uart.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #define XOFF (char)0x13
  32. #define XON (char)0x11
  33. static const char* UART_TAG = "uart";
  34. #define UART_CHECK(a, str, ret_val) \
  35. if (!(a)) { \
  36. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  37. return (ret_val); \
  38. }
  39. #define UART_EMPTY_THRESH_DEFAULT (10)
  40. #define UART_FULL_THRESH_DEFAULT (120)
  41. #define UART_TOUT_THRESH_DEFAULT (10)
  42. #define UART_TX_IDLE_NUM_DEFAULT (0)
  43. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  44. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  45. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  46. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  47. typedef struct {
  48. uart_event_type_t type; /*!< UART TX data type */
  49. struct {
  50. int brk_len;
  51. size_t size;
  52. uint8_t data[0];
  53. } tx_data;
  54. } uart_tx_data_t;
  55. typedef struct {
  56. uart_port_t uart_num; /*!< UART port number*/
  57. int queue_size; /*!< UART event queue size*/
  58. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  59. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  60. //rx parameters
  61. int rx_buffered_len; /*!< UART cached data length */
  62. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  63. int rx_buf_size; /*!< RX ring buffer size */
  64. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  65. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  66. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  67. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  68. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  69. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  70. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  71. //tx parameters
  72. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  73. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  74. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  75. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  76. int tx_buf_size; /*!< TX ring buffer size */
  77. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  78. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  79. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  80. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  81. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  82. uint32_t tx_len_cur;
  83. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  84. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  85. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  86. } uart_obj_t;
  87. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  88. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  89. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  90. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  91. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  92. {
  93. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  94. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  95. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  96. UART[uart_num]->conf0.bit_num = data_bit;
  97. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  98. return ESP_OK;
  99. }
  100. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  101. {
  102. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  103. *(data_bit) = UART[uart_num]->conf0.bit_num;
  104. return ESP_OK;
  105. }
  106. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  107. {
  108. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  109. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  110. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  111. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  112. if (stop_bit == UART_STOP_BITS_2) {
  113. stop_bit = UART_STOP_BITS_1;
  114. UART[uart_num]->rs485_conf.dl1_en = 1;
  115. } else {
  116. UART[uart_num]->rs485_conf.dl1_en = 0;
  117. }
  118. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  119. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  120. return ESP_OK;
  121. }
  122. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  123. {
  124. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  125. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  126. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  127. (*stop_bit) = UART_STOP_BITS_2;
  128. } else {
  129. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  130. }
  131. return ESP_OK;
  132. }
  133. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  134. {
  135. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  136. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  137. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  138. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  139. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  140. return ESP_OK;
  141. }
  142. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  143. {
  144. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  145. int val = UART[uart_num]->conf0.val;
  146. if(val & UART_PARITY_EN_M) {
  147. if(val & UART_PARITY_M) {
  148. (*parity_mode) = UART_PARITY_ODD;
  149. } else {
  150. (*parity_mode) = UART_PARITY_EVEN;
  151. }
  152. } else {
  153. (*parity_mode) = UART_PARITY_DISABLE;
  154. }
  155. return ESP_OK;
  156. }
  157. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  158. {
  159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  160. esp_err_t ret = ESP_OK;
  161. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  162. int uart_clk_freq;
  163. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  164. /* this UART has been configured to use REF_TICK */
  165. uart_clk_freq = REF_CLK_FREQ;
  166. } else {
  167. uart_clk_freq = esp_clk_apb_freq();
  168. }
  169. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  170. if (clk_div < 16) {
  171. /* baud rate is too high for this clock frequency */
  172. ret = ESP_ERR_INVALID_ARG;
  173. } else {
  174. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  175. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  176. }
  177. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  178. return ret;
  179. }
  180. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  181. {
  182. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  183. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  184. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  185. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  186. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  187. return ESP_OK;
  188. }
  189. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  190. {
  191. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  192. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  193. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  194. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  195. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  196. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  197. return ESP_OK;
  198. }
  199. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  200. {
  201. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  202. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  203. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  204. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  205. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  206. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  207. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  208. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  209. UART[uart_num]->swfc_conf.xon_char = XON;
  210. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  211. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  212. return ESP_OK;
  213. }
  214. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  215. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  216. {
  217. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  218. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  219. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  220. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  221. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  222. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  223. UART[uart_num]->conf1.rx_flow_en = 1;
  224. } else {
  225. UART[uart_num]->conf1.rx_flow_en = 0;
  226. }
  227. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  228. UART[uart_num]->conf0.tx_flow_en = 1;
  229. } else {
  230. UART[uart_num]->conf0.tx_flow_en = 0;
  231. }
  232. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  233. return ESP_OK;
  234. }
  235. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  236. {
  237. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  238. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  239. if(UART[uart_num]->conf1.rx_flow_en) {
  240. val |= UART_HW_FLOWCTRL_RTS;
  241. }
  242. if(UART[uart_num]->conf0.tx_flow_en) {
  243. val |= UART_HW_FLOWCTRL_CTS;
  244. }
  245. (*flow_ctrl) = val;
  246. return ESP_OK;
  247. }
  248. static esp_err_t uart_reset_fifo(uart_port_t uart_num)
  249. {
  250. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  251. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  252. UART[uart_num]->conf0.rxfifo_rst = 1;
  253. UART[uart_num]->conf0.rxfifo_rst = 0;
  254. UART[uart_num]->conf0.txfifo_rst = 1;
  255. UART[uart_num]->conf0.txfifo_rst = 0;
  256. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  257. return ESP_OK;
  258. }
  259. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  260. {
  261. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  262. //intr_clr register is write-only
  263. UART[uart_num]->int_clr.val = clr_mask;
  264. return ESP_OK;
  265. }
  266. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  267. {
  268. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  269. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  270. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  271. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  272. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  273. return ESP_OK;
  274. }
  275. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  276. {
  277. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  278. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  279. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  280. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  281. return ESP_OK;
  282. }
  283. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  284. {
  285. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  286. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  287. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  288. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  289. UART[uart_num]->at_cmd_char.data = pattern_chr;
  290. UART[uart_num]->at_cmd_char.char_num = chr_num;
  291. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  292. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  293. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  294. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  295. }
  296. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  297. {
  298. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  299. }
  300. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  301. {
  302. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  303. }
  304. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  305. {
  306. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  307. }
  308. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  309. {
  310. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  311. }
  312. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  313. {
  314. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  315. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  316. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  317. UART[uart_num]->int_clr.txfifo_empty = 1;
  318. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  319. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  320. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  321. return ESP_OK;
  322. }
  323. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  324. {
  325. int ret;
  326. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  327. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  328. switch(uart_num) {
  329. case UART_NUM_1:
  330. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  331. break;
  332. case UART_NUM_2:
  333. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  334. break;
  335. case UART_NUM_0:
  336. default:
  337. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  338. break;
  339. }
  340. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  341. return ret;
  342. }
  343. esp_err_t uart_isr_free(uart_port_t uart_num)
  344. {
  345. esp_err_t ret;
  346. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  347. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  348. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  349. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  350. p_uart_obj[uart_num]->intr_handle=NULL;
  351. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  352. return ret;
  353. }
  354. //internal signal can be output to multiple GPIO pads
  355. //only one GPIO pad can connect with input signal
  356. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  357. {
  358. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  359. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  360. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  361. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  362. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  363. int tx_sig, rx_sig, rts_sig, cts_sig;
  364. switch(uart_num) {
  365. case UART_NUM_0:
  366. tx_sig = U0TXD_OUT_IDX;
  367. rx_sig = U0RXD_IN_IDX;
  368. rts_sig = U0RTS_OUT_IDX;
  369. cts_sig = U0CTS_IN_IDX;
  370. break;
  371. case UART_NUM_1:
  372. tx_sig = U1TXD_OUT_IDX;
  373. rx_sig = U1RXD_IN_IDX;
  374. rts_sig = U1RTS_OUT_IDX;
  375. cts_sig = U1CTS_IN_IDX;
  376. break;
  377. case UART_NUM_2:
  378. tx_sig = U2TXD_OUT_IDX;
  379. rx_sig = U2RXD_IN_IDX;
  380. rts_sig = U2RTS_OUT_IDX;
  381. cts_sig = U2CTS_IN_IDX;
  382. break;
  383. case UART_NUM_MAX:
  384. default:
  385. tx_sig = U0TXD_OUT_IDX;
  386. rx_sig = U0RXD_IN_IDX;
  387. rts_sig = U0RTS_OUT_IDX;
  388. cts_sig = U0CTS_IN_IDX;
  389. break;
  390. }
  391. if(tx_io_num >= 0) {
  392. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  393. gpio_set_level(tx_io_num, 1);
  394. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  395. }
  396. if(rx_io_num >= 0) {
  397. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  398. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  399. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  400. gpio_matrix_in(rx_io_num, rx_sig, 0);
  401. }
  402. if(rts_io_num >= 0) {
  403. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  404. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  405. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  406. }
  407. if(cts_io_num >= 0) {
  408. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  409. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  410. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  411. gpio_matrix_in(cts_io_num, cts_sig, 0);
  412. }
  413. return ESP_OK;
  414. }
  415. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  416. {
  417. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  418. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  419. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  420. UART[uart_num]->conf0.sw_rts = level & 0x1;
  421. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  422. return ESP_OK;
  423. }
  424. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  425. {
  426. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  427. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  428. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  429. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  430. return ESP_OK;
  431. }
  432. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  433. {
  434. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  435. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  436. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  437. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  438. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  439. return ESP_OK;
  440. }
  441. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  442. {
  443. esp_err_t r;
  444. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  445. UART_CHECK((uart_config), "param null", ESP_FAIL);
  446. if(uart_num == UART_NUM_0) {
  447. periph_module_enable(PERIPH_UART0_MODULE);
  448. } else if(uart_num == UART_NUM_1) {
  449. periph_module_enable(PERIPH_UART1_MODULE);
  450. } else if(uart_num == UART_NUM_2) {
  451. periph_module_enable(PERIPH_UART2_MODULE);
  452. }
  453. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  454. if (r != ESP_OK) return r;
  455. UART[uart_num]->conf0.val =
  456. (uart_config->parity << UART_PARITY_S)
  457. | (uart_config->data_bits << UART_BIT_NUM_S)
  458. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  459. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  460. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  461. if (r != ESP_OK) return r;
  462. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  463. if (r != ESP_OK) return r;
  464. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  465. return r;
  466. }
  467. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  468. {
  469. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  470. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  471. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  472. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  473. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  474. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  475. UART[uart_num]->conf1.rx_tout_en = 1;
  476. } else {
  477. UART[uart_num]->conf1.rx_tout_en = 0;
  478. }
  479. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  480. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  481. }
  482. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  483. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  484. }
  485. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  486. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  487. return ESP_OK;
  488. }
  489. //internal isr handler for default driver code.
  490. static void uart_rx_intr_handler_default(void *param)
  491. {
  492. uart_obj_t *p_uart = (uart_obj_t*) param;
  493. uint8_t uart_num = p_uart->uart_num;
  494. uart_dev_t* uart_reg = UART[uart_num];
  495. uint8_t buf_idx = 0;
  496. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  497. int rx_fifo_len = 0;
  498. uart_event_t uart_event;
  499. portBASE_TYPE HPTaskAwoken = 0;
  500. while(uart_intr_status != 0x0) {
  501. buf_idx = 0;
  502. uart_event.type = UART_EVENT_MAX;
  503. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  504. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  505. uart_reg->int_ena.txfifo_empty = 0;
  506. uart_reg->int_clr.txfifo_empty = 1;
  507. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  508. if(p_uart->tx_waiting_brk) {
  509. continue;
  510. }
  511. //TX semaphore will only be used when tx_buf_size is zero.
  512. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  513. p_uart->tx_waiting_fifo = false;
  514. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  515. if(HPTaskAwoken == pdTRUE) {
  516. portYIELD_FROM_ISR() ;
  517. }
  518. }
  519. else {
  520. //We don't use TX ring buffer, because the size is zero.
  521. if(p_uart->tx_buf_size == 0) {
  522. continue;
  523. }
  524. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  525. bool en_tx_flg = false;
  526. //We need to put a loop here, in case all the buffer items are very short.
  527. //That would cause a watch_dog reset because empty interrupt happens so often.
  528. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  529. while(tx_fifo_rem) {
  530. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  531. size_t size;
  532. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  533. if(p_uart->tx_head) {
  534. //The first item is the data description
  535. //Get the first item to get the data information
  536. if(p_uart->tx_len_tot == 0) {
  537. p_uart->tx_ptr = NULL;
  538. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  539. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  540. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  541. p_uart->tx_brk_flg = 1;
  542. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  543. }
  544. //We have saved the data description from the 1st item, return buffer.
  545. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  546. if(HPTaskAwoken == pdTRUE) {
  547. portYIELD_FROM_ISR() ;
  548. }
  549. }else if(p_uart->tx_ptr == NULL) {
  550. //Update the TX item pointer, we will need this to return item to buffer.
  551. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  552. en_tx_flg = true;
  553. p_uart->tx_len_cur = size;
  554. }
  555. }
  556. else {
  557. //Can not get data from ring buffer, return;
  558. break;
  559. }
  560. }
  561. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  562. //To fill the TX FIFO.
  563. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  564. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  565. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  566. }
  567. p_uart->tx_len_tot -= send_len;
  568. p_uart->tx_len_cur -= send_len;
  569. tx_fifo_rem -= send_len;
  570. if(p_uart->tx_len_cur == 0) {
  571. //Return item to ring buffer.
  572. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  573. if(HPTaskAwoken == pdTRUE) {
  574. portYIELD_FROM_ISR() ;
  575. }
  576. p_uart->tx_head = NULL;
  577. p_uart->tx_ptr = NULL;
  578. //Sending item done, now we need to send break if there is a record.
  579. //Set TX break signal after FIFO is empty
  580. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  581. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  582. uart_reg->int_ena.tx_brk_done = 0;
  583. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  584. uart_reg->conf0.txd_brk = 1;
  585. uart_reg->int_clr.tx_brk_done = 1;
  586. uart_reg->int_ena.tx_brk_done = 1;
  587. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  588. p_uart->tx_waiting_brk = 1;
  589. } else {
  590. //enable TX empty interrupt
  591. en_tx_flg = true;
  592. }
  593. } else {
  594. //enable TX empty interrupt
  595. en_tx_flg = true;
  596. }
  597. }
  598. }
  599. if(en_tx_flg) {
  600. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  601. uart_reg->int_clr.txfifo_empty = 1;
  602. uart_reg->int_ena.txfifo_empty = 1;
  603. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  604. }
  605. }
  606. }
  607. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  608. if(p_uart->rx_buffer_full_flg == false) {
  609. //Get the buffer from the FIFO
  610. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  611. p_uart->rx_stash_len = rx_fifo_len;
  612. //We have to read out all data in RX FIFO to clear the interrupt signal
  613. while(buf_idx < rx_fifo_len) {
  614. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  615. }
  616. //After Copying the Data From FIFO ,Clear intr_status
  617. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  618. uart_reg->int_clr.rxfifo_tout = 1;
  619. uart_reg->int_clr.rxfifo_full = 1;
  620. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  621. uart_event.size = rx_fifo_len;
  622. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  623. //Mainly for applications that uses flow control or small ring buffer.
  624. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  625. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  626. uart_reg->int_ena.rxfifo_full = 0;
  627. uart_reg->int_ena.rxfifo_tout = 0;
  628. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  629. p_uart->rx_buffer_full_flg = true;
  630. uart_event.type = UART_BUFFER_FULL;
  631. } else {
  632. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  633. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  634. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  635. uart_event.type = UART_DATA;
  636. }
  637. if(HPTaskAwoken == pdTRUE) {
  638. portYIELD_FROM_ISR() ;
  639. }
  640. } else {
  641. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  642. uart_reg->int_ena.rxfifo_full = 0;
  643. uart_reg->int_ena.rxfifo_tout = 0;
  644. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  645. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  646. uart_event.type = UART_BUFFER_FULL;
  647. }
  648. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  649. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  650. uart_reg->conf0.rxfifo_rst = 1;
  651. uart_reg->conf0.rxfifo_rst = 0;
  652. uart_reg->int_clr.rxfifo_ovf = 1;
  653. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  654. uart_event.type = UART_FIFO_OVF;
  655. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  656. uart_reg->int_clr.brk_det = 1;
  657. uart_event.type = UART_BREAK;
  658. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  659. uart_reg->int_clr.frm_err = 1;
  660. uart_event.type = UART_FRAME_ERR;
  661. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  662. uart_reg->int_clr.parity_err = 1;
  663. uart_event.type = UART_PARITY_ERR;
  664. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  665. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  666. uart_reg->conf0.txd_brk = 0;
  667. uart_reg->int_ena.tx_brk_done = 0;
  668. uart_reg->int_clr.tx_brk_done = 1;
  669. if(p_uart->tx_brk_flg == 1) {
  670. uart_reg->int_ena.txfifo_empty = 1;
  671. }
  672. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  673. if(p_uart->tx_brk_flg == 1) {
  674. p_uart->tx_brk_flg = 0;
  675. p_uart->tx_waiting_brk = 0;
  676. } else {
  677. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  678. if(HPTaskAwoken == pdTRUE) {
  679. portYIELD_FROM_ISR() ;
  680. }
  681. }
  682. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  683. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  684. uart_reg->int_ena.tx_brk_idle_done = 0;
  685. uart_reg->int_clr.tx_brk_idle_done = 1;
  686. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  687. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  688. uart_reg->int_clr.at_cmd_char_det = 1;
  689. uart_event.type = UART_PATTERN_DET;
  690. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  691. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  692. uart_reg->int_ena.tx_done = 0;
  693. uart_reg->int_clr.tx_done = 1;
  694. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  695. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  696. if(HPTaskAwoken == pdTRUE) {
  697. portYIELD_FROM_ISR() ;
  698. }
  699. } else {
  700. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  701. uart_event.type = UART_EVENT_MAX;
  702. }
  703. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  704. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  705. if(HPTaskAwoken == pdTRUE) {
  706. portYIELD_FROM_ISR() ;
  707. }
  708. }
  709. uart_intr_status = uart_reg->int_st.val;
  710. }
  711. }
  712. /**************************************************************/
  713. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  714. {
  715. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  716. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  717. BaseType_t res;
  718. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  719. //Take tx_mux
  720. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  721. if(res == pdFALSE) {
  722. return ESP_ERR_TIMEOUT;
  723. }
  724. ticks_to_wait = ticks_end - xTaskGetTickCount();
  725. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  726. ticks_to_wait = ticks_end - xTaskGetTickCount();
  727. if(UART[uart_num]->status.txfifo_cnt == 0) {
  728. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  729. return ESP_OK;
  730. }
  731. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  732. //take 2nd tx_done_sem, wait given from ISR
  733. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  734. if(res == pdFALSE) {
  735. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  736. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  737. return ESP_ERR_TIMEOUT;
  738. }
  739. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  740. return ESP_OK;
  741. }
  742. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  743. {
  744. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  745. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  746. UART[uart_num]->conf0.txd_brk = 1;
  747. UART[uart_num]->int_clr.tx_brk_done = 1;
  748. UART[uart_num]->int_ena.tx_brk_done = 1;
  749. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  750. return ESP_OK;
  751. }
  752. //Fill UART tx_fifo and return a number,
  753. //This function by itself is not thread-safe, always call from within a muxed section.
  754. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  755. {
  756. uint8_t i = 0;
  757. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  758. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  759. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  760. for(i = 0; i < copy_cnt; i++) {
  761. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  762. }
  763. return copy_cnt;
  764. }
  765. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  766. {
  767. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  768. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  769. UART_CHECK(buffer, "buffer null", (-1));
  770. if(len == 0) {
  771. return 0;
  772. }
  773. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  774. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  775. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  776. return tx_len;
  777. }
  778. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  779. {
  780. if(size == 0) {
  781. return 0;
  782. }
  783. size_t original_size = size;
  784. //lock for uart_tx
  785. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  786. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  787. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  788. int offset = 0;
  789. uart_tx_data_t evt;
  790. evt.tx_data.size = size;
  791. evt.tx_data.brk_len = brk_len;
  792. if(brk_en) {
  793. evt.type = UART_DATA_BREAK;
  794. } else {
  795. evt.type = UART_DATA;
  796. }
  797. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  798. while(size > 0) {
  799. int send_size = size > max_size / 2 ? max_size / 2 : size;
  800. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  801. size -= send_size;
  802. offset += send_size;
  803. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  804. }
  805. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  806. } else {
  807. while(size) {
  808. //semaphore for tx_fifo available
  809. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  810. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  811. if(sent < size) {
  812. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  813. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  814. }
  815. size -= sent;
  816. src += sent;
  817. }
  818. }
  819. if(brk_en) {
  820. uart_set_break(uart_num, brk_len);
  821. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  822. }
  823. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  824. }
  825. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  826. return original_size;
  827. }
  828. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  829. {
  830. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  831. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  832. UART_CHECK(src, "buffer null", (-1));
  833. return uart_tx_all(uart_num, src, size, 0, 0);
  834. }
  835. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  836. {
  837. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  838. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  839. UART_CHECK((size > 0), "uart size error", (-1));
  840. UART_CHECK((src), "uart data null", (-1));
  841. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  842. return uart_tx_all(uart_num, src, size, 1, brk_len);
  843. }
  844. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  845. {
  846. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  847. UART_CHECK((buf), "uart data null", (-1));
  848. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  849. uint8_t* data = NULL;
  850. size_t size;
  851. size_t copy_len = 0;
  852. int len_tmp;
  853. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  854. return -1;
  855. }
  856. while(length) {
  857. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  858. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  859. if(data) {
  860. p_uart_obj[uart_num]->rx_head_ptr = data;
  861. p_uart_obj[uart_num]->rx_ptr = data;
  862. p_uart_obj[uart_num]->rx_cur_remain = size;
  863. } else {
  864. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  865. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  866. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  867. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  868. return copy_len;
  869. }
  870. }
  871. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  872. len_tmp = length;
  873. } else {
  874. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  875. }
  876. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  877. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  878. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  879. copy_len += len_tmp;
  880. length -= len_tmp;
  881. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  882. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  883. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  884. p_uart_obj[uart_num]->rx_ptr = NULL;
  885. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  886. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  887. if(res == pdTRUE) {
  888. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  889. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  890. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  891. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  892. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  893. }
  894. }
  895. }
  896. }
  897. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  898. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  899. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  900. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  901. return copy_len;
  902. }
  903. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  904. {
  905. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  906. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  907. *size = p_uart_obj[uart_num]->rx_buffered_len;
  908. return ESP_OK;
  909. }
  910. esp_err_t uart_flush(uart_port_t uart_num)
  911. {
  912. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  913. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  914. uart_obj_t* p_uart = p_uart_obj[uart_num];
  915. uint8_t* data;
  916. size_t size;
  917. //rx sem protect the ring buffer read related functions
  918. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  919. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  920. while(true) {
  921. if(p_uart->rx_head_ptr) {
  922. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  923. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  924. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  925. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  926. p_uart->rx_ptr = NULL;
  927. p_uart->rx_cur_remain = 0;
  928. p_uart->rx_head_ptr = NULL;
  929. }
  930. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  931. if(data == NULL) {
  932. break;
  933. }
  934. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  935. p_uart_obj[uart_num]->rx_buffered_len -= size;
  936. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  937. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  938. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  939. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  940. if(res == pdTRUE) {
  941. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  942. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  943. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  944. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  945. }
  946. }
  947. }
  948. p_uart->rx_ptr = NULL;
  949. p_uart->rx_cur_remain = 0;
  950. p_uart->rx_head_ptr = NULL;
  951. uart_reset_fifo(uart_num);
  952. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  953. xSemaphoreGive(p_uart->rx_mux);
  954. return ESP_OK;
  955. }
  956. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  957. {
  958. esp_err_t r;
  959. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  960. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  961. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  962. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  963. if(p_uart_obj[uart_num] == NULL) {
  964. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  965. if(p_uart_obj[uart_num] == NULL) {
  966. ESP_LOGE(UART_TAG, "UART driver malloc error");
  967. return ESP_FAIL;
  968. }
  969. p_uart_obj[uart_num]->uart_num = uart_num;
  970. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  971. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  972. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  973. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  974. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  975. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  976. p_uart_obj[uart_num]->queue_size = queue_size;
  977. p_uart_obj[uart_num]->tx_ptr = NULL;
  978. p_uart_obj[uart_num]->tx_head = NULL;
  979. p_uart_obj[uart_num]->tx_len_tot = 0;
  980. p_uart_obj[uart_num]->tx_brk_flg = 0;
  981. p_uart_obj[uart_num]->tx_brk_len = 0;
  982. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  983. p_uart_obj[uart_num]->rx_buffered_len = 0;
  984. if(uart_queue) {
  985. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  986. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  987. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  988. } else {
  989. p_uart_obj[uart_num]->xQueueUart = NULL;
  990. }
  991. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  992. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  993. p_uart_obj[uart_num]->rx_ptr = NULL;
  994. p_uart_obj[uart_num]->rx_cur_remain = 0;
  995. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  996. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  997. if(tx_buffer_size > 0) {
  998. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  999. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1000. } else {
  1001. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1002. p_uart_obj[uart_num]->tx_buf_size = 0;
  1003. }
  1004. } else {
  1005. ESP_LOGE(UART_TAG, "UART driver already installed");
  1006. return ESP_FAIL;
  1007. }
  1008. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1009. if (r!=ESP_OK) goto err;
  1010. uart_intr_config_t uart_intr = {
  1011. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1012. | UART_RXFIFO_TOUT_INT_ENA_M
  1013. | UART_FRM_ERR_INT_ENA_M
  1014. | UART_RXFIFO_OVF_INT_ENA_M
  1015. | UART_BRK_DET_INT_ENA_M
  1016. | UART_PARITY_ERR_INT_ENA_M,
  1017. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1018. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1019. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1020. };
  1021. r=uart_intr_config(uart_num, &uart_intr);
  1022. if (r!=ESP_OK) goto err;
  1023. return r;
  1024. err:
  1025. uart_driver_delete(uart_num);
  1026. return r;
  1027. }
  1028. //Make sure no other tasks are still using UART before you call this function
  1029. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1030. {
  1031. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1032. if(p_uart_obj[uart_num] == NULL) {
  1033. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1034. return ESP_OK;
  1035. }
  1036. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1037. uart_disable_rx_intr(uart_num);
  1038. uart_disable_tx_intr(uart_num);
  1039. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1040. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1041. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1042. }
  1043. if(p_uart_obj[uart_num]->tx_done_sem) {
  1044. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1045. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1046. }
  1047. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1048. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1049. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1050. }
  1051. if(p_uart_obj[uart_num]->tx_mux) {
  1052. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1053. p_uart_obj[uart_num]->tx_mux = NULL;
  1054. }
  1055. if(p_uart_obj[uart_num]->rx_mux) {
  1056. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1057. p_uart_obj[uart_num]->rx_mux = NULL;
  1058. }
  1059. if(p_uart_obj[uart_num]->xQueueUart) {
  1060. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1061. p_uart_obj[uart_num]->xQueueUart = NULL;
  1062. }
  1063. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1064. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1065. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1066. }
  1067. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1068. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1069. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1070. }
  1071. free(p_uart_obj[uart_num]);
  1072. p_uart_obj[uart_num] = NULL;
  1073. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1074. if(uart_num == UART_NUM_0) {
  1075. periph_module_disable(PERIPH_UART0_MODULE);
  1076. } else if(uart_num == UART_NUM_1) {
  1077. periph_module_disable(PERIPH_UART1_MODULE);
  1078. } else if(uart_num == UART_NUM_2) {
  1079. periph_module_disable(PERIPH_UART2_MODULE);
  1080. }
  1081. }
  1082. return ESP_OK;
  1083. }