473. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1474. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1475. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1476. // transmission time of one symbol (~11 bit) on current baudrate
  1477. if (tout_thresh > 0) {
  1478. UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V);
  1479. UART[uart_num]->conf1.rx_tout_en = 1;
  1480. } else {
  1481. UART[uart_num]->conf1.rx_tout_en = 0;
  1482. }
  1483. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1484. return ESP_OK;
  1485. }
  1486. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1487. {
  1488. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1489. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1490. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1491. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1492. "wrong mode", ESP_ERR_INVALID_ARG);
  1493. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1494. return ESP_OK;
  1495. }
  1496. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1497. {
  1498. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1499. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1500. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1501. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1502. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1503. return ESP_OK;
  1504. }
  1505. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1506. {
  1507. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1508. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1509. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1510. return ESP_OK;
  1511. }