esp_timer_esp32.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. // Copyright 2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "esp_err.h"
  15. #include "esp_timer.h"
  16. #include "esp_system.h"
  17. #include "esp_task.h"
  18. #include "esp_attr.h"
  19. #include "esp_intr_alloc.h"
  20. #include "esp_log.h"
  21. #include "esp_clk.h"
  22. #include "esp_timer_impl.h"
  23. #include "soc/frc_timer_reg.h"
  24. #include "soc/rtc.h"
  25. #include "freertos/FreeRTOS.h"
  26. #include "freertos/task.h"
  27. #include "freertos/semphr.h"
  28. /**
  29. * @file esp_timer_esp32.c
  30. * @brief Implementation of chip-specific part of esp_timer
  31. *
  32. * This implementation uses FRC2 (legacy) timer of the ESP32. This timer is
  33. * a 32-bit up-counting timer, with a programmable compare value (called 'alarm'
  34. * hereafter). When the timer reaches compare value, interrupt is raised.
  35. * The timer can be configured to produce an edge or a level interrupt.
  36. *
  37. * In this implementation the timer is used for two purposes:
  38. * 1. To generate interrupts at certain moments — the upper layer of esp_timer
  39. * uses this to trigger callbacks of esp_timer objects.
  40. *
  41. * 2. To keep track of time relative to application start. This facility is
  42. * used both by the upper layer of esp_timer and by time functions, such as
  43. * gettimeofday.
  44. *
  45. * Whenever an esp_timer timer is armed (configured to fire once or
  46. * periodically), timer_insert function of the upper layer calls
  47. * esp_timer_impl_set_alarm to enable the interrupt at the required moment.
  48. * This implementation sets up the timer interrupt to fire at the earliest of
  49. * two moments:
  50. * a) the time requested by upper layer
  51. * b) the time when the timer count reaches 0xffffffff (i.e. is about to overflow)
  52. *
  53. * Whenever the interrupt fires and timer overflow is detected, interrupt hander
  54. * increments s_time_base_us variable, which is used for timekeeping.
  55. *
  56. * When the interrupt fires, the upper layer is notified, and it dispatches
  57. * the callbacks (if any timers have expired) and sets new alarm value (if any
  58. * timers are still active).
  59. *
  60. * At any point in time, esp_timer_impl_get_time will return the current timer
  61. * value (expressed in microseconds) plus s_time_base_us. To account for the
  62. * case when the timer counter has overflown, but the interrupt has not fired
  63. * yet (for example, because interupts are temporarily disabled),
  64. * esp_timer_impl_get_time will also check timer overflow flag, and will add
  65. * s_timer_us_per_overflow to the returned value.
  66. *
  67. */
  68. /* Timer is clocked from APB. To allow for integer scaling factor between ticks
  69. * and microseconds, divider 1 is used. 16 or 256 would not work for APB
  70. * frequencies such as 40 or 26 or 2 MHz.
  71. */
  72. #define TIMER_DIV 1
  73. #define TIMER_DIV_CFG FRC_TIMER_PRESCALER_1
  74. /* ALARM_OVERFLOW_VAL is used as timer alarm value when there are not timers
  75. * enabled which need to fire within the next timer overflow period. This alarm
  76. * is used to perform timekeeping (i.e. to track timer overflows).
  77. */
  78. #define ALARM_OVERFLOW_VAL UINT32_MAX
  79. static const char* TAG = "esp_timer_impl";
  80. // Interrupt handle retuned by the interrupt allocator
  81. static intr_handle_t s_timer_interrupt_handle;
  82. // Function from the upper layer to be called when the interrupt happens.
  83. // Registered in esp_timer_impl_init.
  84. static intr_handler_t s_alarm_handler;
  85. // Time in microseconds from startup to the moment
  86. // when timer counter was last equal to 0. This variable is updated each time
  87. // when timer overflows, and when APB frequency switch is performed.
  88. static uint64_t s_time_base_us;
  89. // Number of timer ticks per microsecond. Calculated from APB frequency.
  90. static uint32_t s_timer_ticks_per_us;
  91. // Period between timer overflows, in microseconds.
  92. // Equal to 2^32 / s_timer_ticks_per_us.
  93. static uint32_t s_timer_us_per_overflow;
  94. // When frequency switch happens, timer counter is reset to 0, s_time_base_us
  95. // is updated, and alarm value is re-calculated based on the new APB frequency.
  96. // However because the frequency switch can happen before the final
  97. // interrupt handler is invoked, interrupt handler may see a different alarm
  98. // value than the one which caused an interrupt. This can cause interrupt handler
  99. // to consider that the interrupt has happened due to timer overflow, incrementing
  100. // s_time_base_us. To avoid this, frequency switch hook sets this flag if
  101. // it needs to set timer alarm value to ALARM_OVERFLOW_VAL. Interrupt hanler
  102. // will not increment s_time_base_us if this flag is set.
  103. static bool s_mask_overflow;
  104. #ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
  105. // If DFS is enabled, upon the first frequency change this value is set to the
  106. // difference between esp_timer value and RTC timer value. On every subsequent
  107. // frequency change, s_time_base_us is adjusted to maintain the same difference
  108. // between esp_timer and RTC timer. (All mentioned values are in microseconds.)
  109. static uint64_t s_rtc_time_diff = 0;
  110. #endif
  111. // Spinlock used to protect access to static variables above and to the hardware
  112. // registers.
  113. portMUX_TYPE s_time_update_lock = portMUX_INITIALIZER_UNLOCKED;
  114. // Check if timer overflow has happened (but was not handled by ISR yet)
  115. static inline bool IRAM_ATTR timer_overflow_happened()
  116. {
  117. return (REG_READ(FRC_TIMER_CTRL_REG(1)) & FRC_TIMER_INT_STATUS) != 0 &&
  118. REG_READ(FRC_TIMER_ALARM_REG(1)) == ALARM_OVERFLOW_VAL &&
  119. !s_mask_overflow;
  120. }
  121. uint64_t IRAM_ATTR esp_timer_impl_get_time()
  122. {
  123. uint32_t timer_val;
  124. uint64_t time_base;
  125. uint32_t ticks_per_us;
  126. bool overflow;
  127. uint64_t us_per_overflow;
  128. do {
  129. /* Read all values needed to calculate current time */
  130. timer_val = REG_READ(FRC_TIMER_COUNT_REG(1));
  131. time_base = s_time_base_us;
  132. overflow = timer_overflow_happened();
  133. ticks_per_us = s_timer_ticks_per_us;
  134. us_per_overflow = s_timer_us_per_overflow;
  135. /* Read them again and compare */
  136. if (REG_READ(FRC_TIMER_COUNT_REG(1)) > timer_val &&
  137. time_base == *((volatile uint64_t*) &s_time_base_us) &&
  138. ticks_per_us == *((volatile uint32_t*) &s_timer_ticks_per_us) &&
  139. overflow == timer_overflow_happened()) {
  140. break;
  141. }
  142. /* If any value has changed (other than the counter increasing), read again */
  143. } while(true);
  144. uint64_t result = time_base
  145. + (overflow ? us_per_overflow : 0)
  146. + timer_val / ticks_per_us;
  147. return result;
  148. }
  149. void IRAM_ATTR esp_timer_impl_set_alarm(uint64_t timestamp)
  150. {
  151. portENTER_CRITICAL(&s_time_update_lock);
  152. // Alarm time relative to the moment when counter was 0
  153. uint64_t time_after_timebase_us = timestamp - s_time_base_us;
  154. // Adjust current time if overflow has happened
  155. bool overflow = timer_overflow_happened();
  156. if (overflow) {
  157. assert(time_after_timebase_us > s_timer_us_per_overflow);
  158. time_after_timebase_us -= s_timer_us_per_overflow;
  159. }
  160. // Calculate desired timer compare value (may exceed 2^32-1)
  161. uint64_t compare_val = time_after_timebase_us * s_timer_ticks_per_us;
  162. uint32_t alarm_reg_val = ALARM_OVERFLOW_VAL;
  163. // Use calculated alarm value if it is less than 2^32-1
  164. if (compare_val < ALARM_OVERFLOW_VAL) {
  165. uint64_t cur_count = REG_READ(FRC_TIMER_COUNT_REG(1));
  166. // If we by the time we update ALARM_REG, COUNT_REG value is higher,
  167. // interrupt will not happen for another 2^32 timer ticks, so need to
  168. // check if alarm value is too close in the future (e.g. <1 us away).
  169. uint32_t offset = s_timer_ticks_per_us;
  170. if (compare_val < cur_count + offset) {
  171. compare_val = cur_count + offset;
  172. if (compare_val > UINT32_MAX) {
  173. compare_val = ALARM_OVERFLOW_VAL;
  174. }
  175. }
  176. alarm_reg_val = (uint32_t) compare_val;
  177. }
  178. REG_WRITE(FRC_TIMER_ALARM_REG(1), alarm_reg_val);
  179. portEXIT_CRITICAL(&s_time_update_lock);
  180. }
  181. static void IRAM_ATTR timer_alarm_isr(void *arg)
  182. {
  183. portENTER_CRITICAL(&s_time_update_lock);
  184. // Timekeeping: adjust s_time_base_us if counter has passed ALARM_OVERFLOW_VAL
  185. if (timer_overflow_happened()) {
  186. s_time_base_us += s_timer_us_per_overflow;
  187. }
  188. s_mask_overflow = false;
  189. // Clear interrupt status
  190. REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
  191. // Set alarm to the next overflow moment. Later, upper layer function may
  192. // call esp_timer_impl_set_alarm to change this to an earlier value.
  193. REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
  194. portEXIT_CRITICAL(&s_time_update_lock);
  195. // Call the upper layer handler
  196. (*s_alarm_handler)(arg);
  197. }
  198. void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
  199. {
  200. portENTER_CRITICAL(&s_time_update_lock);
  201. /* Bail out if the timer is not initialized yet */
  202. if (s_timer_interrupt_handle == NULL) {
  203. portEXIT_CRITICAL(&s_time_update_lock);
  204. return;
  205. }
  206. uint32_t new_ticks_per_us = apb_ticks_per_us / TIMER_DIV;
  207. uint32_t alarm = REG_READ(FRC_TIMER_ALARM_REG(1));
  208. uint32_t count = REG_READ(FRC_TIMER_COUNT_REG(1));
  209. uint64_t ticks_to_alarm = alarm - count;
  210. uint64_t new_ticks = (ticks_to_alarm * new_ticks_per_us) / s_timer_ticks_per_us;
  211. uint32_t new_alarm_val;
  212. if (alarm > count && new_ticks <= FRC_TIMER_LOAD_VALUE(1)) {
  213. new_alarm_val = new_ticks;
  214. } else {
  215. new_alarm_val = ALARM_OVERFLOW_VAL;
  216. if (alarm != ALARM_OVERFLOW_VAL) {
  217. s_mask_overflow = true;
  218. }
  219. }
  220. REG_WRITE(FRC_TIMER_ALARM_REG(1), new_alarm_val);
  221. REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
  222. s_time_base_us += count / s_timer_ticks_per_us;
  223. #ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
  224. // Due to the extra time required to read RTC time, don't attempt this
  225. // adjustment when switching to a higher frequency (which usually
  226. // happens in an interrupt).
  227. if (new_ticks_per_us < s_timer_ticks_per_us) {
  228. uint64_t rtc_time = esp_clk_rtc_time();
  229. uint64_t new_rtc_time_diff = s_time_base_us - rtc_time;
  230. if (s_rtc_time_diff != 0) {
  231. uint64_t correction = new_rtc_time_diff - s_rtc_time_diff;
  232. s_time_base_us -= correction;
  233. } else {
  234. s_rtc_time_diff = new_rtc_time_diff;
  235. }
  236. }
  237. #endif // CONFIG_PM_DFS_USE_RTC_TIMER_REF
  238. s_timer_ticks_per_us = new_ticks_per_us;
  239. s_timer_us_per_overflow = FRC_TIMER_LOAD_VALUE(1) / new_ticks_per_us;
  240. portEXIT_CRITICAL(&s_time_update_lock);
  241. }
  242. esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
  243. {
  244. s_alarm_handler = alarm_handler;
  245. esp_err_t err = esp_intr_alloc(ETS_TIMER2_INTR_SOURCE,
  246. ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_IRAM,
  247. &timer_alarm_isr, NULL, &s_timer_interrupt_handle);
  248. if (err != ESP_OK) {
  249. ESP_EARLY_LOGE(TAG, "esp_intr_alloc failed (0x%0x)", err);
  250. return err;
  251. }
  252. uint32_t apb_freq = rtc_clk_apb_freq_get();
  253. s_timer_ticks_per_us = apb_freq / 1000000 / TIMER_DIV;
  254. assert(s_timer_ticks_per_us > 0
  255. && apb_freq % TIMER_DIV == 0
  256. && "APB frequency does not result in a valid ticks_per_us value");
  257. s_timer_us_per_overflow = FRC_TIMER_LOAD_VALUE(1) / s_timer_ticks_per_us;
  258. s_time_base_us = 0;
  259. REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
  260. REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
  261. REG_WRITE(FRC_TIMER_CTRL_REG(1),
  262. TIMER_DIV_CFG | FRC_TIMER_ENABLE | FRC_TIMER_LEVEL_INT);
  263. REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
  264. ESP_ERROR_CHECK( esp_intr_enable(s_timer_interrupt_handle) );
  265. return ESP_OK;
  266. }
  267. void esp_timer_impl_deinit()
  268. {
  269. esp_intr_disable(s_timer_interrupt_handle);
  270. REG_WRITE(FRC_TIMER_CTRL_REG(1), 0);
  271. REG_WRITE(FRC_TIMER_ALARM_REG(1), 0);
  272. REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
  273. esp_intr_free(s_timer_interrupt_handle);
  274. s_timer_interrupt_handle = NULL;
  275. }
  276. // FIXME: This value is safe for 80MHz APB frequency.
  277. // Should be modified to depend on clock frequency.
  278. uint64_t IRAM_ATTR esp_timer_impl_get_min_period_us()
  279. {
  280. return 50;
  281. }